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Capillary filling for multicomponent fluid using the
pseudo-potential Lattice Boltzmann method
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Abstract. We present a systematic study of capillary filling for a binary fluid by using mesoscopic a lattice
Boltzmann model describing a diffusive interface moving at a given contact angle with respect to the
walls. We compare the numerical results at changing the ratio the typical size of the capillary, H , and
the wettability of walls. Numerical results yield quantitative agreement with the theoretical Washburn
law, provided that the channel height is sufficiently larger than the interface width and variations of the
dynamic contact angle with the capillary number are taken into account.

PACS. 83.50.Rp , – 68.03.Cd

1 Introduction

The physics of capillary filling is an old problem, orig-
inating with the pioneering works of Washburn [1] and
Lucas [2]. It remains, however, an important subject of
research for its relevance to microphysics and nanophysics
[4–6]. Capillary filling is a typical “contact line” problem,
where the subtle non-hydrodynamic effects taking place
at the contact point between liquid-gas and solid phase
allow the interface to move, pulled by capillary forces and
contrasted by viscous forces. As already remarked, Wash-
burn in 1921 [1] described theoretically the dynamics of
capillary rise. Considering also inertial effects, except the
“vena contracta”, and two fluids with the same density
(ρa = 1, ρb = ρa) and the same viscosity (µa = µb = µ),
the equation of motion of the moving front is [3]:

d2z(t)

dt2
+

12µ

H2ρ

dz(t)

dt
=

2γcosθ

HρL
(1)

where H is the capillary height, L its length, γ the surface
tension and θ the contact angle. This model is obtained
under the assumption that (i) the instantaneous bulk pro-
file is given by the Poiseuille flow, (ii) the microscopic slip
mechanism which allows the motion of the interface is not
relevant to bulk quantities (such as the overall position
of the interface inside the channel), (iii) inlet and out-
let phenomena can be neglected (limit of infinitely long
channels). In the following, we will show to which extent
this phenomenon can described by a mesoscopic Lattice-
Boltzmann equation for multicomponent. The model here
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used is a suitable adaptation of the Shan-Chen pseudo-
potential LBE [7] with hydrophobic/hydrophilic bound-
aries conditions, as developed in [8]. This model has been
chosen for its great simplicity, robustness and efficiency.
Some models which enable other effects, such as the Stefan-
Maxwell diffusion, were recently proposed [9] and could
deserve attention for future developments.

2 LBE for capillary filling

The relevant geometry is depicted in fig. (1). The bot-
tom and top surfaces are coated only in the right half of
the channel with a boundary condition imposing a given
static contact angle [8]; in the left half we impose peri-
odic boundary conditions at top and bottom surfaces in
order to mimic an “infinite reservoir”. Periodic boundary
conditions are also imposed at the two lateral sides such
as to ensure total mass conservation inside the system. At
the solid surface, bounce back boundary conditions for the
particle distributions were imposed. The conditions which
allow the wetting of the surfaces will be discussed in the
following.

2.1 LBE algorithm for multi-component flows

Let us review the multicomponent LB model proposed
by Shan and Chen [7]. This model allows for distribution
functions of an arbitrary number of components with dif-
ferent molecular mass:

fk
i (x+ci∆t, t+∆t)−fk

i (x, t) = −∆t

τk

[

fk
i (x, t) − f

k(eq)
i (x, t)

]

(2)
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where fk
i (x, t) is the kinetic probability density function

associated with a mesoscopic velocity ci for the kth fluid,
τk is a mean collision time of the kth component (with ∆t

a time lapse), and f
k(eq)
i (x, t) the corresponding equilib-

rium function. For a two-dimensional 9-speed LB model

(D2Q9) f
k(eq)
i (x, t) takes the following form [10]:

f
k(eq)
0 = αknk − 2
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nku

eq
k · ueq

k
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k )2 − 1

6
nku

eq
k · ueq

k for i=1. . .4 (3)
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(4)

In the above equations ci’s are discrete velocities, defined
as follows

ci =















0, i = 0,
(

cos (i−1)π
2 , sin (i−1)π

2

)

, i = 1 − 4
√

2
(

cos[ (i−5)π
2 + π

4 ], sin[ (i−5)π
2 + π

4 ]
)

, i = 5 − 8

(5)
in the above, αk is a free parameter related to the sound
speed of a region of pure kth component according to
(ck

s)2 = 3
5 (1 − αk); nk =

∑

i fk
i is the number density

of the kth component. The mass density is defined as
ρk = mknk, and the fluid velocity of the kth fluid uk

is defined through ρkuk = mk

∑

i cif
k
i , where mk is the

molecular mass of the kth component. The equilibrium
velocity u

eq
k is determined by the relation

ρku
eq
k = ρku

′ + τkFk (6)

where u′ is the common velocity of the two components.
To conserve momentum at each collision in the absence of
interaction (i.e. in the case of Fk = 0) u′ has to satisfy
the relation

u′ =

(

s
∑

i

ρkuk

τk

)

/

(

s
∑

i

ρk

τk

)

. (7)

The interaction force between particles is the sum of a
bulk and a wall components. The bulk force is given by

F1k(x) = −Ψk(x)
∑

x
′

s
∑

k̄=1

Gkk̄Ψk̄(x′)(x′ − x) (8)

where Gkk̄ is symmetric and Ψk is a function of nk. In our
model, the interaction-matrix is given by

Gkk̄ =







gkk̄, |x′ − x| = 1,
gkk̄/4, |x′ − x| =

√
2,

0, otherwise.
(9)
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Fig. 1. Geometrical set-up of the numerical LBE. The two di-
mensional geometry, with length 2L and width H , is divided in
two parts. The left part has top and bottom periodic bound-
ary conditions such as to support a perfectly flat gas-liquid
interface, mimicking a “infinite reservoir”. In the right half, of
length L, there is the true capillary: the top and bottom bound-
ary conditions are those of a solid wall, with a given contact
angle θ. Periodic boundary conditions are also imposed at the
west and east sides.

where gkk̄ is the strength of the interparticle potential
between components k and k̄. In this study, the effective
number density Ψk(nk) is taken simply as Ψk(nk) = nk.
Other choices would lead to a different equation of state
(see below).

At the fluid/solid interface, the wall is regarded as a
phase with constant number density. The interaction force
between the fluid and wall is described as

F2k(x) = −nk(x)
∑

x
′

gkwnw(x′)(x′ − x) (10)

where nw is the number density of the wall and gkw is the
interaction strength between component k and the wall.
By adjusting gkw and nw , different wettabilities can be
obtained. This approach allows the definition of a static
contact angle θ, by introducing a suitable value for the
wall density nw [8], which can span the range θ ∈ [0o :
180o]. In particular, we have chosen g1w = 0, g2w = −g12

while nw is varied in order to adjust the wettability. In the
sequel, we choose g12 = 0.2 which indicates that species
2 is attracted by the wall (hydrophilic), while species 1 is
neutral. Let us note that high values of nw are associated
with hydrophilicity.

In a region of pure kth component, the pressure is given
by pk = (ck

s)2mknk, where (ck
s)2 = 3

5 (1−αk). To simulate
a multiple component fluid with different densities, we let
(ck

s)2mk = c2
0, where c2

0 = 1/3. Then, the pressure of the
whole fluid is given by p = c2

0

∑

k nk + 3
2

∑

k,k̄ gk,k̄ΨkΨk̄,
which represents a non-ideal gas law. The viscosity is given
by ν = 1

3 (
∑

k βkτk − 1
2 ), where βk is the mass density

concentration of the kth component.
The Chapman-Enskog expansion [10] shows that the

fluid mixture follows the Navier-Stokes equations for a sin-
gle fluid:

∂tρ + ∇ · (ρu) = 0, (11)

ρ[∂tu + (u · ∇)u] = −∇P + F + ∇ · (νρ(∇u + u∇)
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Fig. 2. Front displacement vs time for different channel height
H = 15, 30, 50, 100 with their corresponding analytical solu-
tions. The discrepancy from Washburn’s law is stronger for
the smallest channel. The channel length is always L = 450
except for H=100, for which L = 500.

where ρ =
∑

k ρk is the total density of the fluid mix-
ture and the whole fluid velocity u is defined by ρu =
∑

k ρkuk + 1
2

∑

k Fk.

2.2 Numerical Results

All simulations were performed using the Shan-Chen model
described above, setting νl = νg = 0.167, ρl = ρg = 1,
g12 = 0.2, α = 4/9, that is c2

s = 1
3 , and the interfacial

tension is γ = 0.07. The channel length is chosen to be
L = 450. By taking θ constant in time, a simple analyti-
cal solution of equation (1) can be obtained:

z(t) =
VcapHcosθ

6L
td [exp(−t/td) + t/td − 1] + z0, (12)

where z0 is the starting point of the interface at the be-

ginning of the simulation, td = ρH2

12µ
is a typical transient

time and Vcap = γ
µ

is the capillary speed. This solution

has been used to compare with simulations.
The front displacement as a function of time is shown

in Fig. 2 for different values of the channel height H =
15, 30, 70, 100, at nw = 1, for which static contact angle
was found to be θ ≈ 5. As expected, the velocity of the
front grows with channel height. The analytical curves are
given by the solution of Eq. (12), where the contact angle
is the dynamic one computed from numerical data. The
contact angles computed for the four heights 15, 30, 50, 100
are respectively 0◦, 11◦, 25◦, 45◦. The dynamic contact an-
gle has been obtained directly as the slope of the contours
of near-wall density field, and independently through the
Laplace’s law, ∆P = 2γcosθ

H
. The latter has been chosen

for the comparison with analytical fitting curves, because
the direct computation from density contours turns out
to be less precise. Nevertheless, the values calculated in
the two ways are approximately consistent. For instance,
the contact angle computed for the case H = 30 from the
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Fig. 3. Front dynamics for different nw (1.0, 0.75, 0.5) that is
for different degree of wettability. The configuration considered
is with H = 30. The case nw = 0.5 is fitted by an analytical
solution with θ = 0.78 and the case nw = 0.75 with θ = 0.52.

direct measurements of the pressure is θ ≈ 12◦ against
the value θ ≈ 11◦ computed via density contours. Some
comments on the front dynamics are in order.. The case of
smallest channel height does not follow the analytical so-
lution, showing the finite size of the interface (w/H 1/3)
significantly affects the results. On the other hand, for
a larger channel, good agreement between numerical and
theoretical results not only holds asymptotically, but it
also extents to the initial transient. This is particularly
true for the largest height H = 100, where the transient

time-scale td = ρH2

12µ
is sufficiently long to make the expo-

nential term in the solution (12) important over a macro-
scopic time span. The results show that the dynamic con-
tact angles experience a strong dependence on the channel
height. In particular, in small channels, dynamic contact
angles remain near their static values. On the other hand,
for large ones the discrepancy is evident. This is due to
the increasing value of the capillary number (Ca ∼ 0.03
for H = 100), since it is known that there is a correc-
tion of the dynamic contact angles due to finite capillary
numbers. This correction takes the form the general form
cos(θd) − cos(θs) = g(Ca). Our results are best fitted by
g(Ca) = 18 Ca1.2, which is in line with previous forms
used in different LBE methods [12,13]

Hereafter the configuration with H = 30 and nw =
1.0 will be used as a reference for all simulations. In fig-
ure 3, the front dynamics is shown for the case nw =
1.0, 0.75, 0.5. As expected, it is found that more hy-
drophobic cases correspond to smaller velocities . The ana-
lytical solutions which fit the numerical data are obtained
respectively with θ = 12◦, θ = 24◦, θ = 40◦. These an-
gles are consistent with the values computed via Laplace’s
law directly from numerical data, that is θ = 0.2, θ =
0.37, θ = 0.69.

Velocity profiles taken at time t = 50000 at differ-
ent positions are shown in fig. 4, for the standard case
H = 30, nw = 1.0. Some comments are in order. The
velocity profile is parabolic everywhere except very near
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Fig. 4. Velocity profile Ux(y) for different cuts taken at time
t = 40000 with the front located at at x ≈ 210. One cut is
taken far behind the front, x = 50, another is far ahead at
x = 350. For these cases, approximately the same Poiseuille
parabolic flow is found. The other two curves correspond to
the velocities just ahead and behind the interface. In these
case, the velocity profile is necessarily distorted in order to let
the interface advance with an uniform velocity along y. The
interface acts as an obstacle and the velocity shows a corre-
sponding decrease (but not a recirculation) in the middle of
the channel, giving rise to a two-humped profile.

Fig. 5. Velocity streamlines. The value of velocities are mag-
nified by a factor 1000. The interface is located at x ≈ 710.
Near the interface the profile is distorted and a secondary flow
appears.

the interface. This is consistent with the assumption of a
parabolic (Poiseuille) velocity profile. A small difference is
present between the parabolic profile ahead and past the
interface. This is tentatively interpreted as due to the dif-
ferent boundary conditions applied to the fluids (nw = 1
for the hydrophilic invading fluid 1, and nw = 0 for fluid
2 ahead of the front). This difference were found to dis-
appear by setting nearer values of nw for both fluids. In
other terms, boundary conditions are such that the fluid
after the interface is less slipping, with a velocity at the
wall almost recovering no-slip condition.

In fig. 5, velocity patterns are presented. Consistently
with fig. 4, this figure shows that the flow is one-directional
far from the interface, confirming the assumption of a

Poiseuille flow. Moreover, although the flow appears to
be distorted near the interface to allow slippage, no recir-
culation is observed at variance with other methods LBEs
[14,13,12], spurious currents are negligible. The spikes in
fig. 4 reflect the existence of a hydrodynamic singularity
near the wall. A detailed understanding of the LB dynam-
ics in the near vicinity of this singularity remains an open
issue for future research.

3 Conclusions

The present study shows that Lattice Boltzmann models
with pseudo-potential energy interactions are capable of
reproducing the basic features of capillary filling for binary
fluids, as described within the Washburn approximation.
Moreover, it has been shown that the method is able to
reproduce the expected front dynamics for different de-
gree of surface wettability, as well as the correct Poiseuille
velocity profile, in the whole domain, except for a thin re-
gion near the interface. Quantitative agreement has been
obtained with a sufficiently thin interface, w/H < 0.3 and
with two fluids at the same density. It would be desirable
to extend the LB scheme in such a way to achieve larger
density contrasts and interface widths of the order of the
lattice spacing ∆x (current values are about 5∆x). Work
along these lines is underway.
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