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Abstract

The paper deals with the description of particle deposition on walls from a turbulent flow over a large range of particle diameter,
using a Langevin PDF model. The first aim of the work is to test how the present Langevin model is able to describe this phenomenon
and to outline the physical aspects which play a major role in particle deposition. The general features and characteristics of the
present stochastic model are first recalled. Then, results obtained with the standard form of the model are presented along with an
analysis which has been carried out to check the sensitivity of the predictions on different mean fluid quantities. These results show
that the physical representation of the near-wall physics has to be improved and that, in particular, one possible route is to introduce
specific features related to the near-wall coherent structures. In the following, we propose a simple phenomenological model that
introduces some of the effects due to the presence of turbulent coherent structures on particles in a thin layer close to the wall. The
results obtained with this phenomenological model are in good agreement with experimental evidence and this suggests to pursue
in that direction, toward the development of more general and rigorous stochastic models that provide a link between a geometrical
description of turbulent flow and a statistical one.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Particle deposition from a turbulent flow on walls is an important phenomenon which is observed in many engineering
applications, for example thermal and nuclear systems, cyclone separators, spray cooling and which is also present in
various environmental situations. Given the large number of possible applications, a lot of interest has been devoted to
this subject and many studies have been carried out in the last decades.

Different experiments have been conducted to observe deposition in turbulent flows. In most of them, attention is
focused on the deposition velocity (Liu & Agarwal, 1974; McCoy & Hanratty, 1977) which is defined as kp = mp/C̄,
where mp is the mass flux and C̄ is the bulk mean particle concentration. This deposition rate, often presented as the
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dimensionless deposition velocity kp/u
∗, is a function of the dimensionless particle relaxation time, �+

p defined as
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where S+ is the dimensionless stopping distance, Up0 is the particle initial velocity and u∗ the friction velocity. In this
work, u∗ has been computed with the Blasius formula, u∗ = [0.03955Re0.25]0.5Um, with Um the bulk mean velocity.
The deposition velocity is indeed the key point in many engineering applications where the interest is to obtain the
curve that gives kp/u

∗ as a function of �+
p , that is as a function of the particle diameter. Recently, several experimental

studies and DNS studies of particle deposition have been presented (Brooke, Kontomaris, Hanratty, & McLaughlin,
1992; Eaton & Fessler, 1994; Friedlander & Johnstone, 1957; Kaftori, Hestroni, & Banerjee, 1995a, 1995b; Marchioli,
Giusti, Salvetti, & Soldati, 2003; Marchioli & Soldati, 2002; McLaughlin, 1989; Narayanan, Lakehal, Botto, & Soldati,
2003; Peirano, Chibbaro, Pozorski, & Minier, 2006; Picciotto, Marchioli, & Soldati, 2005; Rouson & Eaton, 2001;
Yeung & Pope, 1989; Van Harlem, Boersma, & Niewstadt, 1998) and have improved the understanding of the physical
mechanisms at play. In particular, much information has been obtained about the dynamical structures of wall-bounded
flows, such as the coherent structures which manifest themselves in the near-wall region. It is largely accepted that
particle transfer in the wall region and also deposition onto walls are processes dominated by near-wall turbulent
coherent structures (sweeps and ejections), which are instantaneous realizations of the Reynolds stresses, and that
particles tend to remain trapped along the streaks when in the viscous-layer (Eaton & Fessler, 1994; Kaftori et al.,
1995a, 1995b; Marchioli & Soldati, 2002; Rouson & Eaton, 2001). However, the importance of these mechanisms for
particle deposition depends on particle inertia. In a somewhat crude picture, light particles follow closely sweeps and
ejections and their motion toward the wall appears to be very well correlated with turbulent structures. Therefore, they
are found to deposit mainly with negligible wall-normal velocities and large near-wall residence time. This mechanism
of deposition has been called diffusional (Narayanan et al., 2003). On the contrary, heavy particles are not so well
correlated with turbulent structures and their motion is less influenced by them in the near-wall region. Therefore,
heavy particles deposit with large wall-normal velocities and small near-wall residence time, that is by the so-called
free-flight mechanism (Friedlander & Johnstone, 1957; Narayanan et al., 2003).

Considering the engineering importance of the subject, models that reach acceptable compromise between simplicity
and accuracy are needed. While DNS calculations may be regarded as numerical experiments and give access to the
complete picture, they remain limited to simple geometries and low-Reynolds number flows. Therefore, a statistical
approach is still necessary to describe the motion of particles in a turbulent flow. Within this framework, and since the
objective is to simulate the entire curve of the deposition velocity for a whole range of particle inertia or diameter, a
Lagrangian approach appears appropriate. Indeed, in this approach, the trajectories of individual particles are tracked
and polydispersion is treated without approximation. The influence of the underlying turbulent fluid is represented, in
the particle equation of motion, by stochastic models. Many of the Lagrangian models proposed today belong to the class
of the so-called random-walk models (Kroger & Drossinos, 2000; MacInnes & Bracco, 1992; Matida, Nishino, & Torii,
2000), which define the velocity as the sum of the local mean fluid velocity and a random fluctuating velocity sampled
from a Gaussian distribution. Unfortunately, these models can suffer from problems of consistency, in particular the
so-called spurious drift effect. This is important for particle deposition, since one has to simulate the behavior of very
small particles which nearly represent fluid tracers. In the present paper, we use a Langevin model (Minier, Peirano,
& Chibbaro, 2004) in which the velocity of the fluid seen by particles is simulated by a diffusion stochastic process.
This model is consistent in the tracer limit by construction, and is thus free of spurious drifts (MacInnes & Bracco,
1992; Pope, 1987). Furthermore, the model is formulated in terms of instantaneous variables which allows a direct
introduction of external information provided by fundamental studies (DNS, experiments).

The present numerical Langevin model is applied to a case of particle deposition in a turbulent pipe flow. A first
purpose is to analyze how the present form of the Langevin model performs for particle deposition. A second purpose
is to bring out the modeling points that are important in this situation so that directions of improvement are clearly
indicated. In particular, a new phenomenological model which takes into account some aspects due to the presence of
near-wall instantaneous coherent structures will be proposed. In this way, we propose a first link between a statistical
model, such as the present Langevin model, and some geometrical features recently found out by DNS analysis
(Marchioli & Soldati, 2002; Marchioli et al., 2003; Narayanan et al., 2003; Picciotto et al., 2005). The goal of the work
is therefore to propose simple and phenomenological models and, also, to indicate whether introducing geometrical
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features in a Lagrangian stochastic approach can be useful for particle deposition simulations. This approach has some
analogy with the analysis carried out by Pope and Yeung some years ago for the single-phase fluid stochastic modeling
(Yeung & Pope, 1989).

The paper is divided as follows. In Section 2, we present the Langevin model that will be used throughout the work.
In Section 3, we present the test-case that will be studied. Results obtained with the standard form of the PDF model are
discussed and a new phenomenological model for the effect of near-wall structures is proposed. Finally, conclusions
are proposed.

2. Langevin model

In this section we recall briefly the theoretical background of turbulent two-phase flows and we present the Langevin
stochastic model which be will referred to as the standard model and which will be used in the following numerical
investigations. The modeling starting point is the exact equations of motion. Since two different phases are present,
the continuous one and the discrete dispersed one, the complete problem is described by two sets of equations. The
continuous phase is described by the Navier–Stokes equations:

�Uf,j

�xj

= 0, (2a)

�Uf,i

�t
+ Uf,j

�Uf,i

�xj

= − 1

�f

�P
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j

(2b)

while the discrete particle equations in the limit �p?�f are (Gatignol, 1983; Maxey & Riley, 1983)

dxp

dt
= Up, (3a)

dUp

dt
= 1

�p
(Us − Up) + g, (3b)

where Us = U(xp(t), t) is the fluid velocity seen, i.e. the fluid velocity sampled along the particle trajectory xp(t), not
to be confused with the fluid velocity Uf = U(xf(t), t) denoted with the subscript f. The particle relaxation time is
defined as

�p = �p

�f

4dp

3CD|Ur| , (4)

where the local instantaneous relative velocity is Ur = Us − Up and the drag coefficient CD is a non-linear function
of the particle-based Reynolds number, Rep = dp|Ur|/�f , which means that CD is a complicated function of the
particle diameter dp, Clift, Grace, and Weber (1978). For example, a very often retained empirical form for the drag
coefficient is

CD =
⎧⎨
⎩

24

Rep
[1 + 0.15Re0.687

p ] if Rep �1000,

0.44 if Rep �1000.

(5)

In many papers the Saffman lift force has been considered although, strictly speaking, this lift force is only valid in
an infinite domain and, therefore, should not be considered in the vicinity of a wall. With respect to the issue of lift
forces, the situation remains rather complex since quite a variety of different expressions have been put forward, each
time for different particle and flow descriptions, and it is difficult to gather which ones are relevant or even whether
they correspond to different lift forces or to different expressions of the same lift force. Yet, recently an “optimal” lift
force, based on rigorous studies (McLaughlin, 1989, 1991, 1993, 1994), has been proposed and seems to have helped
to clarify the situation. This expression has been used in a careful numerical LES simulation (Wang, Squires, Chen,
& McLaughlin, 1997) to test its importance for particle deposition and numerical outcomes have showed only a slight
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reduction in the deposition rate and mainly in the range of small diameters. For these reasons, the lift force has not
been included in the present study.

In some approaches, other forces are also included, namely thermophoretic and electrostatic forces (Kroger &
Drossinos, 2000; Zahmatkesh, 2008). Nevertheless, thermophoretic forces are important only for ultrafine particles
in presence of a temperature gradient (Zahmatkesh, 2008) and thus are neglected in the present paper, since the fluid
temperature is considered uniform. Furthermore, electrostatic forces have a range of action so small that they can be
important only for particles with a diameter smaller than 1 �m (Chen & Chan, in press) and, thus, they are not considered
in the present paper, since only particles with a larger size are analyzed. Indeed, it may be quite possible to include
in the particle equation of motion a rather complete chemical force between particles and the wall, given for example
by the classical DLVO theory that includes Van der Waals forces as well as electrostatic attractive or repulsive forces
(Israelachvili, 1991). This force is important mainly in a very thin layer close to the wall for very small, or colloidal,
particles. This expression has not been retained also because, in the present approach, we have chosen to concentrate
mainly on the hydrodynamical effects on particle deposition. Thus, a simplified chemical force is actually used: there
is no chemical force inside the flow domain but when a particle hits the wall it is regarded as being deposited, that is
an infinite adhesion force is assumed.

In two-phase flow modeling, various approaches can be followed. In this paper, we have chosen an hybrid Eule-
rian/Lagrangian PDF one. We describe the continuous phase with a classical Eulerian momentum approach, that is
the fluid phase is represented by Reynolds averaged Navier–Stokes (RANS) equations. On the other hand, the particle
phase is solved with a PDF approach where we substitute the instantaneous exact equations with a set of modeled
instantaneous equations. From a mathematical point of view, these modeled equations are Langevin equations, that is
a set of stochastic differential equations (SDEs). A complete and rigorous presentation of this approach can be found
elsewhere (Minier & Peirano, 2001; Minier et al., 2004) while for a general presentation of the argument of PDF
modeling in turbulence we refer to a classical Pope (1994a) and to the recent book of Pope (2000). The Langevin model
discussed in this paper was recently proposed (Minier et al., 2004) and has the form

dxp,i = Up,i dt (6)

dUp,i = 1

�p
(Us,i − Up,i ) dt (7)

dUs,i = − 1

�f

�〈P 〉
�xi

dt + (〈Up,j 〉 − 〈Uf,j 〉)�〈Uf,i〉
�xj

dt − 1

T ∗
L,i

(Us,i − 〈Uf,i〉) dt

+
√

〈�〉
(

C0bi k̃/k + 2

3
(bi k̃/k − 1)

)
dWi . (8)

The crossing-trajectory effect (CTE), that is the effect due to the presence of external forces, has been modeled with
the introduction of modified time-scales according to Csanady’s analysis. Assuming for the sake of simplicity that the
mean drift is aligned with the first coordinate axis, the modeled expressions for the timescales are, in the longitudinal
direction:

T ∗
L,1 = TL√

1 + �2 〈Ur〉2

2k/3

(9)

and in the transverse directions (axis labeled 2 and 3)

T ∗
L,2 = T ∗

L,3 = TL√
1 + 4�2 〈Ur〉2

2k/3

, (10)

where TL represents the Lagrangian time-scale of velocity correlations and it is defined by

TL = 1

(1/2 + 3/4C0)

k

〈�〉 , (11)
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in which � is the ratio of the Lagrangian and the Eulerian timescales of the fluid � = TL/TE, that is considered as a
constant. In the diffusion matrix we have introduced a new kinetic energy:

bi = TL

T ∗
L,i

; k̃ = 3

2

∑3
i=1bi〈u2

f,i〉∑3
i=1bi

. (12)

All these expressions are to be regarded as being local in space and evaluated at the particle position, that is for example
TL = TL(xp), which shows that, in nonhomogeneous situations, the stochastic equations are non-linear. The reasoning
leading to the construction of this Langevin model as well as a discussion of the case of general axis direction are
developed in another work (Minier & Peirano, 2001).

It is important to underline that the solution of this set of stochastic equations represents a Monte Carlo simulation
of the underlying PDF. Therefore, this approach is equivalent to solving directly the corresponding equation for the
PDF in the state-variable space. Indeed, the complete Langevin equation model for the state vector Z = (xp, Up, Us)

can be written as

dxp,i = Up,i dt (13a)

dUp,i = Ap,i (t, Z) dt (13b)

dUs,i = As,i (t, Z) dt + Bs,ij (t, Z) dWj . (13c)

This formulation is equivalent to a Fokker–Planck equation given in closed form for the corresponding PDF pL
p (t; yp,

Vp, Vs) which is, in sample space

�pL
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�t
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L
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2

�2
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([BsBT

s ]ijpL
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It can then be shown that the Eulerian mass density function (MDF) F E
p (t, x; Vp, Vs) satisfies the same equation from

which the resulting (Eulerian) mean field equations can be computed (Minier & Peirano, 2001).
Some specific characteristics of the present Langevin type of model are worth emphasizing, particularly with respect

to the simulation of small-inertia particles using an hybrid formulation. Indeed, for very small particles (for which the
mean relative drift can be seen as negligible 〈Ur〉 � 0 corresponding to the limit of vanishing inertia, �p → 0, also
called the particle-tracer limit), the model reverts to a Langevin model for a fluid particle since Up → Uf and has the
form

dxf,i = Uf,i dt (15a)

dUf,i = − 1

�

�〈P 〉
�xi

dt − 1

TL
(Ui − 〈Ui〉) dt + √

C0〈�〉 dWi . (15b)

This model corresponds to the simplified Langevin model (SLM) (Pope, 1994a).
A first important issue to consider is to be sure that the model is free of spurious drifts. In models such as SLM, which

are written as SDEs for the instantaneous fluid velocity Uf , spurious drifts (which are related to spurious accumulations
of fluid particles in regions of low turbulent kinetic energy) are naturally avoided with the proper introduction of the
mean-pressure gradient (Minier & Peirano, 2001; Pope, 1987). To underline that point, it may useful to rewrite the
same model for the fluid particle velocity fluctuating component uf = Uf − 〈Uf 〉 which is

dxf,i = (〈Uf,i〉 + uf,i ) dt (16a)

duf,i = �〈uf,iuf,k〉
�xk

dt − uf,k
�〈Uf,i〉

�xk

dt − uf,i

TL
dt + √

C0〈�〉 dWi . (16b)

Thus, in non-homogeneous situations, the increments of the fluctuating velocity components along a Lagrangian
trajectory have a non-zero value, due to the first term on the RHS of the last equation (there is an underlying difference
between means taken along fluid particle trajectory, in a Lagrangian setting, and mean values at a fixed point, in
an Eulerian setting, which for the fluctuating velocity is of course zero). Although surprising at first sight, this term
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is absolutely necessary so as to be able to respect the incompressibility constraint which states that a uniform fluid
particle concentration should remain uniform even in a non-homogeneous situation (MacInnes & Bracco, 1992; Minier
& Peirano, 2001; Pope, 1987). However, models (for example some models of the random-walk type) that simply
add to the mean fluid velocity a fluctuating component that has a zero-mean value (thus confusing Lagrangian and
Eulerian averaging operators) are equivalent to models where an artificial drift velocity is implicitly added in the correct
equation, namely vd,i = −�〈uf,iuf,k〉/�xk . In the channel flow approximation, where vd = −d〈v2〉/dy in the direction
normal to the wall, this amounts to adding a spurious drift that artificially drives fluid particle away from the wall,
thereby reducing the possibility of small-particle deposition.

A second relevant issue is the consistency of Eulerian and Lagrangian turbulence modeling. Indeed, in terms of
Eulerian mean equations, the SLM model is equivalent to the following set of equations (Pope, 1994b):

�〈Ui〉
�xi

= 0 (17)

�〈Ui〉
�t

+ 〈Uj 〉�〈Ui〉
�xj

+ �〈uiuj 〉
�xj

= − 1

�

�〈P 〉
�xi

(18)

�〈uiuj 〉
�t

+ 〈Uk〉�〈uiuj 〉
�xk

+ �〈uiujuk〉
�xk

= − 〈uiuk〉�〈Uj 〉
�xk

− 〈ujuk〉�〈Ui〉
�xk

− 2

TL
〈uiuj 〉 + C0〈�〉�ij . (19)

Using the expression retained for TL in Eq. (11), the transport equation for the second-order moments can be
re-expressed as

�〈uiuj 〉
�t

+ 〈Uk〉�〈uiuj 〉
�xk

+ �〈uiujuk〉
�xk

= − 〈uiuk〉�〈Uj 〉
�xk

− 〈ujuk〉�〈Ui〉
�xk

−
(

1 + 3

2
C0

) (
〈uiuj 〉 − 2

3
k�ij

)
− 2

3
�ij 〈�〉. (20)

This shows that the SLM corresponds to a Rij .� Rotta model (Pope, 1994b). It is important to underline that the
complete stochastic model, which is based on an assumption of an isotropic return-to-equilibrium term for the closure
of the pressure–strain correlation, is not isotropic even in the asymptotic case of tracer particles, that is for the fluid case.
Yet, as it transpires from its name, the SLM is perhaps the simplest possible stochastic model consistent with classical
Reynolds-stress second-order modeling and its capacity to reproduce high anisotropy, such as in the near-wall turbulent
boundary layer, is limited (Minier & Pozorski, 1999). It is possible to replace the simple return-to-equilibrium term in
Eq. (15b) by a more general matrix Gij which is a function of local fluid mean velocity gradients (Minier & Pozorski,
1999; Pope, 1994b) so as to retrieve more complex Reynolds-stress models for 〈uiuj 〉 which may improve numerical
predictions in highly anisotropic regions. New complete (and more complex) Langevin models have also been recently
put forward with down-to-the-wall integration and are able to reproduce the high-anisotropy of the Reynolds stress
quite well (Wacawczyk, Pozorski, & Minier, 2004). However, in the present context, we are using an hybrid formulation
and we believe that, before resorting to more involved models, it is important to stress the consistency issue. Indeed, in
such a formulation, one turbulence model is used in the Eulerian part for the prediction of the fluid mean fields such as
the mean velocity and Reynolds stress. These fluid mean fields are provided to the Lagrangian solver in Eqs. (6)–(8)
which also corresponds to a turbulence model, as it was just underlined. For small-inertia particle, we have therefore
a duplicate turbulence model and it is very important to ensure that these two turbulence models be as consistent as
possible (Chibbaro & Minier, 2007; Pope, 2000). Indeed, it has been shown that to couple models which correspond to
different turbulence models (for instance DNS and the present Lagrangian model) may introduce some inconsistencies
at the level of particle equations and, thus, may lead to unphysical results in particular for the numerical prediction
of wall-normal stress, say 〈v2〉, which is important if we are to simulate particle fluxes toward the walls (Chibbaro
& Minier, 2007; Parker et al., 2008).Therefore, as a first step, we have retained a simple version, namely the SLM
model, which is consistent with usual Reynolds-stress models as a kind of sound basis for the numerical investigations
on particle deposition though it is clear that, at least for the prediction of fluid mean quantities, this leaves room for
improvement by using more complex Langevin ideas.
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3. Numerical results

In this section, we present numerical results for the deposition of particles in a vertical pipe flow at a Reynolds
number of 10 000, which corresponds to the experiment of Liu and Agarwal (1974).

In order to describe the particle phase, 10 000 individual particles (920 kg/m3 in density) of 10 diameters (1.4.68.5 �m)

are released in the gas flow. In Table 1, we report the relation between particle diameters and characteristic response
times, based on the definition given in Eq. (1). The numerical integration of the Langevin equations describing the
particle phase is fully described in a recent paper (Minier, Peirano, & Chibbaro, 2003). To compute the deposition
velocity, we evaluate F, the fraction of particles remaining in the flow, as a function of the axial position x (Matida et al.,
2000). F is calculated by counting the number of particles that reach the sampling cross-section and it is defined by

F = number of crossing particles

total number of released particles

The particle deposition velocity is then computed as follows (Matida et al., 2000):

kp = Ufdt

4(x2 − x1)
ln

F1

F2
, (21)

where dt is the diameter of the pipe and Fi is particle fraction value at the i-th sampling section. As previously
explained, pure-deposition boundary conditions are applied for the particles, that is particles touching the wall are
considered as being deposited and are removed from the domain. For the test-case simulated in this work, the aerosol
flow is considered as dilute and, thus, interactions between turbulence and particles are only one-way.

3.1. Mean fluid value predictions

Although the purpose of this work is to analyze Lagrangian modeling for particle deposition, we first show some
Eulerian results for the sake of completeness. Indeed, in the hybrid approach, the first step to be carried out is to evaluate
the mean fluid variables which are included in the Lagrangian model, see Eqs. (6)–(8). The pipe test case considered in
this work has been solved on an unstructured grid composed by 168 000 points, that is 12×28×500 points in the three
directions. For all computations, we have used the RANS free code “Saturne”, which is an in-house code developed at
Electricité de France. All details about this rather classical computational fluid dynamics code can be found elsewhere
(Archambeau et al., 2005). Grid-independence has been assured, as shown in Fig. 1a. Wall-boundary conditions have
been imposed through classical wall-functions, with the first grid-point put at y+ ≈ 50 (Wilcox, 1993). At the inlet, the
mean velocity is imposed uniform and equal to the bulk velocity Um given by Reynolds number Re = UmH/�, where
H is the pipe diameter. No variation with radial position is present. Steady state was obtained after some downstream
distance; nevertheless, in order to be sure that inlet conditions have no effect on our results, only second half of the
channel has been considered. Outflow conditions were imposed at the outlet.

Standard k.� and Rij turbulence models have been used. Results are in line with the known performance of these
models in wall flows and very similar results have been obtained with both models. In Fig. 1a, the mean velocity in the

Table 1
Relation between �+

p and particle diameters

�+
p Diameters (�m)

0.2 1.4
0.4 2.0
0.9 2.9
1.9 4.3
3.5 5.8
6.4 7.8

13.2 11.2
29.6 16.8

122.7 34.2
492.2 68.5
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Fig. 1. (a) The mean velocity of the fluid phase is shown versus the distance from the wall. All quantities are made non-dimensional with the wall
friction velocity and viscosity. Five curves are shown: the ones labeled by “grid 1” represent the results obtained with the grid used throughout
this paper (168 000 cells) with both turbulence models used, namely k.� and Rij .�. The curves labeled “grid 2” are obtained on a grid with a
resolution doubled in radial and azimuthal direction with both turbulence models. Results are very similar and therefore the grid-independence
can be considered reached. The last curve shows the analytical curve that fits DNS results. (b) Adimensional turbulent kinetic energy is shown
versus the adimensional distance from the wall. Analytical/DNS results are also shown for comparison. As expected, the peak of the kinetic energy
is under-estimated by present turbulent models. Globally speaking, our numerical results are in line with standard performances of these models
(Pope, 2000).

axial direction obtained with both models for two grids are shown and compared against analytical results (Monin &
Yaglom, 1975), which fit very well DNS results of comparable Reynolds number (Mansour, Kim, & Moin, 1988). In
Fig. 1b, the turbulent energy obtained with both models is shown.

3.2. Results with the standard model

First of all, numerical tests have been performed to check that the results were independent of the values of numerical
parameters, in particular the number of particles and the time step. Results are shown in Fig. 2, where a standard k.�
turbulence model was applied for the fluid in the Eulerian solver. It is seen that numerical independence with respect
of the time step is reached for the two numerical schemes (of orders 1 and 2), and that the influence of the order of
convergence of the schemes is negligible. Based on these results, a time step of �t =10−4 s was chosen for the different
calculations, while keeping the second-order algorithm. The independence of the deposition velocity with respect to
the time step illustrates that the numerical scheme is stable for the whole range of particles. It is well known (Peirano
et al., 2006) that, for a given time step, the stochastic equations for turbulent particle become stiff for small diameters
and near the wall. If this mathematical characteristic is not well addressed with an appropriate numerical scheme, the
stiffness problem imposes the use of very small time step in order to prevent the presence of numerical instabilities
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Fig. 2. (a) Analysis of the convergence of the numerical scheme with the order and the time step. The deposition velocity (y axis) is shown versus
adimensional particle response time for different numerical configurations. For the test-case studied in this work, tt is seen that the for �t = 10−4

the results have reached the convergence and that the order of the scheme is not a key. (b) Analysis of the particle number influence on the results
of deposition velocity. The deposition velocity (y axis) is shown versus adimensional particle response time for some configurations with a different
number of particles. It is seen that N = 500 is enough to guarantee the independence of the results from the number of particles used.

(Kroger & Drossinos, 2000; Matida et al., 2000) which may also lead to the use of an unphysical time step. Thus, the
present algorithm appears as satisfactory for particle deposition computations.

Apart from numerical errors due to the time accuracy of the numerical scheme, an analysis of the statistical error
has been carried out. Since particle deposition velocities are calculated by a Monte Carlo method, it is important to
check that the number of particles (which represents samples of the PDF) is sufficiently high so that statistical error is
limited. In Fig. 2, we also present results obtained with three different values of N, which is the number of particles
used for each class of diameter : N = 500, 1000 and 5000. As it appears, although results change very slightly with
increasing N, there is no clear difference between these results and it seems that 500 particles for each class of diameter
is already high enough. However, we have chosen for further simulations the value of N =1000 particles for each class
of diameter, in order to reduce statistical noise.

In Fig. 3, results obtained with the standard PDF model, Eqs. (6)–(8), can be compared with experimental data. Two
different turbulent models for the simulation of the continuous phase were used, namely the standard k.� and Rij .�
models, both with wall-function boundary conditions. The difference between the simulations performed with the two
different turbulence models is negligible. This is not too surprising, since in this test case the two models give similar
mean fluid profiles, as shown in the previous section. These results are coherent with those obtained in an analogous
configuration by Schuen, Chen, and Faeth (1987).

It is possible to divide the results in two main categories. For heavy particles (�+
p > 10), the model prediction agrees

very well with experiments. On the contrary, for light particles (�+
p < 10), the deposition velocities remain at the

same level as for heavy particles, and are therefore strongly overestimated. This fact shows that the stochastic model
proposed, in its standard form, is not suitable to simulate deposition phenomena in this range. In particular, there is no
appreciable difference between the two categories (�+

p < 10 and �+
p > 10) in the standard form of the model, while in

reality deposition velocity diminishes by three order of magnitude.
This seems to be in line with experimental and DNS results, heavy particles are not much affected by near-wall

boundary layer and by the specific features of the instantaneous turbulent structures and, thus, the general model
provides an adequate description. On the contrary, for light particles, the physical mechanism of deposition changes,
with a growing importance of turbulent structures and near-wall physics in general. The standard form of the PDF
model is not sensitive to this change, giving for particles in the whole spectrum of diameters almost the same results.
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Fig. 3. Analysis of the influence of the turbulence model used for the fluid phase. The deposition velocity obtained with different turbulent models is
shown: k.� circles, Rij .� squares. The results are almost indistinguishable, showing that the stochastic model used in this work for the description
of the particle phase is not much affected by the turbulence model used for the computation of the mean fluid variables.

3.3. Influence of mean fluid profiles

As previously mentioned, in the standard form of the PDF model, the fluid boundary layer is simulated with the
wall-function approach. This method assures a reasonable approximate mean fluid profile in the logarithmic region
without solving explicitly the viscous sub-layer. Nevertheless, given that the results obtained with the standard model
are not satisfying, a question arises: is the prediction of particle deposition velocity sensitive to changes in the fluid
mean fields? Or, to be more precise, can we improve predictions by changing the value of mean-quality profiles and of
parameters (such as TL) that enter in the Langevin equation, while keeping the same form of the model?

The influence of such approximations was recently investigated by other Lagrangian models (Matida et al., 2000).
Following the same reasoning, we have carried out simulations where the computed mean fluid fields are replaced by
given ones in the whole domain and, consequently, wall-function boundary conditions are suppressed. In the chosen
test case, analytical solutions for the mean fluid fields (〈U〉, k, 〈�〉) can be found (Monin & Yaglom, 1975) and DNS
data are also available for the entire region of simulation. It is important to underline that, for this particular numerical
study, grid resolution has been largely improved, with a grid spacing near-to-the-wall of �y+ ≈ 1. This should assure
that mean variations are captured with sufficient detail. The aim of this substitution is to make a sensitivity analysis
of the standard model with respect to mean fluid quantities, because one might expect that smaller particles are more
sensitive to the rapid variations of mean quantities expected in near-wall layer. In Fig. 4, we present results for different
tests. A first sensitivity test has been carried out by imposing the axial mean fluid velocity given by the law-of-the-wall
equations 〈Uf,i〉 = u+, that is we have used the theoretical analytical value for this variable. In the second test, again
the mean fluid velocity has been computed through this law, but we have also used turbulent kinetic energy (k) and
turbulent dissipation rate (�) curve-fitted to the DNS data (Matida et al., 2000), thus all mean fluid profiles used in this
test are “exact”, in the sense that they are either given by the analytical solution (mean velocity) or by DNS simulations.

The influence of the fluid mean profiles on the predicted values is limited and the model does not appear to be
sensitive to them. The deposition rate remains overpredicted by the model for light particles. This may be explained
by the fact that the effect of the new mean fluid profiles is concentrated in a thin region. Most important quantities are
expected to be the turbulent kinetic energy and the wall-normal stress (Parker, Foat, & Preston, 2008). Nevertheless,
turbulent kinetic energy decreases only from y+ ≈ 10, where it reaches its maximum in correspondence with peak
production. Wall-normal stress peaks further but yet near-to-the-wall, at about y+ ≈ 50 (Kim, Moin, & Moser, 1987).
The resulting effect is not easy to be foreseen and it may be negligible with respect to the overall effect of migration
of particles toward the wall due to the net mean flow. In order to further support this argument, we have computed the
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Fig. 4. Deposition velocity with different fluid velocity profiles. Triangles down are the experimental value. Circles are obtained with all mean fluid
quantities given by k.� model (as in the previous picture). Diamond curve is obtained imposing axial mean fluid velocity given by the law-of-the-wall
equations 〈Uf,i 〉=u+. For the result indicated by diamonds with k+.�+, the mean fluid velocity is always given by the same law, and also turbulent
kinetic energy (k) and turbulent dissipation rate (�) are curve-fitted to the DNS data (Matida et al., 2000), thus all mean fluid profiles are exact.

Table 2
Mean residence time for different classes of particle diameter in the case of exact mean fluid profiles, see k+.�+ curve in Fig. 4

�+
p Diameters (�m) Residence time (wall units)

0.2 1.4 29.5
0.4 2.0 29.9
0.9 2.9 28.7
1.9 4.3 30.9
3.5 5.8 31.5
6.4 7.8 31.6

13.2 11.2 35.4
29.6 16.8 40.6

122.7 34.2 55.3
492.2 68.5 96.8

mean near-wall residence time (in the layer y+ < 30) of deposited particles, for each class of diameters. We have chosen
to monitor the particle residence time because this quantity has been found to properly distinguish different deposition
mechanisms (Narayanan et al., 2003). In Table 2, the results obtained for each class of diameters are given for the
simulation with all exact fluid profiles. For the sake of clarity, the residence time is always expressed in nondimensional
wall-units (i.e. normalized using the kinematic viscosity and the friction velocity). In the model, all particles, regardless
of their diameter, are found as deposing by the free-flight mechanism, that is with a small near-wall residence time.
Furthermore, the residence time grows slightly with diameters. This fact shows that particles are dominated by the
migratory flux and light particles are even faster than the biggest ones to reach walls, since the acceleration on particles
is proportional to the inverse of diameter.

A first conclusion can be drawn: in the absence of a representation of turbulent coherent structures which can trap
particles in the near-wall region and which describe correctly the mechanisms of deposition, the mean fluid profiles are
not found to be a significant factor. In some previous works (Matida et al., 2000; Parker et al., 2008; Wang & James,
1999), it was experienced that the introduction of exact mean fluid quantities improved the performance of discrete
Lagrangian models. However, the same tendency has not been observed in the present work. With respect to this point,
it may be worth remembering that the attention in these works was mainly devoted to the analysis of the Eulerian part
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of the hybrid approach and that, very often, a standard “random-walk” model was used for the Lagrangian part. In the
present work, a rather complementary point of view has been followed, where the emphasis was put on the Lagrangian
model and, more specifically, on the consistency between the Eulerian and Lagrangian formulations in the fluid limit.
The theoretical issues related to this consistency question have already been developed in the previous part but they
are further compounded by similar numerical issues, so that we believe that it is important to address carefully several
aspects in practical computations while testing the sensitivity to mean fluid profiles:

(a) Lagrangian models can be affected by spurious drifts (MacInnes & Bracco, 1992; Minier & Peirano, 2001; Pope,
1987), as discussed in the previous section, which may correspond to an artificial force which pushes small particles
away from wall. It must be ensured that a correct mean pressure gradient is correctly introduced before pursuing
further tests (Chibbaro & Minier, 2007).

(b) Lagrangian models are written as SDEs whose numerical integration is more subtle than classical ODEs. A
straightforward approach based upon classical numerical schemes for ODE can lead also to the existence of
spurious drifts, now of numerical origin (Minier, Cao, & Pope, 2003; Peirano et al., 2006).

(c) In Lagrangian simulations, if standard numerical schemes are used, a very small time step is required near the
wall to guarantee numerical stability. This may lead to an unphysical behavior, since present stochastic models are
based upon the hypothesis that the time step is much greater than the Kolmogorov time-scale �t?�	.

(d) It has been found that it is important to ensure that the turbulence Eulerian model and the Lagrangian one are as
consistent as possible (Chibbaro & Minier, 2007; Muradoglu, Jenny, Pope, & Caughey, 1999). The lack ofconsis-
tency may also lead to unphysical results, at least for the limit case of very small particles (Chibbaro & Minier,
2007). In particular, even with the exact mean profiles, the present Langevin model do not reproduce exactly the
Reynolds stress, for example the wall-normal stress may be slightly underestimated, and thus this can limit the
effect of the introduction of better Eulerian predictions.

With the previous issues in mind and given the results obtained in this section, we propose to retain the present
Langevin model, but to implement it with a simple phenomenological model to account for some of the near-wall
physical mechanisms due to coherent structures. The purpose of this new phenomenological model is twofold: first
to improve the model predictions in a ad hoc but simple manner and, second, to investigate whether modeling more
explicitly particle interactions with near-wall coherent structures is a direction worth pursuing.

3.4. Phenomenological model for coherent structures

The turbulent near-wall structures have been found to have a main role on the mechanism of particle deposition
(Marchioli & Soldati, 2002; Narayanan et al., 2003). For our purpose, the most interesting aspect is that depositing
particles can be divided into two categories. In the first one, particles with large wall-normal velocity and small near-wall
residence time, deposit mainly by the free-flight mechanism. In the second one, for particles with negligible wall-normal
velocity and large near-wall residence time, the diffusional mechanism is the most important one.

More specifically, for light particles (�+
p < 10) the diffusional mechanism is shown to represent the sole mechanism

useful to deposition, while its importance decreases as particles become heavier. Yet, Narayanan et al. (2003) show
that the diffusional deposition mechanism still remains quantitatively important for heavy particles, at least in the
intermediate range which is considered there. For example, for particles with �+

p = 15, only about 40% of the particles
are expected to deposit by the free-flight mechanism. However, for very heavy particles (�+

p ?10) the free-flight
mechanism is expected to become the dominant one. From a physical point of view, the different behavior between
particles of different inertia can be explained in terms of the interaction with coherent structures in the near-wall region,
notably with sweeps and ejections. Light particles remain trapped for a long time by these structures in a thin region
(y+ < 3) and deposit only by diffusion. Heavy particles, with a high enough wall-normal velocity, go through this
region without being influenced and deposit after a small residence time.

Although diffusional deposition was found to be still important in the small range of diameters analyzed in DNS
simulations, we can propose the following picture: heavy particles (�+

p > 10) deposit by the free-flight mechanism,
while light particles (�+

p < 10) deposit by the diffusional mechanism. Though this represents a rough approximation,
it can be considered as reasonable for the construction of a simple model. In effect, with our standard PDF model,
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heavy particles (�+
p > 10) are well treated, see Fig. 3. Therefore, for particles with (�+

p > 10) we do not need any model
modification. For light particles the situation is completely different. Evidently, some instantaneous features of coherent
structures are not well represented in our standard PDF model, so the idea is to add the main effects by new ad hoc
terms.

The results obtained by recent DNS computations suggest that the residence time of particles in near-wall region
represents the most important parameter. Given this, we propose a simple phenomenological model which covers the
whole range of diameter (heavy and light particles). The model introduces the notion of a residence time-scale in
the near-wall region for each class of diameter, say Ts(dp). The characteristic time-scale Ts(d) is function of particle
diameters, and we propose to model it with the simple form

Ts = T0 exp

(
− dp

D0

)
. (22)

This form is based on the dimensional guess dTs/ddp = −Ts/D0 and it is chosen because it gives the good monotonic
and asymptotic behavior. The two parameters D0 and T0, not a priori known, can be extracted from the two values
investigated by DNS (�+

p = 5 and 15). Although DNS gives only the statistical distribution of this quantity and not a

single value, it is possible to roughly deduce from DNS results a mean value of T +
s ∼ 103, for �+

p = 5, and T +
s ∼ 102,

for �+
p =15. On the basis of these results, the parameter are evaluated to be T +

0 =700, D+
0 =2.3×10−4 in adimensional

wall units. Though these results have been deduced from a single DNS computation at a given Reynolds number, they
are computed from adimensional quantities related to wall ones, which are known to have almost universal character
(Pope, 2000), and the present estimates are assumed to have some general validity.

Since our model is aimed at introducing features of coherent structures whose influence is limited to a thin region
near the wall (Narayanan et al., 2003), it seems reasonable to apply it in the numerical simulations by imposing ad hoc
boundary conditions: when a particle hits a wall, it deposits only if its residence time in the near-wall region (defined
as the zone y+ < 30) is greater than Ts. Otherwise, it remains at the wall and its velocity is put to zero, but it can be
re-entrained and move again in the flow. These boundary conditions are applied to each class of particle diameters.

To sum up, the complete Langevin PDF model proposed is as follows:

dxp,i = Up,i dt

dUp,i = 1

�p
(Us,i − Up,i ) dt

dUs,i = As,i (t, Z) dt + Bs,ij (t, Z) dWj .

⎫⎪⎬
⎪⎭ SDE model (23)

Particle deposition if Tp > Ts
Up,i = 0, xp,i = 0 if Tp < Ts

}
Particle B.C. (24)

where Tp represents the residence time of the given particle in the near-wall layer y+ < 30.
In our picture, heavy particles (�+

p > 10) deposit each time they reach the wall, since the residence time-scale tends
to zero rapidly with particle diameter. On the other hand, light particles (�+

p < 10) deposit only if they remain in the
near-wall region for a sufficient time.

In Fig. 5, the results obtained with the new model are represented by the curve indicated by f (TS). A good agreement
with experimental data is retrieved, and in particular the sharp decrease in the deposition velocity for light particles is
correctly reproduced. In the same figure, we present also a second curve indicated by f (TS/2), which represents the
results obtained by using in the model a residence time-scale equal to Ts/2. These results indicate that the dependence
on the residence time is critical for lighter particles. In fact, in this particular test-case considered it represents the main
effect.

In Fig. 6, we present the curve representing the fraction of particles remaining in the flow versus pipe axis for the two
functions of the characteristic time-scale used, that is Ts and Ts/2. For reasons of clarity, in the figure we show only four
classes of diameters, which, however, represent all the regimes. The figure shows again that, for small and intermediate
diameters, there is a noticeable difference in the fraction of particles which deposit, while for large particles the behavior
is very similar.

In order to further assess the model function given by Eq. (22) we show, in Fig. 7, the number of particles which
deposit for each class of diameters, in the case of the function Ts. We computed the fraction of particles deposited by
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given by the function f (TS) derived from the DNS data. The results obtained with the phenomenological model with the residence time computed
through the function derived from DNS are in good agreement with experimental results, in particular small particles deposit only rarely.
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Fig. 6. Fraction of particles remaining airborne versus pipe length for different diameter classes. These results are obtained with the phenomenological
model, as explained in Fig. 5. Particles can deposit only after having stayed a certain residence time in a small near-wall layer. The residence time
is different for each class of diameter and is computed for all classes through an empirical function f (Ts) deducted from DNS data, which give the
correct value only for two classes. In (a), the results obtained using this function f (TS) derived from DNS data are shown. In (b), results are shown
the value of residence time given by f (TS) are divided by a factor two. It is seen that there is a little difference for the larger particles but that the
difference is significant for the smaller. This indicates that the residence time value used is crucial mainly for small particles.
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the free-flight mechanism, and the fraction of particles deposing by the diffusional one. We can see that the model
reproduces reasonably well the physical behavior proposed by DNS calculations. The diffusional mechanism is the most
important for small particles (�+

p < 10), while for the other classes free-flight mechanism becomes the only efficient
one. Moreover, the proportion between the two mechanisms is correctly given, at least for light particles. For the class
of diameter �+

p =6.4, 80% of particles are found to deposit by diffusional mechanism, while DNS results indicate a rate
of 90% for �+

p = 5. Finally, it is worth noting that the Lagrangian approach proposed in this work is grid-independent
and valid for nominally infinite Reynolds number, thus should be easily used in much more complex geometries and
grids.

4. Conclusions

In this paper we have presented a numerical study of particle deposition in a turbulent pipe flow using a Langevin
PDF model recently proposed (Minier et al., 2004). In its standard formulation, the model has been found to be unable
to reproduce the correct deposition velocity for light particles (�+

p < 10). Indeed, results obtained with the standard
form of the model have revealed a deposition velocity which is only slightly sensitive to particle inertia. Moreover,
sensitivity tests have indicated that this outcome is not noticeably modified when mean fluid profiles are changed. As
a simple and first step toward considering the specific effects of coherent structures, a new phenomenological model,
built on the basis of DNS results, has been proposed and introduced in the numerical simulations. The results obtained
with this model are in good agreement with experiments and show that:

(i) One way to improve significantly the statistical description of particle deposition is to take into account some
geometrical features of the flow, through the sweeps and ejections events. In particular, residence time in the
near-wall region (Narayanan et al., 2003) which reflects their influence can be considered as a relevant parameter.

(ii) This model represents already a first attempt to relate a statistical description of the flow with a geometrical one,
because we have put (crudely) some geometrical features of the instantaneous flow (coherent structures) in the
framework of a statistical flow description, such as the present Langevin model. This first proposition opens the road
for a more systematic introduction of geometrical features in statistical PDF approach, where coherent structures
in wall-bounded flows could be introduced as new stochastic terms in the modeled equations. Given present results,
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this more explicit and rigorous stochastic approach appears as a good candidate for the construction of particle
deposition models based on physical principles. This is the subject of current research and of new stochastic
models (Guingo & Minier, 2007a, 2007b).

(iii) Even in its present formulation, the Langevin model proposed here yields satisfactory results and can be attractive
for engineering applications, given its simplicity and stability (large time steps can be used in the whole domain
and for the whole range of particle diameter).
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