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Abstract | Weak �rst- and second-order numerical schemes are developed to integrate the

stochastic di�erential equations that arise in mean-�eld - pdf methods (Lagrangian stochastic

approach) for modeling polydispersed turbulent two-phase 
ows. These equations present several

challenges, the foremost being that the problem is characterized by the presence of di�erent time

scales that can lead to sti� equations, when the smallest time-scale is signi�cantly less than the

time-step of the simulation. The numerical issues have been detailed by Minier [Monte Carlo

Meth. and Appl. 7 295-310, (2000)] and the present paper proposes numerical schemes that

satisfy these constraints. This point is really crucial for physical and engineering applications,

where various limit cases can be present at the same time in di�erent parts of the domain or at

di�erent times. In order to build up the algorithm, the analytical solutions to the equations are

�rst carried out when the coeÆcients are constant. By freezing the coeÆcients in the analytical

solutions, �rst and second order unconditionally stable weak schemes are developed. A predic-

tion/correction method, which is shown to be consistent for the present stochastic model, is used

to devise the second-order scheme. A complete numerical investigation is carried out to validate

the schemes, having included also a comprehensive study of the di�erent error sources. The �nal

method is demonstrated to have the required stability, accuracy and eÆciency.

1 Introduction

There is nowadays an increasing interest in modeling and simulating polydispersed tur-
bulent two-phase 
ows of engineering signi�cance [1]. In such 
ows, discrete particles are
embedded in a 
uid in turbulent motion. The complexity of these 
ows arises both from
the multi-scale character of the problem and from the wide variety of physical phenomena
involved (turbulence, particle dispersion, granular matter, combustion and so on).

Several methods can be used to model and simulate polydispersed turbulent two-phase

ows. These approaches range from the microscopic level (exact local instantaneous equa-
tions) to the macroscopic level (mean �eld equations). They are often compared directly
in the literature without specifying that there exists a hierarchy between them since they
correspond to di�erent levels of information [2]. For industrial applications, a good com-
promise between the level of information which is provided and the computational e�ort
which is required, is obtained by the mean-�eld - pdf approach (or Lagrangian stochas-

tic approach). In this approach, mean �eld equations (classical Reynolds stress models)
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are derived for the 
uid whereas particles are tracked individually by using a set of equa-
tions describing their dynamical behavior. In fact, real particles are replaced by stochastic
particles where the time evolution of the variables of interest is described by stochastic
di�erential equations (SDEs). In a weak sense, the use of SDEs is equivalent to a Monte-
Carlo simulation of an underlying pdf [3], i.e. interest is not focused on the trajectories
of the stochastic processes but on their joint law (pdf). Indeed, in most engineering ap-
plications, one is mainly interested in the expected values (statistics) of functionals of the
variables of interest. In other words, the 
uid is modeled at the macroscopic level whereas
the dynamics of the particles are reproduced at a mesoscopic level (SDEs). The meso-
scopic description is an intermediate level between the macroscopic description and the
microscopic description. The mesoscopic description is rather natural when one attempts
to address problems with complex physics [1]: for example, for reactive sprays, mean-�eld
- pdf methods have the overwhelming advantage to represent exactly, for the particles, key
phenomena such as combustion, convection and polydispersity without any approximation.

Numerical solutions to mean-�eld - pdf models require hybrid methods and are based
on particle-mesh technique [4]. The mean-�eld equations are solved on a mesh by standard
discretization techniques whereas the dynamics of the particles are obtained by time inte-
gration of the SDEs. From now on, let hXi denote the set of mean �elds representing the

uid, i.e. the mean velocity hUf i(t;x), the mean pressure hP i(t;x), the covariance matrix
hufuf i(t;x) and the mean energy dissipation rate, h�i(t;x) (the h i operator stands for the
mathematical expectation). The SDEs reproducing the dynamics of the particles can be
written as follows,

dZi(t) = Ai(t;Z; hf(Z)i; hXi) dt +
X
j

Bij(t;Z; hf(Z)i; hXi) dWj (t); (1)

where Z is the state vector (the set of variables of interest) and W(t) is a vector of
independent Wiener processes. A is the drift vector and B is the di�usion matrix. It is
immediately seen that these equations are non-linear as the coeÆcients depend not only
on the state vector but also on expected values of functions of Z, not to the mention the
dependence on the properties of the 
uid (these equations are called Mac-Kean SDEs in
the mathematical literature [5]). In particle-mesh methods, quantities such as hf(Z)i are
extracted from the particle data and evaluated at grid points . Therefore, the numerical
integration of the SDEs requires the following steps:

(i) projection of hf(Z)i and hXi at particle positions to evaluate the coeÆcients A and
B.

(ii) Time integration of Eq. (1) with a suitable numerical scheme and (iii) averaging to
compute the new values of the �elds hf(Z)i at grid points.
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possible, and as explained before, only weak convergence is under consideration. A
discrete approximation YT (T stands for a given stopping time) converges in the
weak sense with order p, if for any polynomial g, there exists a constant C, function
of T , such that

jhg(ZT )i � hg(YT )ij 6 C(T )�t p: (2)

Due to the mathematical de�nition of Itô's integral, numerical schemes developed for
SDE cannot be applied directly. Several work have already been performed for the
integration of SDEs appearing in turbulent 
ow modeling [7, 8]. Here, these ideas
are extended to a speci�c set of SDEs often encountered for modeling polydispersed
turbulent two-phase 
ows. Our present objective is to develop weak numerical scheme
that are second-order accurate in time, unconditionally stable but still explicit for
the stochastic model we consider.

(b) The second diÆculty is related to physical constraints. As suggested in [9], the general
stochastic model used to simulate general dispersed two-phase 
ows contains several
characteristic time-scales. When some of these time-scales become negligible (the
system of SDEs is then sti�), various sub-systems of stochastic di�erential equations
can be extracted. In other words, simpli�ed stochastic models can be obtained from
the general one. Our second objective is to put forward numerical schemes that can
be still applicable, and that remain accurate, when the di�erent time-scales go to
zero. This corresponds to a practical concern. Indeed, in the numerical simulation
of a complex 
ow, the time-scales may be negligible in some areas of the 
ows. We
want nevertheless the general numerical scheme to reproduce the correct physical
behaviour in these areas with the same numerical eÆciency.

The original part of this work is just the numerical treatment of the multi-scale character of
the problem in a physically sound manner. Indeed, an algorithm is presented that follows all
the mathematical and physical constraints necessary to assure that in the scaling limit cases
the expected equations are retrieved, with the fundamental property to be unconditionally
stable, that allows us an arbitrary choice of the integration time step.

The paper is organized as follows. The stochastic di�erential system is presented in
Section 2. The multi-scale speci�city is discussed and analytical solutions are given for
the system with constant coeÆcients. Then, in Section 3, a brief overview of the particle-
mesh method, and its associated numerical errors, is presented. After that, the numerical
schemes are derived. Numerical validations of the theoretical results of convergence are
performed in Section 5. The paper closes with discussions and conclusions.

2 Analysis of the continuous system

In the present study, the equation system corresponds to non-reacting, incompressible

uid-particle 
ows, with no collisions between particles. Only heavy particles are under
consideration, i.e. the density of the discrete particles is much greater than that of the 
uid,
�f � �p. Since the purpose of the study is neither the development of new models nor their
numerical validation by comparison with experiments, the equation system is presented in
a straight-forward manner without detailed information. All needed explanations can be
found in Ref. [1].
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2.1 Stochastic di�erential system

The 
uid velocity seen is the velocity sampled by the discrete particles along their trajecto-
ries xp(t). Extension of Kolmogorov theory [10] (for Lagrangian statistics of 
uid elements)
to discrete particles suggests that the acceleration of the 
uid velocity seen Us(t;xp(t)) is
a fast variable, if the process is observed at discrete time intervals dt which are large com-
pared to the Kolmogorov time scale, � , and small compared to the 'memory' (integral time
scale) Ti of Us, i.e. � � dt � Ti. With this separation of scales, the fast variable can
be eliminated by standard techniques (fast variable elimination [11]) and its in
uence is
modeled by a stochastic di�erential equation. The remaining variables of interest are then
position xp, particle velocity Up and the 
uid velocity seen Us whose evolution in time
can be described by the following stochastic di�erential system8>>>>><

>>>>>:

dxp;i = Up;i dt;

dUp;i =
1

�p
(Us;i � Up;i) dt+Ai dt;

dUs;i = � 1

Ti
Us;i dt+ Ci dt+

X
j

�ij dWj(t);

(3)

where �p is the particle relaxation time and Ai is an acceleration due to external force �elds
(gravity in most cases). �ij is the di�usion matrix and the meaning of Ci shall shortly be
explained.

The particle relaxation time is de�ned as

�p(dp;Ur) =
�p dp

�f CDjUrj ; (4)

where CD, the drag coeÆcient, is a non-liner function of the particle Reynolds number
Re = jUrj dp=�f (�f is the kinematic viscosity of the 
uid, Ur = Up � Us the relative
velocity and dp the particle diameter). For heavy particles embedded in a turbulent 
ow
undergoing gravity, it is possible to show that the acceleration Ai can be written

Ai(t;xp) = � 1

�p

@hP i
@xi

+ gi; (5)

where gi is the gravitational acceleration.
Contrarily to Eqs (4) and (5), which can be considered as 'exact', the expressions

presented now for the other parameters of system (3) can neither be considered as exact
nor de�nitive. They simply correspond to the current level of knowledge. The memory of
the 
uid velocity seen is

Ti(t;xp; hUri) = Tf

�
1 + �i

3jhUrij2
2k

�
�1=2

; (6)

where Tf , the integral time scale of the 
uid, is de�ned as Tf = C� k=h�i. C� and �i are
constants (for �i, the value of the constant depends on direction i). The dependence of Ti
on time and position is due to the di�erent �elds entering Eq. (6) such as k and h�i. The
di�usion matrix is diagonal, but non-isotropic

�i(t;xp; hUri) = h�i
"
C0 bi

~k

k
+
2

3

 
bi
~k

k
� 1

!#
; (7)
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where C0 is a constant, bi = Tf=Ti and

~k =
3

2

 
3X

i=1

bihu2f;ii
!
=

3X
i=1

bi: (8)

Vector C is the sum of several terms

Ci(t;Z; hf(Z)i) = hUs;ii
Ti

� 1

�f

@hP i
@xi

+ (hUp;ji � hUs;ji)@hUf;ii
@xj

+
�

�p
(Up;i � Us;i); (9)

where Z = (x;Up;Us) is the state vector. The third and fourth terms on the right hand
side of Eq. (9) have a clear physical meaning. The former expresses the in
uence of �p and
gi on the statistics of the 
uid velocity seen and the latter accounts for two way-coupling.
In this last term, � is de�ned as (�p �p)=(�f �p) where �p(t;xp) is the local volume fraction
of particles (�f , the volume fraction of the 
uid is computed by �f = 1 � �p).

2.2 Limit cases

Once again, system (3) has a physical meaning only in the case where dt � Ti and
dt� �p. When this condition is not satis�ed, it is possible to show that, in the continuous
sense (time and all coeÆcients are continuous functions which can go to zero), the system
converges towards several limit systems [9]. case 1: when �p ! 0, the particles behave as

uid particles and one has

system (3) ���!
�p!0

8>>><
>>>:

dxp;i = Up;i dt

Up;i = Us;i

dUs;i = � 1

Ti
Us;i dt+ Ci dt+

X
j

�ij dWj(t)
(10)

We retrieve a known turbulent 
uid PDF model [12]. This shows that our model is a
coherent generalization of the 
uid one, which can be recovered as limit case.

case 2: when Ti ! 0 and �ijTi ! cst, the 
uid velocity seen becomes a fast variable.
It is then eliminated and one can write

system (3)
(�ijTi!cst)������!

Ti!0

8><
>:
dxp;i = Up;i dt

dUp;i =
1

�p
(hUs;ii � Up;i) dt+Ai dt+

X
j

�ijTi
�p

dWj(t)
(11)

In this case, the equations collapse in a Fokker-Planck model for large high-inertia particle.
case 3: When �p; Ti ! 0 and at the same time �ijTi ! cst , the 
uid velocity seen

becomes a fast variable and the discrete particles behave as 
uid particles. It can be shown
that

system (3)
(�ijTi!cst)������!
�p;Ti!0

dxp;i = hUs;ii dt+Ai dt+
X
j

(�ijTi) dWj(t): (12)

We retrieve a pure di�usive behaviour, that is the equations of the Brownian motion. It is
often used for large time lags simulations, being the case of dt� Ti; dt� �p.

These three asymptotic cases re
ect the multi-scale character of the problem. Three
time scales are present: the 'observation' time scale, dt, and two physical time scales, the
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particle relaxation time, �p, and the integral time scale of the 
uid velocity seen, Ti. It
is seen that, when these scales go to zero, a hierarchy of stochastic di�erential systems
is obtained. Moreover, the elimination of the fast variables (the velocities Up and Us)
does not mean that these variables do not (physically) exist anymore: they are simply
not mathematically de�ned. For example, in the case of Eq. (11), the 
uid velocity seen
becomes white noise (no memory, in�nite variance).

case 4: at last, when Ti ! 0 with no condition on �ijTi, the velocity of the 
uid seen
is no longer random and the system becomes deterministic. The 
ow is laminar and it can
be proven that

system (3) ���!
Ti!0

8>>><
>>>:
dxp;i = Up;i dt

dUp;i =
1

�p
(hUs;ii � Up;i) dt+Ai dt

Us;i = hUs;ii:
(13)

2.3 Analytical solutions

The construction of the numerical schemes is now slightly anticipated. Since the numerical
methods are derived by freezing the coeÆcients on the integration intervals, the solutions
to system (3), with constant coeÆcients, are now given.

By resorting to Itô's calculus, it can be shown that the analytical solutions are given
by Eqs (B.2) to (B.4), see Table 1. For instance, for the 
uid velocity seen, if one seeks
a solution of the form Us;i(t) = H(t) exp(�t=Ti), where H(t) is a stochastic process, Itô's
calculus gives

dH(t) = exp(t=Ti)[Ci(xp) dt +
X
j

�ij(xp) dWj(t)]; (14)

that is, by integration on a time interval [t0; t] (�t = t� t0),

Us;i(t) = Us;i(t0) exp(��t=Ti) + Ci(xp)Ti [1� exp(��t=Ti)]

+
X
j

�ij(xp) exp(�t=Ti)
Z t

t0

exp(s=Ti) dWj(s):
(15)

The previous expression is identical to Eq. (B.4) in Table 1. The analytical solutions for
position, xp(t), and velocity, Up(t), given in Table 1, are obtained by a similar technique
as the one used for the 
uid velocity seen, Us(t).

The three stochastic integrals, Eqs (B.5) to (B.7) in Table 1, only for the constant
coeÆcient case, are Gaussian processes since they are stochastic integrals of deterministic
functions [6]. These integrals can be re-written, by resorting to stochastic integration by
parts, as the sum of simple stochastic integrals (see Appendix A.1), Eqs (B.8) to (B.10)
in Table 1. By using Itô's calculus, the �rst two moments of each stochastic process (the
stochastic integrals) can be calculated. The second order moments are displayed in Table
2 (the �rst order moments are, of course, all equal to zero). As a matter of fact, Table
2 gives the covariance matrix built from the stochastic integrals. The path to the �nal
expressions is brie
y explained in Appendix A.2.

Once again, the numerics are slightly anticipated and it is now explained how the
stochastic integrals can be calculated (simulated). It has just been shown that these inte-
grals are Gaussian processes whose means and variances are know (zero mean and covari-
ance matrix given by Table 2). The vector composed by the nine stochastic integrals, Eqs



Weak �rst- and second-order numerical schemes for stochastic di�erential equations 99

(B.5) to (B.7), is a vector of Gaussian centered random variables which can be computed
by resorting to the simulation of a vector composed of independent normal Gaussian vari-
ables (zero mean and variance equal to one). This technique, which requires the Choleski
decomposition of the covariance matrix, is displayed in Appendix B.

At last, let us check that the expressions of Table 1 and 2 are consistent with the limit
cases given, in the continuous sense, in Section 3.2.

2.3.1 Limit case (i)

In limit case (i), where the discrete particles behave as 
uid particles, the limit system is
given by Eq. (10). When the coeÆcients are constant, the limit expressions are obtained
from Table 1 and 2. Indeed, when �p ! 0, Eq. (B.3) becomes

Up;i(t) = Us;i(t0) exp(��t=Ti) + Ci Ti exp(��t=Ti) + �i(t); (16)

and for the stochastic integral �i(t), one has

h�2
i (t)i ���!

�p!0

��2
i Ti
2

[1� exp(�2�t=Ti)] = h
2i (t)i; (17)

and also
h�i(t) 
i(t)i ���!

�p!0
h
2i (t)i: (18)

The last two equations indicate that �i(t)! 
i(t) when �p ! 0. By comparing Eq. (16) to
Eq. (B.4), one has Up;i(t) = Us;i(t) which is the consistent with the limit given in Section
3.2.

2.3.2 Limit case (ii)

In this case, the velocity of the 
uid velocity seen is a fast variable which is eliminated.
The results obtained in Table 1 and 2, when the coeÆcients of the system are constant,
with Ti ! 0 and �ij Ti ! cst, give for the velocity of the discrete particles,

Up;i(t) = Up;i(t0) exp(��t=�p) + [hUs;i(t)i+Ai �p][1� exp(��t=�p)]

+

s
��2
i T

2
i

2�p
(1� exp(�2�t=�p) Gp;i;

(19)

where Gp;i is N (0; 1) vector (a vector composed of independent normal Gaussian random
variables). It can be rapidly veri�ed, by applying Itô's calculus, that Eq. (19) is the
solution to system (11) when the coeÆcients are constant

2.3.3 Limit case (iii)

Here, both the 
uid velocity seen and the velocity of the discrete particles become rapid
variables. When �p ! 0 and Ti ! 0 with �ij Ti ! cst, Eq. (B.2) becomes

xp;i(t) = xp;i(t0) + [hUs;i(t)i+Ai �p]�t+
q
��2
i T

2
i �t Gx;i; (20)

which is the solution to Eq. (12) when the coeÆcients are constant.
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2.3.4 Limit case (iv)

When Ti ! 0 (with no condition on �ijTi), the 
ow becomes laminar, which means that
the system becomes deterministic, see Eq. (13). Once again, the results given by Table 1
and 2 are in agreement with Eq. (13). When Ti ! 0, Eqs (B.2) to (B.4) become

Us;i(t) = hUs;i(t)i;
Up;i(t) = Up;i(t0) exp(��t=�p) + [hUs;ii +Ai �p][1� exp(��t=�p)];
xp;i(t) = xp;i(t0) + �p[1� exp(��t=�p)]Up;i(t0) + [hUs;ii+Ai �p]f�t� �p[1� exp(��t=�p)]g;

(21)

which is the analytical solution to system (13) when the coeÆcients are constant. Both the
position and the velocity of the particles are increasing functions of time whose asymptotes
are [hUs;ii + Ai �p](�t � �p) (with a relaxation time of magnitude �p) and hUs;ii + Ai �p,
respectively. In conclusion, in order to have a consistent and stable numerical scheme for
the integration of such a type of SDEs, it is necessary to retain the exponential terms in
the solution and all the stochastic integrals, even the indirect ones, must be explicitely
calculated.

3 Derivation of the numerical method

The numerical solutions to system (3), with constant coeÆcients, are now known and it
has been demonstrated that, from these solutions, the hierarchy of stochastic di�erential
systems (limit cases) can be retrieved. Before presenting the derivation of the numeri-
cal schemes, let us �rst display the main steps of the particle-mesh method used in our
computations. This will help us to de�ne the constraint that the schemes must ful�ll.

3.1 Particle-mesh method

In the present paper, all numerical computations are performed with the ESTET solver,
developed by EDF. As mentioned in the introduction, in a particle-mesh method, particles
are moving in a mesh where, at every node, the mean �elds describing the 
uid are known.
The statistics extracted from the variables attached to the particles (which are needed to
compute the coeÆcients of system (3)) are not calculated for each particle (this would
cost too much CPU time) but are evaluated at each cell center following a given numerical
scheme (averaging operator). These moments can then be evaluated for each particle by
projection. This the principle of particle-mesh methods: exchange data between particle
and mesh points. Once again, the expected value for functionals of the state vector are
not computed directly for each particle but are evaluated at discrete points in space and
then calculated for each particle by interpolation. The main advantage of such methods is
of course the reduction of CPU time but these procedures have also some drawbacks: (i)
additional numerical errors due to averaging and projection and (ii) each particle has to
be located in the mesh.

Let us specify the di�erent steps of the particle-mesh method implemented in the ES-
TET code and the associated numerical errors. Let fZ(N)g denote the set of variables
attached to the particles, fZ[x]g the set of values of hf(Z)i at cell centers. Time is dis-
cretized with a uniform time step �t = tn+1� tn and space with a uniform mesh of cell size
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�x. The �rst step on the algorithm is to solve the PDEs (Partial Di�erential Equations)
describing the 
uid,

hXi(tn) and Z[x](tn)
F�! hXi(tn+1):

This step is denoted by the F operator which simply means that from the set of �elds
known at time tn, the set of �elds at time tn+1 is computed. The F operator corresponds
to a classical Navier-Stokes solver and it gives the evolution in time of the characteristics of
the 
uid (some particle properties are needed to compute source terms if two-way coupling
is accounted for). The second step is to transfer particle properties and 
uid properties
(which are also needed to compute the coeÆcients of the stochastic di�erential system)
from the mesh to the particles,

Z[x](tn) and hXi(tn) P�! Z(N)(tn) and hX(N)i(tn);
where hX(N)i(tn) represents the values of the 
uid properties at particle locations. The
P operator means that statistical moments known at mesh points (
uid) and cell centers
(particles) are evaluated at particle locations. Then, the stochastic di�erential system is
integrated in time,

hX(N)i(tn) and Z(N)(tn)
T�! Z(N)(tn+1):

This step simulates the dynamics of the system under consideration. Finally, from the new
computed set of variables, at particle locations, new statistical moments are evaluated at
cell centers,

Z(N)(tn+1)
A�! Z[x](tn+1);

and so on. In the present paper, the di�erent numerical methods used to implement the
A and P operators are not discussed (see [4] for further explanations) since the purpose of
this work is to de�ne operator T , i.e. to �nd a suitable weak numerical scheme for system
(3).

Before explaining what a suitable weak numerical scheme should be, let us identify
the di�erent numerical errors which are inherent to particle-mesh methods. Some of these
errors will be studied in the numerical validation of the scheme. The total error depends
on three numerical parameters: �t for time discretization, �x for space discretization and
N for the evaluation of statistical quantities by a �nite set of particles. As explained by
Xu and Pope [13], the total error (for hf(Z)i, the expected value of a functional of Z) is,
at time t = T ,

�(T ) = hf(ZT )i � ff(ZT )gN;�x

where ZT (in the following Z(t) is often written Zt) is the approximation of ZT after time
integration (operator T ) and f gN;�x is the approximation of the expected value, for the
de�nition of the expected value h i, that is of the mathematical expectation, see [5]. The
total error, which is a random variable, can be decomposed as follows

�(T ) = �N (T ) + ��t(T ) + ��x(T ) + �1(T ):

These numerical errors are:

(i) The statistical error:

�N(T ) = hff(ZT )gN;�xi � ff(ZT )gN;�x (22)

which is inherent to all Monte-Carlo methods. The statistical error is random and
its asymptotic behavior is given by the central limit theorem.
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(ii) The bias:

�1(T ) = ff(ZT )g1;�x � hff(ZT )gN;�xi: (23)

The bias, which is a deterministic error, is the di�erence between the mean value of
a quantity for a �nite number of particles and the mean value for in�nitely many
particles, all other parameters being unchanged. This error is typical of non-linear
stochastic di�erential equation.

(iii) The time discretisation error:

��t(T ) = hf(ZT )i � hf(ZT )i (24)

where hf(ZT )i = ff(ZT )g1;0. This deterministic error is due to the numerical inte-
gration in time of the stochastic di�erential system (T operator).

(iv) The space discretisation error:

��x(T ) = hf(ZT )i � ff(ZT )g1;�x: (25)

This deterministic error is due to the exchange of information between the mesh and
the particles (A and P operators, and of course F for the 
uid).

The main steps of the particle-mesh method implemented in the ESTET code have
now been explained and the associated numerical errors have been identi�ed. With this
knowledge in mind, let us now de�ne the speci�cations of the weak numerical scheme.

3.2 Constraints of the numerical schemes

In the particle-mesh method adopted here, the PDEs for the 
uid are �rst solved and then
the dynamics of the stochastic particles are computed. Thus, the scheme has to be explicit.
Furthermore, the time step, which has to be the same for the integration of the PDEs and
the SDEs, is imposed by stability conditions required by the F operator. This implies
that, since there is no possibility to control the time step when integrating the SDEs, the
numerical scheme has to be unconditionally stable. At last, since particle localization in
a mesh is CPU demanding, the numerical scheme should minimize these operations. The
�rst constraint is

(i) The numerical scheme must be explicit, stable, of order 2 in time and the number of

calls to particle localization has to be minimum.

A practical to ful�ll the stability condition is to base the scheme on the analytical
solutions presented in Section 2.3. Indeed, the time step appears in decaying exponentials of
the type exp(��t), which brings unconditional stability. Therefore, the second constraint
is

(ii) The numerical scheme must be consistent with the analytical solutions of the system

when the coeÆcients are constant.

(iii) The numerical scheme must be consistent with all limit systems.
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For this delicate point, we can express from the discrete point of view the physical con-
straints that have been presented for continuous time before in section 2.2.

case 1: this concerns when �p ! 0. In the discrete simulation, this corresponds to
the situation where we have �p � �t� Ti. >From continuous point of view the particle
velocity is eliminated from the set of governing equations since it relaxes to its driving
force, the velocity of the 
uid seen, Up(t)! Us(t). In the numerical simulation, this means
that by putting �p to zero, we should have at each time step k that Up(k�t) = Us(k�t).

case 2: this is obtained when Ti ! 0. In that case, the velocity of the 
uid seen is a de-
terministic function rather than a random one. In the numerical simulation, this means that
putting Ti to zero, we should have at each time step k that Us(k�t) = hUsi(k�t; xp(k�t)).

case 3: when �p ! 0 as well as Ti ! 0 and �ijTi ! cst we have Ti; �p � �t. In that
case, both Us and Up behave as fast variables. In the numerical simulation, this corresponds
to the situation where we have Ti; �p � �t. Then, we expect to �nd that at each time step
we have

Up(k�t) = Us(k�t) (26)

Us(k�t) = hUsi(k�t; xp(k�t)) +
q
�2
ijTi(k�t; xp(k�t)) e (27)

with e = N(0; 1) is a random term sampled independently for each particle and at each
time step in a normalized Gaussian distribution.

case 4: when Ti ! 0. >From the continuous point of view, the velocity of the 
uid seen
Us will behave as a fast variable and a near white-noise term. In the numerical simulation,
the velocity of the 
uid seen Us does not, of course, behave strictly-speaking as white-noise
function (its variance is not in�nite!), but this continuous limit corresponds to the situation
where we have T �L � �t� �p. We expect the numerical simulation to yield that at, each
time step, we have

Us(k�t) = hUsi(k�t; xp(k�t)) +
q
�2
ijTi(k�t; xp(k�t)) e (28)

where e = N(0; 1) is a Gaussian random term as in case 3.
The construction of the scheme on the analytical solutions should also ensure a sound

physical treatment of the multi-scale character of the problem. Indeed, it has been demon-
strated that from the analytical solutions given in Section 2.3, all limit cases can be re-
trieved. The last constraint on the scheme is then

The speci�cations of the numerical schemes are now known and each of them has been
motivated in the frame of the particle-mesh method implemented in the ESTET code. The
derivation of the numerical schemes can now begin.

4 Numerical schemes

4.1 Weak �rst-order scheme

The derivation of the weak �rst order scheme is rather straight forward since the analyt-
ical solutions of system (3) with constant coeÆcients have been evaluated. Indeed, the
Euler scheme (which is a weak scheme of order 1 [14]) is simply obtained by freezing the
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coeÆcients at the beginning of the time intervals �t = [tn; tn+1]. Let Zn
i and Zn+1

i be the
approximated values of Zi at time tn and tn+1. The Euler scheme is then simply written
by using the results of Tables 1 and 2 as shown in Table 3. From now on, this scheme is
referred to as sch1. This scheme ful�lls all criteria listed in Section 3.2, except, of course,
the order of convergence in time.

As far as the consistency with all limit systems is concerned, some precisions must be
given. Here, it has to be understood that the limit systems are presented in the discrete

sense. The observation time scale dt has now become the time step �t. The physical time
scale �p and Ti do not go to zero, as in the continuous sense, but their values, depending
on the history of the particles, can be smaller or greater than �t.

For example, in limit case (ii), the condition Ti ! 0 must be understood as Ti � �t.
By Taylor expansion on Eq. (B.3), Eq. (16) is obtained (where of course �t is the time
step). When �p ! 0, in the continuous limit case, the 
uid velocity becomes a fast variable
which is eliminated. In the discrete case, the velocity of the 
uid seen is simply observed
at a time intervals which are greater than its memory. For the present scheme, Eq. (B.4),
with 1� �t=Ti, gives

Un+1
s;i = hUn

s;ii+
r

[��ni ]
2 T n

i

2
G1;i; (29)

This result is physically sound. Indeed, when a 
uctuating physical process (random
variable) is observed at time steps which are greater that its memory, the expected behavior
is Gaussian.

Moreover, in limit case (iii), that is when 1 � �t=Ti and 1 � �t=�p (discrete case),
one obtains for the velocity of the particles, Eqs. (B.3), and for the 
uid velocity seen, Eq.
(B.4),

Un+1
p;i = hUn

s;ii +An
i �

n
p +

r
[��ni ]

2

2

T n
i

T n
i + �np

(
p
T n
i Gs;i +

p
�np Gp;i);

Un+1
s;i = hUn

s;ii +
r

[��ni ]
2 T n

i

2
G1;i:

(30)

It is seen, once again, that the particle velocity, Up;i(t), and the 
uid velocity seen, Us;i(t),
which were eliminated in the continuous case, do not disappear. They become Gaussian
random variables, a result which is physically sound since these two random variables are
observed at time steps which are greater than their respective memories.

4.2 Weak second order scheme

4.2.1 Property of the system

The di�usion matrix of system (3) has a singular property, that have a crucial importance
here [15]. From Eq. (7), it can be noticed that �ij depends only on time, position and the
mean value of the relative velocity. Therefore, the only variable of the state vector whom
�ij is a function is xp. Therefore, the di�usion matrix has the following singular property

X
k

X
l

�kl
@�ij
@xk

= 0; 8 (i; j; k; l): (31)
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4.2.2 General method

Let us consider, for a moment, the following stochastic di�erential equation

dXi(t) = Ai(X(t)) dt+
X
j

Bij(X(t)) dWj(t)

where A is the drift vector and B is the di�usion matrix. If B v
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Let us suppose, as mentioned previously, that the acceleration Ci(s;xp) varies linearly on
the integration interval [t0; t], that is

Ci(s;xp(s)) = Ci(t0;xp(t0)) +
1

�t
[Ci(t;xp(t))� Ci(t0;xp(t0))](s� t0): (34)

By direct integration, one can write

Us;i(t) = Us;i(t0) exp(��t=Ti)+[TiCi(t0;xp(t0))]A(�t; Ti)+[TiCi(t;xp(t))]B(�t; Ti)+
i(t);

where the functions A(�t;X) and B(�t;X) are given by

A(�t;X) = � exp(��t=X) +

�
1� exp(��t=X)

�t=X

�
;

B(�t;X) = 1�
�
1 � exp(��t=X)

�t=X

�
:

By direct application of the ideas presented in Section 4.2.2, it is proposed to write

Un+1
s;i =

1

2
Un
s;i exp(��t=T n

i ) +
1

2
Un
s;i exp(��t= ~T n+1

i )

+A(�t; T n
i ) [T

n
i C

n
i ] +B(�t; ~T n+1

i ) [ ~T n+1
i

~Cn+1
i ] + ~
n+1

i ;

where the stochastic integral is simulated by (G1;i is the N (0; 1) random variable used in
the simulation of 
ni in the Euler scheme, see Table 3)

~
n+1
i =

s
[��i ]

2
~T n+1
i

2
[1� exp(�2�t= ~T n+1

i )] G1;i;

and where ��i is de�ned by

��i =

2
4A(2�t; ~T n+1

i )

sX
j

(�nij)
2 +B(2�t; ~T n+1

i )

sX
j

(~�n+1
ij )2

3
5 h1� exp(�2�t= ~T n+1

i )
i
�1

:

Here, it can already be seen by simple stochastic calculus (stochastic Taylor expansions)
that the expression proposed for the di�usion matrix in the correction step, ��i , enforces
that the scheme is of second order in time.

In the case of the velocity of the particles, the same approach followed for the 
uid
velocity seen is adopted. Let us start from the exact solution with constant coeÆcients for
Up;i(t). By resorting to the rules of Itô's calculus, one can write

Up;i(t) = Up;i(t0) exp(��t=�p) + 1

�p
exp(��t=�p)

Z t

t0

exp(s=�p)[Us;i(s) + �pAi(s;xp)] ds;

and by inserting Eq. (33) in the previous equation, one has

Up;i(t) = Up;i(t0) exp(��t=�p) + Us;i(t0) �i[exp(��t=Ti)� exp(��t=�p)] + �i(t)

+
1

�p
exp(�t=�p)

Z t

t0

exp(s=�p)

�
exp(�s=Ti)

Z s

t0

Ci(u;xp) exp(u=Ti) du + �pAi(s;xp)

�
ds:

(35)
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Two deterministic integrals must be treated in Eq. (35). A multiple one, involving Ci(t;xp)
and a simple one with the acceleration term Ai(t;xp). Both integrals are handled as done
previously for the 
uid velocity seen, that is, it is assumed that both accelerations vary
linearly on the integration interval, see for example Eq. (34) for Ci(t;xp). By integration
by parts on both integrals, one �nds after some derivations

Up;i(t) = Up;i(t0) exp(��t=�p) + Us;i(t0) �i[exp(��t=Ti)� exp(��t=�p)]
+ [TiCi(t0;xp(t0))]Ac(�p; Ti) + [TiCi(t;xp(t))]Bc(�p; Ti)

+ [�pAi(t0;xp(t0))]A(�t; �p) + [�pAi(t;xp(t))]B(�t; �p) + �i(t);

where the functions Cc(X;Y ), Ac(X;Y ) and Bc(X;Y ) are given by

Cc(X;Y ) =
Y

Y �X
[exp(��t=Y )� exp(��t=X)];

Ac(X;Y ) = � exp(��t=X) +
X + Y

�t
[1� exp(��t=X)]�

�
1 +

Y

�t

�
Cc(X;Y );

Bc(X;Y ) = 1 � X + Y

�t
[1� exp(��t=X)] +

Y

�t
Cc(X;Y ):

In analogy with the results of Section 4.2.2, the following correction step is proposed,

Un+1
p;i =

1

2
Un
p;i exp(��t=�np ) +

1

2
Un
p;i exp(��t=~�n+1

p )

+
1

2
Un
s;iCc(�

n
p ; T

n
i ) +

1

2
Un
s;iCc(~�

n+1
p ; ~T n+1

i )

+Ac(�
n
p ; T

n
i ) [T

n
i C

n
i ] +Bc(~�

n+1
p ; ~T n+1

i ) [ ~T n+1
i Cn+1

i ]

+A(�t; �np )[�
n
p An

i ] +B(�t; ~�n+1
p )[~�n+1

p An+1
i ] + ~�n+1

i :

(35)

For the simulation of the stochastic integral, one has (where G2;i is the N (0; 1) random
variable used in the simulation of �ni in the Euler scheme, see Table 3)

~�n+1
i =

h~�n+1
i ~
n+1

i i
h(~
n+1

i )2i ~
n+1
i +

s
h(~�n+1

i )2i � [h~�n+1
i ~
n+1

i i]2
h(~
n+1

i )2i G2;i;

where the second order moments h~�n+1
i ~
n+1

i i and h(~�n+1
i )2i are computed from Eqs. (B.12)

and (B.14), respectively, by inserting the suitable time scales and di�usion matrix, that is
�np , ~T

n+1
i and ��i . This completes the weak second order scheme.

It can be shown, by stochastic Taylor expansion [14] or by verifying the conditions
given by Talay [16], that the present scheme is a weak order scheme of order 2 in time
for system (3). It is worth emphasizing that no correction is done on position, xp, since
the prediction is already of order 2. This property is in line with the constraint stated in
Section 3.2, that is, the numerical scheme should minimize the procedures where particles
must be located in a mesh (which is done every time the particles are moved, i.e. when a
new value of xp is computed). The complete scheme is summarized in Table 4.

4.2.4 Limit cases

In limit case (i), when 1� �t=�p, one has Ac(�p; Ti)! A(�t; Ti), Bc(�p; Ti)! B(�t; Ti)
and Cc(�p; Ti) ! exp(��t=Ti). For the stochastic integral, one can show, as done in
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Section 2.3.4 that ~�n+1
i ! ~
n+1

i . By inserting these results in Eq. (35), one can write

Un+1
p;i = Un+1

s;i ; (36)

which is consistent with Eq. (10). In addition, Eq. (36) is a second order scheme for
Up;i(t), and therefore the scheme remains of order 2 in limit case (i).

When 1 � �t=Ti and �ij Ti ! cst (limit case (ii)), one has Ac(�p; Ti) ! A(�t; �p)
and Bc(�p; Ti)! B(�t; �p), which gives for the numerical correction of the velocity of the
particles

Un+1
p;i =

1

2
Un
p;i exp(��t=�np ) +

1

2
Un
p;i exp(��t=~�n+1

p )

+A(�t; �np )[hUn
s;ii + �np An

i ] +B(�t; ~�n+1
p )[h ~Un+1

s;i i+ ~�n+1
p An+1

i ] + ~�n+1
i :

(37)

For the simulation of the stochastic integral, one can prove by looking at the limit values
(when 1 � �t=Ti and �ij Ti ! cst) in Eqs. (B.11), (B.12) and (B.14) that (here G0p;i is a
N (0; 1) random variable)

~�n+1
i !

s
[��i ~T

n+1
i ]2

2 ~�n+1
p

[1� exp(�2�t=~�n+1
p )] G0p;i;

which is in accordance with Eq. (19). Unfortunately, it can be established, again by Taylor
stochastic expansion, that the scheme is not of second order in time for system (11), but
of �rst order. This is due to the treatment of the correction step for the stochastic integral
�i(t), a problem which is not solved yet and left outside the scope of the present paper.
As far as the 
uid velocity seen is concerned, one has

Un+1
s;i = hUn+1

s;i i+
s

[��i ]
2 ~Ti

n+1

2
G1;i; (38)

which is in line with the previous results, see Section 2.3.2. This scheme is of second order,
but the whole scheme is not. Indeed, as mentioned above, the scheme is only of �rst order
for the velocity of the particle and therefore of �rst order for the position of the particles.

When both the 
uid velocity seen and the velocity of the particles become fast variables
(limit case (iii)), that is when 1 � �t=Ti, 1 � �t=�p and �ij Ti ! cst, one can write for
the velocity of the particle, for example from Eq. (37) with 1� �t=�p,

Un+1
p;i = h ~Un+1

s;i i+ ~�n+1
p An+1

i +

s
[��i ~T

n+1
i ]2

2 ~�n+1
p

G0p;i:

For the 
uid velocity seen, Eq. (38) is unchanged. These results are consistent with the
expressions of Section 2.3.3. In limit case (iii), the numerical scheme for the position of the
particles is equivalent to the Euler scheme written previously and is of �rst order in time.

When the 
ow becomes laminar, that is when Ti ! 0 with no condition on the product
�ij Ti, one has the following limits: A(�t; Ti) ! 0, B(�t; Ti) ! 1 and 
i(t) ! 0, which
gives for the 
uid velocity seen,

Un+1
s;i = h ~Un+1

s;i i:
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For velocity of the particles, the coeÆcient have the following limits: Ac(�p; Ti)! A(�t; �p),
Bc(�p; Ti)! B(�t; �p) and Cc(�p; Ti)! 0 which gives together with the limit �i(t)! 0,

Un+1
p;i =

1

2
Un
p;i exp(��t=�np ) +

1

2
Un
p;i exp(��t=~�n+1

p )

+A(�t; �np )[hUn
s;ii+ �np An

i ] +B(�t; ~�n+1
p )[h ~Un+1

s;i i+ ~�n+1
p An+1

i ]:

It can rapidly be shown, by regular Taylor expansion, that this scheme, together with the
prediction step (Euler scheme sch1) is a second order scheme for system (13).

In summary, a weak-second order scheme for system (3) has been derived. This scheme
satis�es all conditions listed in Section 3.2, except for the second order convergence con-
dition in limit cases (ii) and (iii). In the former case, this imperfection is bearable since
the situation T � �t does not occur very often in practice. In the latter case, the �rst
order convergence is inherent to the spirit of the scheme, that is a single step to compute
position xp (in order to minimize the number of particle localizations in the algorithm).

5 Numerical studies

It has been explained previously in Section 3.1 that particle-mesh methods generate several
numerical errors. A statistical error which is inherent to the Monte-Carlo method and a
deterministic error which is the sum of three distinct terms (the bias, the time discreti-
sation error and the spatial discretisation error). In the present paper, where interest in
only focused on the study of weak numerical schemes for system (3), only the time dis-
cretisation error is of interest (among the deterministic errors) in order to study the speed
of convergence.

In the following, ideal cases will be chosen where there is no exchange between the
mesh and the particles, and therefore no spatial discretisation error, i.e. ��x(T ) = 0, see
Eq. (25). In addition, the ideal systems will be linear, which implies the elimination of
the bias in the numerical procedure, i.e. �1(T ) = 0, see Eq. (23). In such cases, the
statistical and the time discretisation errors can be studied. These errors are de�ned by
Eqs (22) and (24), respectively. In our particular case, one has for the approximation of
the mathematical expectation

ff(ZT )gN;�x = ff(ZT )gN =
1

N

NX
i=1

f(Z
i

T );

where Z
i

T represents the value of Zt at time t = T for trajectory i. Therefore, the statistical
error, see Eq. (22), can be written

�N(T ) = hf(ZT )i � 1

N

NX
i=1

f(Z
i

T ):

The central limit theorem tells us that, for a suÆciently large number of trajectories, this
random variable converges, in the weak sense, towards a Gaussian random variable, that
is (G is a N (0; 1) random variable)

�N (T )
in law����!
N!+1

�[f(ZT )]p
N

G
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where �[f(ZT )] is the r.m.s. value of f(ZT ).
In summary, the total error is, in our particular case, the sum of two errors: the

statistical error and the time discretisation error. From the previous considerations, one
can state that the total error is a random variable which, for a suÆciently large number of
trajectories, becomes Gaussian. Its mean and r.m.s. value are given by,

h�(T )i = ��t(T ); �[�(T )] =
�[f(ZT )]p

N
:

The time discretisation error is deterministic and consequently one has, for the variance
operator, var[�(T )] = var[�N(T )]. For a weak numerical scheme of order of convergence p,
one has

j��t(T )j = C(T ) (�t)p+O(�t)p+1; (39)

where C(T ) is a constant which depends on the problem and stopping time T .

5.1 Limit cases and statistical error

Here, it is recalled that one of the constraint required in Section 3.2, was that the scheme
should be identical to the analytical solution for constant coeÆcients. In order to study
the statistical error, without bothering about the (time) discretisation one, let us study an
ideal case with constant coeÆcients. This case will also be used to check that the numerical
schemes are consistent with the limit cases.

5.1.1 Preliminary study

Let us consider an isotropic case where Ci(t;xp) = 0, Ai(t;xp) = 0 and where the initial
conditions are given by xp(0) = Up(0) = Us(0) = 0. In this case, the system,8>>>><

>>>>:

dxp = Up dt

dUp =
1

�p
(Us � Up) dt

dUs = � 1

T
Us dt+ � dW (t);

(40)

admits xp(t) = 
(t), Up(t) = �(t) and Us(t) = 
(t) as a solution. These random variables
are Gaussian and they have zero mean and known variances, see Table 2. As a matter
of fact, all second order moments (variances) are increasing functions of time with the
following asymptotes

h
2(t)i ���!
t!1

�2�2(T � �p)
2 t+B;

h�2(t)i ���!
t!1

�2T

2

T

T + �p
;

h
2(t)i ���!
t!1

�2T

2
;

(41)

where the constant B is de�ned as

B =
�2�2

2(T + �p)

�
T 3 + � 3p �s

s+3�

2�
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In the stationary case, that is as time goes to in�nity, the velocities become stationary
processes, and one can verify the well-known Tchen formulas which give a relation between
the energy of the particles, the energy of the 
uid seen and the velocity covariance,

hU2
p (t)i

hU2
s (t)i

=
T

T + �p
and hUp(t)Us(t)i = hU2

p (t)i:

The equality, in the stationary case, between the energy of the particles and the velocity
covariance, can be obtained easily by noticing that

h�(t) 
(t)i ���!
t!1

�2T

2

T

T + �p
:

5.1.2 Limit cases

Let us now verify that the two (sch1 and sch2) numerical schemes, which have been im-
plemented in the ESTET software, ful�ll two of the constraints given in Section 3.2, that
is (i) the numerical scheme gives the exact solution when the coeÆcients are constant and
(ii) the numerical scheme is consistent in the limit cases, see Sections 2.3.1 to 2.3.4. To
do so, the system presented in the previous Section is studied. The values taken by the
(constant) coeÆcients in the di�erent cases are presented in Table 7. It can be seen that
the time step is constant and therefore the separation of scales is obtained by varying the
coeÆcients: in this numerical example, it is considered that there is a separation of scales
when the ratio between the smallest one and the greatest one is roughly 10�2.

In practice, the code is modi�ed in order to simulate the trajectories in a domain which
can be considered as in�nite (the particles never reach the boundaries so that boundary-
condition e�ects can be avoided). It is also possible to adjust the value on the mean 
uid
velocity, hUf i (this will be necessary in the laminar case, when T ! 0). Here, since the
purpose of the simulations is not the study of the statistical error, only 6000 trajectories are
simulated (actually 2000 since the code is three-dimensional and the problem is isotropic)
and there will be some noise in the numerical solutions. As a matter of fact, it is observed
that there is no di�erence between the numerical solutions given by the sch1 and sch2
schemes. This not surprising since, with constant coeÆcients, the correction step of sch2 is
rigorously the Euler scheme, sch1. This will be the case in all simulations presented in this
subsection and this will not be recalled. The results are now displayed for the second order
moments, the �rst order moment are generally omitted since the solutions are Gaussian
random variables of zero mean.

In the general case, Fig. 1, when �t � �p and �t � T , it can be seen that both
schemes are in agreement with the analytical solutions. One can verify that the limit
values for hU2

p (t)i and hU2
s (t)i are correct, that is �2T=2 = 10 and (�2T=2)=[T=(T + �p)] =

6:67, respectively, see Eq. (41). The results are also in line with the Tchen formulas,
hU2

p (t)i=hU2
s (t)i = T=(T + �p) = 6:67=10 = 2=3 and hUp(t)Us(t)i = hU2

p (t)i. Furthermore,
the limit behavior of hx2p(t)i is correct since the slope of the asymptote is (� T )2 = 4.

For limit case (i), Fig. 2, the 
uid velocity seen and the particle velocity become
identical (all second order moments are equal) . The limit values for hU2

p (t)i and hU2
s (t)i

are �2T=2 = 5, and for hx2p(t)i the slope of the asymptote is (� T )2 = 1. The Tchen
formulas are veri�ed, hU2

p (t)i=hU2
s (t)i = T=(T + �p) ' 1 and hUp(t)Us(t)i = hU2

p (t)i.
For limit case (ii), Fig. 3, the 
uid velocity seen becomes a fast variable, that is, in the

discrete case, Us(t) is a Gaussian random variable of zero mean, see Fig. 6, and variance
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�2T=2 = 5. The asymptote for hU2
p (t)i is (� T )2=2�p = 5:10�4, which is in agreement

with Eq. (41). The slope of the asymptote for hx2p(t)i is (� T )2 = 10�4. As far as the
Tchen formulas are concerned, it is veri�ed that hU2

p (t)i=hU2
s (t)i = T=(T + �p) ' 10�4 and

hUp(t)Us(t)i = hU2
p (t)i.

In the di�usive regime, limit case (iii), Fig. 4, both the 
uid velocity seen, Us(t), and
the particle velocity, Up(t), become fast variables, which in the discrete case gives two
Gaussian random variables of zero mean, see for example Fig 6 for Up(t), and of variances
�2T=2 = 5 and (� T )2=[T=(T + �p))] = 1:67, respectively, see for example Eq. (30). For
hx2p(t)i, the slope of the asymptote is indeed given by (� T )2 = 10�4. The Tchen formulas
are also veri�ed, T=(T + �p) = 1=3.

At last, in the laminar case, limit case (iv), Fig. 5 shows a laminar 
ow with an imposed
mean 
uid velocity, hUs(t)i = 1 m=s. It is seen that the asymptotes obtained for hUp(t)i
and hxp(t)i are in agreement with the results derived in Section 2.3.4, hUp(t)i ! hUs(t)i
and hxp(t)i ! hxp(t)i = t� 0:1 when t!1. Furthermore, the numerical behavior of the
variances, for example for xp(t), shows that the dynamics of the particle is deterministic
(similar results were obtained for hU2

p (t)i and hU2
s (t)i).

Finally, as far as the �rst order moments are concerned, Fig. 6 shows that the numerical
values obtained are in line with the zero mean result. For example, for the 95% con�dence
interval, one has, in the general case, an approximation of Us centered in 0 and of radius
1:96�[Us]=

p
N ' 0:08 (�[Us] is the r.m.s. value of Us). In the limit case (i), the 95%

con�dence interval for hUpi gives 1:96�[Up]=
p
N ' 0:06 (�[Up] is the r.m.s. value for Up)

which is consistent with Fig. 6.
It has now been veri�ed that the numerical schemes implemented in ESTET are con-

sistent with the analytical solutions and the limit cases. Let us now study the statistical
error.

5.1.3 Statistical error

Here, the study is based on simulations of the system (with constant coeÆcients) used
in Section 5.1.1, and this is done in the general case, Table 7. It is recalled that, when
the coeÆcients are constant, there is no discretisation error since the numerical scheme
corresponds exactly to the analytical solution.

The limit behavior (for a suÆciently large number of trajectories) of the statistical error
is given by the central limit theorem, that is the random variable, �N(T ), converges (in
law) towards a Gaussian random variable of zero mean and known variance. In practical
simulations, it is not always possible to satisfy the hypothesis of the central limit theorem
as, for example, one has to resort to pseudo-random number generators and it can not be
guarantees that all simulated trajectories are independent. Still, it is well known, from
the theory of propagation of chaos, that the results of convergence on �N(T ) hold. Let us
verify this result numerically.

Let us suppose that the results from the theory of propagation of chaos are not known.
The variance of the statistical error, for any quantity f(ZT ), is now under investigation,
that is

�2[�N(T )] = h (�N (T )� h�N (T )i)2 i;
which is equivalent to study the variance of the estimator, f gN , (at a �xed time t = T )

VN [f(ZT )] = h (ff(ZT )gN � hff(ZT )gNi)2 i:
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Here, ZT = ZT since there is no time discretisation error. The variance is estimated by per-
forming a suÆciently large numberM of simulations so that VN becomes roughly indepen-
dent of M . These simulations, with di�erent values for N , are going to give VN [f(ZT )] as a
function of N . This will be performed for the �rst and second order moments, f(ZT ) = ZT

and f(ZT ) = Z2
T , respectively. For f(ZT ) = ZT , the quantity to evaluate is

VN [ZT ] =
1

M

MX
i=1

 
fZTgiN �

1

M

MX
i=1

fZTgiN
!2

;

and it must be shown that
pVN [ZT ] ' �(ZT )=

p
N where �(ZT ) is the r.m.s. value of ZT .

For f(ZT ) = Z2
T , the expression

VN [Z2
T ] =

1

M

MX
i=1

 
fZ2

TgiN �
1

M

MX
i=1

fZ2
TgiN

!2

;

is computed to show that the expected behavior
pVN [Z2

T ] ' �(Z2
T )=
p
N (�(Z2

T ) is the
r.m.s. value of Z2

T ) is obtained. The exact values for �(ZT ) when ZT = xp(T ); Up(T ); Us(T )

are easily obtained in our particular case, that is
ph
2(T )i, ph�2(T )i and ph
2(T )i,

respectively. Since ZT is a Gaussian random variable (it is a stochastic integral of a
deterministic function), one has hZ4

T i = 3hZ2
T i and therefore

�(Z2
T ) =

p
2 [�(ZT )]

2 :

The presumed analytical expressions of VN (for ZT et Z2
T ) are now known. Numerical

tests have shown that, on average, a good approximation of VN is obtained for M = 200.
This can be seen in Fig. 7 for ZT = xp(T ) and ZT = Up(T ) as an example. This value can
be con�rmed by resorting to the Bikelis theorem. Shortly, this theorem states that, for a
given random variable ZT , it is possible to specify the number of trajectories N which are
necessary to approximate hZT i with a given precision � and a con�dence interval given by
Æ, that is P (jhZT i � fZTgN j 6 �) � 1 � Æ. For example, for VN with ZT = xp(T ), one
obtains M ' 150 for Æ = 0:05 and � = 10�4. At last, it has also been checked that the
numerical results do not depend on the time step, see Fig. 8 for ZT = xp(T ).

Based on the previous observations, M simulations are performed for di�erent values
of N with t = T as �nal time. The results for the �rst and second order moments of
xp(T ); Up(T ); Us(T ) show the expected behavior, Fig. 11, that is a convergence rate for
the variance of the statistical error in 1=N .

5.2 Discretisation error

The study of the discretisation error has to be performed in a numerical case where the
in
uence of the statistical error is negligible, in other words one has to make sure that the
error is almost deterministic. In the simulations, the following approximation is made

h�(T )i = ��t(T ) ' f�(T )gM; (42)

which means that, as in the study of the statistical error,M simulations with N trajectories
each are performed. The previous approximation induces a numerical error �M(T ) de�ned
by

�M(T ) = h�(T )i � f�(T )gM;
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and from the central limit theorem (or the theory of propagation of chaos as mentioned
above), this random variable converges, for M and N suÆciently large, towards a Gaussian
random variable

�M(T )
in law�����!

M!+1

�[�(T )]p
M

G in law������!
M;N!+1

�[f(ZT )]p
M �N

G;

where G is a N (0; 1) random variable (here the central limit theorem has been applied
twice, �rst to �M(T ) and then to �N(T )). A con�dence interval, for example 95%, can
then be given

P

�
j��(T )� f�(T )gMj 6 1:96

�[f(ZT )]p
M �N

�
= 0:95:

Here, the Bikelis theorem can be applied to estimate the value of M which is necessary
to approximate ��t(T ) with a given precision in a chosen con�dence interval. It is now
obvious that a good approximation of the discretisation error can only be obtained in cases
where N and M are large and �[f(ZT )] is small. Before going on with the numerical tests,
let us look for a system with non-constant coeÆcients and known analytical solutions (so
that quantities such as hf(ZT )i can be computed).

5.2.1 Analytical solutions

Let us suppose that the coeÆcients depend on time only and look for analytical solutions
to the following system 8><

>:
dxp = Up dt;

dUp = ��(t)(Up � Us);

dUs = ��(t)Us dt+ �(t) dW (t):

(43)

The exact solutions to system (43) are given by

xp(t) = xp(t0) +

Z t

t0

Up(s) ds;

Up(t) = Up(t0) exp[�G(t)] + exp[�G(t)]
Z t

t0

exp[G(t)]�(s)Us(s) ds;

Us(t) = Us(t0) exp[�F (t)] + exp[�F (t)]
Z t

t0

exp[F (t)]�(s) dW (s);

where the function F (t) and G(t) are given by

F (t) =

Z t

t0

�(s) ds and G(t) =

Z t

t0

�(s) ds: (44)

Consequently, the functions �(t), �(t), and �(t) must be chosen in such way so that the
moments of order 1 and 2, which will used for the study of the numerical error, can be
calculated explicitly. Some constraints must be, however, satis�ed so that the system has
a physical meaning (positiveness of coeÆcients, smoothness, . . . ). As already suggested by
Haworth and Pope [7], in a study of a simpler system, the basic idea is to take for �(t) and
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�(t) functions whose primitives are logarithms. This property eliminates the exponentials.
Let us write

�(t) =
a

�0 t+ 1
and �(t) =

b

�0 t+ 1
;

where a, b and �0 take real positive values and therefore

F (t) =
�
ln (�0 s+ 1)k

�t
t0

and G(t) = [ln (�0 s+ 1)n]tt0 ;

where k = a=�0 and n = b=�0. For the di�usion coeÆcient, an expression which allows
control (in time) and exact integration, is proposed, that is

�(t) = �0(�0 t+ 1) p

where �0 takes real positive values and p is real.
The moments of order 1 and 2 can now be calculated. The same initial conditions that

were used for the study of the numerical error, are chosen (zero initial conditions on all
variables at time t0 = 0). This implies that all �rst order moments are equal to zero, see
Table 5 where the analytical solutions for xp(t), Up(t) and Us(t) are given. The moments
of order 2 are given in Tables 5 and 6. These quantities are now used for validation of the
theoretical order of convergence (in time) of the weak numerical schemes sch1 and sch2.

5.2.2 Numerical study

The numerical value of the parameters of system (43) chosen in the simulations of the
general case and the limit cases are displayed in Table 8. These values are essentially
chosen (i) to respect the constraints of separation of scales in the di�erent cases and (2)
to make sure that the system remains stochastic, that is the di�usion coeÆcient is of the
same order of magnitude as the drift term.

It is recalled that, for a suÆciently large number of particles N and simulationsM , the
discretisation error can be approximated by Eq. (42) and in practical simulations

h�(T )i = hf(ZT )i � fff(ZT )gNgM ; (45)

where the convergence, in time, of h�(T )i is given by Eq. (39). As mentioned above, the
numerical approximation of the discretisation error creates a statistical error �M(T ) whose
in
uence must be controlled. In fact, the problem is to �nd a time interval [�tmin; �tmax]
where �tmin has to speci�ed so that the statistical error is negligible. For �tmax, one has
to make sure that this value does not exceed the time step at which the higher order terms,
(p + 1), can become larger that the low order ones, p, see Eq. (39).

The values of the time step intervals, �tmin, were limited essentially by the capacity
of the computer (SUN Ultra 10 with 250 MBytes of memory). For the sch1 scheme, it
was not diÆcult to study two decades whereas, for the sch2 scheme only a decade could
be obtained. For the �rst order scheme, N = 3:104 trajectories, M = 100 simulations, a
�nal time T = 2:4 s and the time steps �t = [0:4; 0:2; 0:1; 0:05] were used. For the second
order scheme, of course more trajectories and simulations were necessary, N = 9:105 and
M = 200, and a �nal time T = 3:2 s with larger time steps �t = [0:8; 0:4; 0:2; 0:1] were
chosen. The �nal time for sch2 was di�erent from that of sch1 only to match an integer
number with the largest time step, �t = 0:8. These values are summarized in Table 9.
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Several alternatives were tested to decrease the value of �tmin, apart from the increase
of N and M . The �nal time T was changed (in order to increase C(T )) and the values
of the parameters were modi�ed (in order to decrease �[f(ZT )]). None of these strategies
were successful. Indeed, in the general case, the dependence of C(T ) as a function of the
parameters of the problem is not known, and it is diÆcult, except in simpli�ed cases, to
get estimates [17]. In fact, the only eÆcient method would have been a variance reduction
technique. This issue, which is strongly problem dependent, has not been treated here.

Fig. 12 displays the results of the simulations in the general case (the error is normalized
with its maximum value). It is shown that both schemes have the expected order of
convergence. For limit case (i), Fig. 13 shows once again that the expected order of
convergence is obtained. When the 
uid velocity seen becomes a fast variable, limit case
(ii), the second order scheme becomes, as mentioned in Section 4.2.4, a �rst order scheme,
see Fig. 9. The same phenomenon is observed in limit case (iii), when both the 
uid
velocity seen and the particle velocity become fast variables, Fig. 10. In this last case, the
statistical error on position xp(t) is unfortunately important.

6 Conclusions

Weak �rst- and second-order numerical schemes have been developed to integrate the set of
stochastic di�erential equations which represent the result of a PDF approach to the prob-
lem of turbulence polydispersed two-phase 
ows. These equations have several intrinsical
challenges. Since they are stochastic, they do not obey the rules of classical di�erential
calculus, making a completely di�erent approach necessary to achieve an algorithm consis-
tent with the equations and with the desired order of integration. Moreover, they show a
multi-scale character, that is di�erent time scales are present in the equations more than
the discrete time step �t, they are the response time of the 
uid and of the particles,
respectively Ti and �p. The fact that one or both of them can take much smaller values
than the integration time step leads, in this asymptotic limit, to singular equations, with
speci�ed physical behaviour. This has a major consequence, an algorithm which is not
unconditionally stable would require a related small integration time step, with the net
result of dramatically diminished eÆciency. These properties of the system have caused
an original and particular approach to achieve our aim.

The analytical solutions of the system in the case of constant coeÆcients are carried
out, and all the stochastic integrals that arise from the integration are explicitly evaluated
in order to satisfy the asymptotic limits. Starting from the analytical solution an uncon-
ditionally stable weak �rst-order Euler scheme has been developed. Then, a stable weak
second-order scheme has been built up adopting a two-stage predictor-corrector strategy.
The predictor stage is represented by the Euler scheme, while for the corrector stage all the
terms are calculated explicitly. The use of analytical solutions as starting point and the
exhaustive treatment of the limit cases have assured the requested stability and eÆciency.
It is worth emphasizing a point that can be misleading. This kind of algorithm is proved to
have the requested features for the particular set of stochastic equations dealt with in this
paper, but it is not straightforwardly applicable in a di�erent situation, where problems of
consistency can arise.

The numerical method has been implemented and veri�ed with a comprehensive study,
that includes a number of numerical simulations, worked out in various situations, to isolate
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all the interesting features. Particularly, the behaviour in all the limit cases is presented
and the di�erent forms of errors are described. Four di�erent errors can be de�ned, the
statistical error, bias, the time discretisation and the space discretisation, among them the
characteristics of statistical and discretisation ones are studied extensively. The numerical
results indicate that the algorithms presented are quite satisfactory, as far as convergence,
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A Calculus of the stochastic integrals

Here, it is explained how the stochastic integrals, appearing in the analytical solutions of

the equation system with constant coeÆcients, can be re-arranged (by stochastic integration
by parts), to yield the covariance matrix.

A.1 Integration by parts

Let X(t) and Y (t) be two di�usion processes. One can show that (see for example Klebaner
[6]), in the Itô sense,

X(t)Y (t)�X(t0)Y (t0) =

Z t

t0

X(s) dY (s) +

Z t

t0

Y (s) dX(s) + [X;Y ](t);

where [X;Y ](t) is the quadratic covariation of X(t) and Y (t) on [t0; t]. In the case where
one of the processes is deterministic, [X;Y ](t) = 0. In the frame of our study, where the
integrated variable is always a deterministic function, one can therefore apply integration
by parts as in classical di�erential calculus.

In fact, in the analytical solutions of the equation system with constant coeÆcients,
one encounters multiple stochastic integrals of the type

I =

Z t

t0

exp(�s=a)
�Z s

t0

exp(s0=b) dW (s0)

�
ds; (A.1)

where (a; b) 2 R+2. By setting

F (s) =

Z s

t0

exp(s0=b) dW (s0) =) dF (s) = exp(s=b) dW (s);

dG(s) = exp(�s=a) =) G(s) = �a exp(�s=a) ds;
and applying integration by parts, one obtains

I = �a exp(�t=a)
Z t

t0

exp(s=b) dW (s) + a

Z t

t0

exp(�s=a) exp(s=b) dW (s): (A.2)

Therefore, by stochastic integration by parts, the multiple integral given by Eq. (A.1) can
be written as the sum of two simple stochastic integrals, Eq. (A.2).

A.2 Derivation of the covariance matrix

By using the results of the previous subsection and the main properties of the Itô integral,
that is, linearity, the zero mean property,

h
Z t

t0

X(s) dW (s)i = 0;

and the isommetry property,

h
Z t1

t0

X(s) dW (s)

Z t3

t2

Y (s) dW (s)i =
Z t1

t2

hX(s)Y (s)i ds;
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with t0 < t2 < t1 < t3, the covariance matrix formed by the stochastic integrals of Table
1, Eqs (B.5) to (B.7), can be evaluated. From the zero mean property, it follows that the
�rst order moments are equal to zero. For the second order moments (covariance matrix),
the previous properties give the following equality

h
 X

m

gm(t)

Z t

t0

fm(s) dW (s)

!2

i =
X
m

g2m(t)

Z t

t0

f2m(s) ds+ 2
X
m<k

gm(t) gk(t)

Z t

t0

fm(s) fk(s) ds:

(A.3)

where gim(t) and fim(t) are deterministic functions of time. Eq. (A.3) allows us to derive
the covariance matrix, Eqs (B.11) to (B.14), from Eqs (B.8) to (B.10).

B Simulation of a Gaussian vector

Let X = (X1; : : : ;Xd) be a Gaussian vector de�ned by a zero mean and a covariance matrix
Cij = hXiXji. For all positive symmetric matrix (such as Cij), there exists a (low or high)
triangular matrix Pij which veri�es

C = PPt =) Cij =
dX

k=1

PikPjk:

P is given by the Choleski algorithm (here for the low triangular matrix)

Pi1 =
Ci1p
(C11)

; 1 6 i 6 d

Pii =

 
Cii �

i�1X
j=1

Pij

!1=2

; 1 < i 6 d

Pij =
1

Pjj

 
Cij �

j�1X
k=1

PikPjk

!
; 1 < j < i 6 d

Pij = 0; i < j 6 d:

Let G = (G1; : : : ; Gd) be a vector composed of independent N (0; 1) Gaussian random
variables, then it can be shown that the vector Y = PG is a Gaussian vector of zero mean
and whose covariance matrix is C = PPt. Therefore, X and Y are identical, that is,

X = PG =) Xi =
dX

k=1

PikGk: (B.1)

Eq. (B.1) shows how the stochastic integrals, obtained in the analytical solutions of the
system with constant coeÆcients, can be simulated.
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Table 3: Weak �rst order scheme (Euler scheme): sch1

Numerical integration of the system :
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p;i = xnp;i +AUn
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Table 7: Numerical simulation for system (40) in the general and limit cases. General case:
�t � T; �p. Limit case (i): �p � �t � T . Limit case (ii): T � �t � �p. Limit case (iii):
T; �p � �t. Limit case (iv): T ! 0.

case �p (s) T (s) � (m=s3=2) �t (s)

general case 10�1 2:10�1 101 10�3

limit case (i) 10�5 10�1 101 10�3

limit case (ii) 10�1 10�5 103 10�3

limit case (iii) 2:10�5 10�5 103 10�3

limit case (iv) 10�1 10�15 101 10�3

Table 8: Numerical values for the parameters of system (43), (�0, a, b, �0 and p), in the
simulations of the general case and the di�erent limit cases.

�0 a b �0 p
general case 0:5 0:1 0:25 0:5 �1:2
limit case (i) 0:5 0:1 250: 0:5 �1:2
limit case (ii) 0:5 200: 250: 50: �1:2
limit case (iii) 0:5 200: 250: 50: �1:2

Table 9: Numerical values for the number of trajectories N , the number of simulations M , the
�nal time T and the time step interval [�tmin;�tmax] in the simulations.

N M T (s) �tmax (s) �tmin (s)

sch1 3:104 102 2:4 5:10�2 4:10�1

sch2 9:105 2:102 3:2 10�1 8:10�1




