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Abstract. - The effects of the competition between short-range attraction and mid-range repulsion
in lattice Boltzmann models of single-component non-ideal fluids is investigated. It is shown that
the presence of repulsive interactions gives rise to long-lived metastable states in the form of multi-
droplet spray-like density configurations, whose size can be adjusted by fine-tuning the strength of
the repulsive versus attractive coupling. This opens up the possibility of using single-component
lattice kinetic models to study a new class of complex flow applications, involving atomization,
spray formation, micro-emulsions and possibly, glassy-like phenomena as well.

The dynamics of multi-phase flows with complex trans-
lational/rotational order is a rich branch of modern sci-
ence, lying at the interface between fluid dynamics and
condensed matter, with many applications in physics,
chemistry, engineering and life-sciences [1, 2]. Although
phase-transitions from isotropic, homogeneous fluids to
anisotropic/ordered ones can be traced to a large variety
of underlying microscopic conditions, a common feature
of many microscopic scenarios is the competition between
short-range attraction and mid/long-range repulsion [3].
Short-range attraction typically drives phase-separation
through dynamical instabilities towards density perturba-
tions in the fluid, whereas mid/long-range repulsion frus-
trates this tendency, thus giving rise to a variety of com-
plex symmetry-breaking structures within the flow. The
analytical study of these phenomena is obviously a difficult
one, mainly due to the need of accounting for the simulta-
neous interaction of many disparate scales. Consequently,
the investigation of multiphase flows, both classical and
quantum, is in a constant need of flexible and efficient com-
putational methods. The task of simulating the behaviour
of multiphase flows is however a very challenging one, due
to the emergence of moving interfaces with complex topol-
ogy [7]. In the last decade, a new class of mesoscopic
methods, based on minimal lattice formulations of Boltz-
mann’s kinetic equation, have captured significant inter-
est as an efficient and flexible alternative to continuum

methods based on the discretization of the Navier-Stokes
equations for non-ideal fluids [8–12]. To date, a very popu-
lar mesoscopic approach is the so-called pseudo-potential-
Lattice-Boltzmann (LB) method, developed over a decade
ago by Shan and Chen (SC) [13]. This method has
gained increasing popularity on account of its simplicity
and computational efficiency. In the SC method, poten-
tial energy interactions are represented through a density-
dependent mean-field pseudo-potential, ψ(ρ), and phase
separation is achieved by imposing a short-range attrac-
tion between the light and dense phases. To date, the SC
pseudo-potential has only been used in its original ver-
sion, where only nearest-neighbour attractive interactions
are included. This implies that, in the absence of exter-
nal constraints, the time-asymptotic state of the phase-
separated fluid corresponds to a single droplet configura-
tion. Very recently, however, it has been pointed out that
the inclusion of mid-ranged potentials, extending beyond
nearest-neighbour interactions, may open up new perspec-
tives and applications of the SC model. In particular, it
has been conjectured that mid-range repulsion should be
able to interrupt the phase-separation induced by short-
range attraction, thereby providing a physical mechanism
promoting the onset of metastable states in the form of
long-lived droplets of different size [14]. This idea has
been pursued before in many endeavors [4–6], including
lattice-gas cellular automata [15]. However, to the best of
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our knowledge, this is the first time that the idea is ap-
plied to the Lattice-Boltzmann framework. In this Letter,
we provide numerical evidence that a mesoscopic lattice
Boltzmann model with mid-range repulsion is indeed ca-
pable of sustaining long-lived metastable states in the form
of multi-droplet spray-like configurations, whose size and
number can be controlled by tuning the strength of repul-
sive interactions. This opens up the possibility of deploy-
ing the computational power of lattice kinetic methods to
study a variety of very complex fluids flows such sprays,
emulsions and glassy-like materials, which are hard to sim-
ulate with the standard Shan-Chen model. The kinetic
lattice Boltzmann equation writes as follows [16, 17]:

fi(~r + ~ci∆t, t+ ∆t) − fi(~r, t) = (1)

−1

τ
[fi(~r, t) − f

(eq)
i (~r, t)]∆t+ Fi∆t

where fi is the probability of finding a particle at site
~r at time t, moving along the ith lattice direction de-
fined by the discrete speeds ~ci with i = 1, ..., b. The
left hand-side of (2) stands for molecular free-streaming,
whereas the right-hand side represents the time relax-
ation (due to collisions) towards local Maxwellian equi-
librium. Finally, Fi represents the total volumetric body
force. In particular, we shall use a dynamic mean-field

term connected with bulk particle-particle interactions.
The pseudo-potential force consists of two separate com-
ponents ~F (~r, t) = ~F1(~r, t) + ~F2(~r, t), defined as follows:

~F1(~r, t) = G1ψ(~r; t)

b1
∑

i=0

wiψ(~r1i, t)~c1i∆t

~F2(~r, t) = G2ψ(~r; t)

b1
∑

i=0

p1iψ(~r1i, t)~c2i∆t (2)

+ G2ψ(~r; t)

b2
∑

i=0

p2iψ(~r2i, t)~c2i∆t

In the above, the indices k = 1, 2 refer to the first and
second Brillouin zones in the lattice (belts, for simplicity),
and ~cki, pki are the corresponding discrete speeds and as-
sociated weights (see Figure 1). Finally ~rki ≡ ~r + ~cki∆t
are the displacements along the i-the direction in the k-th
belt. Note that the second force ~F2 acts on both belts,
so that the short (S) and mid-range (M) components of

the force read as follows ~FS(~r, t) = ~F1(~r, t) + ~F21(~r, t),

and ~FM (~r, t) = ~F22(~r, t), where subscripts 21 and 22 in-

dicate the component of ~F2 acting on the first and sec-
ond belts respectively. Note that positive(negative) G cor-
respond to repulsion(attraction) respectively and that G
is a measure of potential to thermal energy ratio. The
first belt is discretized with 9 speeds (b1 = 8), while
the second with 16 (b2 = 16) and the weights are cho-
sen in such a way as to fulfil the following relations

[18]:
∑b1

i=0 wi =
∑b1

i=0 pi1 +
∑b2

i=0 pi2 = 1;
∑b1

i=0 wic
2
i =

∑b1
i=0 pi1c

2
i1 +

∑b2
i=0 pi1c

2
i2 = c2s, c

2
s = 1/3 being the lat-

tice sound speed. The numerical values of the weights are
given in Table .

i |ci|2 wi pi1 pi2

1 − 4 1 1/9 4/63
5 − 8 2 1/36 4/135
9 − 12 4 1/180
13 − 20 5 2/945
21 − 24 8 1/15120

Table 1: Links and weights of the two-belt, 24-speed lattice.

The pseudo-potential ψ(~r) is taken in the form first sug-
gested by Shan and Chen [13], ψ(ρ) =

√
ρ0(1 − e−ρ/ρ0)

where ρ0 marks the density value at which non ideal-
effects come into play and it is fixed to ρo = 1 in lat-
tice units. Taylor expansion of (2) to second-order de-
livers the following non-ideal equation of state (EOS)

p ≡ P/c2s = ρ+ (g1+g2)
2 ψ2(~r, t), where gk ≡ Gk/c

2
s are nor-

malised coupling strengths. Further expansion to fourth-
order provides the following expressions for the surface
tension

γ = − (G1 + ξG2)

2
c4s

∫ ∞

∞

|∂yψ|2dy (3)

where y runs across the phase interface. Note that the
double potential allows to change the equation of state
and the surface tension independently. In particular, since
ξ = 12/7 > 1 the effect of the repulsive belt is to lower the
surface tension at a given value ofG1+G2. Thus, the mid-
range potential is expected to act as a “surfactant” [1].

We have simulated droplet formation by integrating
the LBE Eq. (2) in a 2D lattice using the nine-speed
2DQ9 model [12, 17], out of a noisy density background
with initial density ρin = ρ0ln2 + δρ in a periodic do-
main. The force, however, is evaluated on a larger 24-
speed stencil (see Fig. 1). In all simulations, τ = 1 and
Geff = G1 + G2 = −4.9. This choice yields a surface

tension γ ≈ 0.5 and a density ratio ∆ρ
ρ ≈ 10 between liq-

uid and vapour phases, respectively. In this configuration,
we have studied the changes in the qualitative behaviour
of the droplet formation as a function of the strength of
the repulsive force. We have performed a systematic scan
over the force strength, while keeping Geff = −4.9 in the
(G1, G2) plane, with a standard resolution of 1282 grid
points, and with final simulation time t = 50000. By
defining a characteristic time-scale tcap = Hµ

γ , µ being the
dynamic viscosity of the fluid and H the dimension of the
domain, the final time corresponds to about 50tcap. It
has been checked that the the same qualitative behaviour
is reproduced at higher resolution, 2562 and 5122 lattice
sites. In analogy with droplet theory and kinetic Ising
simulations [19,20], we identify the following four regions:
as follows; i) |Geff | ≡ |G1 +G2| < |Gc| = 4: homogeneous
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fluid (zero droplets); ii) |Geff | > |Gc|, G2 = 0: non-
homogeneous fluid, one droplet (standard Shan-Chen);
iii) |Geff | > |Gc|, 0 < G2 < G2c: non-homogeneous
fluid (several metastable droplets); iv) |Geff | > |Gc|,
G2 > G2c: quasi-ordered fluid (many stable droplets,
”emulsion”);

An example of fluid behaviour in the metastable region
iii) is given in Fig. 2, corresponding to G2 = 10. From this
figure, we observe that as many as 30 droplets are formed
at time t = 10000 ∼ 10tcap, while at time t = 30000 and
t = 50000, this number falls down to 11 and 7, respec-
tively. A typical fluid configuration in the stable region
iv) is given in Figure 3, corresponding to G2 = 13 and
t = 50000. From this figure, nucleation of quasi-ordered
liquid droplets is apparent. It is interesting to observe that
in this regime, the fourth order expression eq. (3) would
yield an unphysical negative surface tension, indicating
that higher order terms can no longer be neglected. Nu-
merical exploration of this region shows however that the
mesoscopic model continues to provide physically plausi-
ble results, with the surface tension smoothly decreasing
by about a factor two with increasing G2. This is consis-
tent with the physical behaviour of surfactants, where the
surface tension decreases by a factor of 2− 3 without ever
vanishing [1].

The physical scenario is summarised in figure 4, where
the interfacial area is plotted as a function of time. From
this figure, we observe that the standard Shan-Chen fluid
attains its single-droplet steady-state on a time scale of
a few ’capillary’ times, 5tcap ∼ 5000 time-steps. Direct
inspection (not displayed for space limitation) shows that
the one-droplet configuration attains the lowest value of
the pseudo-potential energy associated with the forces de-
fined in eq. (2). By raising G2, multi-droplet configura-
tions are excited, as clearly displayed by the plateaux in
the time evolution of the interfacial area A(t) at different
values of G2. Each plateau associates with a given number
of droplets, the transition between two different plateaux
marking the discrete change in the number of droplets.
From Figure 4 it is apparent that, even though in the
limit t→ ∞ all configurations are expected to decay to the
single-droplet ground state, the time it takes to reach this
asymptotic state becomes increasingly larger as G2 ap-
proaches the critical value G2c. In fact, as G2 > G2c, this
relaxation time is virtually infinite, corresponding to the
attainment of a new stable phase, i.e. the quasi-ordered
state represented in Figure 3. Remarkably, the present
LB method permits to straddle across the entire region of
metastability, connecting the one-droplet Shan-Chen state
all the way to the quasi-ordered state. It is instructive to
inspect the number of droplets at a given time as a func-
tion of the repulsive strength G2. Such information is dis-
played in Figure 4b at times t = 5, 10tcap and t = 50tcap.
From this figure, we see that the number of droplets as a
function of time is a monotonically non-decreasing func-
tion of G2, with the smallest values of G2 showing a clear
tendency to relax to the same asymptotic value n = 1.

This is consistent with the theoretical expectation of a
single-droplet steady-state in the long-time limit in the
region G2 < G2c.

Our numerical results are supported by the following
theoretical considerations. In the single-droplet region,
mass conservation delivers ρlVl + ρgVg = ρiV = M , where
index i stands for initial conditions, Vl,g denotes the to-
tal volume of the liquid/gas phase, and A is the interfa-
cial area. The droplet radius, R, follows from a simple

rearrangement: πR2

H2 = ρi−ρl

ρl−ρg
, where ρl,g can be com-

puted a priori by combining mechanical stability of the
interface (zero divergence of momentum-flux tensor), with

Maxwell’s area rule [21],
∫ ρ−1

g

ρ−1

l

(p(ρ)−p0)dρ = 0, where p0 is

the constant bulk pressure. With our choice Geff = −4.9,
ρi = ρ0ln2 = ln2, we obtain ρg ≈ 0.17 and ρl ≈ 1.85,
so that the liquid area covers approximately one third of
the simulation box. This is confirmed by numerical ex-
periments, which yield ρg = 0.172 and ρl = 1.865. The
computed density predicts R ≈ 40, in good agreement
with the numerical value provided by the simulations. In
our simulations, R = 40, Laplace’s law R = γ

∆p yields
γ = 0.0457, in good match with the value γ ≈ 0.04 ob-
tained by numerically integrating the Eq.(3).

With two parameters at our disposal, G1 and G2, the
present model allows a separate control of the equation of
state and surface tension, respectively. In particular, the
non-ideal part of the equation of state depends only on
A1 = G1 + G2, whereas surface tension effects are con-
trolled by the combination G1 + 12

7 G2. Since in the vicin-
ity of γ → 0 higher order terms come into play, it proves
expedient to define a new coefficient

A2 = G1 + λG2 (4)

where the numerical factor λ plays the role of a renor-
malisation parameter, whose departure from zeroth-order
value 12

7 is a measure of the influence of the higher-order
terms. We found that λ ≈ 3/2 provides satisfactory agree-
ment with the numerical results. Given this renormalisa-
tion, the numerical value of G2c can be estimated by not-
ing that, to fourth-order, the total force, ~Ftot = ~F1 + ~F2,
in the present LB model is given by:

~Ftot = −
(

c2sA1ψ~∇ψ +
A2c

4
s

2
ψ~∇∆ψ

)

. (5)

A dimensional argument 1, gives l2 =
c2

s

2
A2

A1

= 1
6

A2

A1

, this
yields

l ∼ 1√
6

√

A2

A1
→ l

l1
=

√

1 − G2

2|Geff ||
(6)

where l is the typical size of a nucleus and l1 is the typical
single-droplet dimension. The resulting spinodal value, at

1Strictly speaking, this estimate is only valid for droplets with

radius significantly larger than the lattice spacing, ∆x/l ≪ 1.
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which l → 0, turns out to be G2c = 9.8 . For this value,
the second term in Eq. (5) diverges, thus signaling a phase
transition. This value is found to be in good agreement
with the numerical simulations, which indicate complete
nucleation starting around a value of G2 ≈ 10, as shown
in fig. 4.

The spinodal point can also be estimated by resorting
to classical homogeneous nucleation theory [22]. On the
basis of this theory, the equilibrium cluster distribution
for a cluster of size n is given by:

pe(n) = pe(1) exp

[

−2πR(γn
√
n− γ1)

KT

]

(7)

where γn < γ1 is the value of the surface tension such
that the equilibrium distribution would correspond to a
n-droplet configuration. The expression (7) builds on two
assumptions: i) the equilibrium cluster distribution has
the form pe(n) ∼ exp [−W (n)/KT ] and ii) W (n) is equal
to the product of the area of the cluster and the surface
tension of a flat liquid surface with the same tempera-
ture and composition of the nucleus and (i.e. W (n) =
γA(n)). Moreover, the volume of a droplet is given by
πR2, while with n droplets, the same volume is πnR2

n,
so that Rn ≈ R/

√
n. Finally, all nuclei are assumed to

be spherical and with the same radius. Based on the ex-
pression (7), the surface tension γ = γ1/

√
n would vanish

in the limit n → ∞, corresponding to l → 0. By in-
specting the expression (3), and taking into account the
definition of Geff , γ = 0 implies G2c = 2|Geff |, con-
sistently with the expression (6). Let us define G2(n) as
the value of G2 such that the n-droplet configuration is al-
lowed to survive the longest before decaying into the n = 1
ground state, i.e. G1 + 3

2Gn = 1/
√
n. By recalling that,

by definition, G1 + 3
2G2c = 0, the following scaling rela-

tion is readily obtained: n = (1− ξ)−2, where we have set
ξ ≡ G2/G2c. Interestingly, a dynamic extension of such
scaling law, namely n(t) = (1 − ξ)−p(t) provides a reason-
able fit of the numerical data, with p(t) ∼ 2 at small t,
and p(t) → ∞ (step-function) at t→ ∞ .
Larger simulations (5122) confirm the basic picture de-
scribed in this paper, namely a seamless transition from
a homogeneous gas to a quasi-ordered configuration of
droplets, whose size (number) is controlled by the relative
strength of repulsive and attractive interactions. As an ex-
ample, in Figure 5 the spectrum of density fluctuations is
shown in the initial and final stage of the evolution. The
typical size of the droplets is identified with the inverse
wave-number 2π/kmax, where kmax is the wave-number
at which the peak of the spectrum is attained (k = 1 cor-
responds to a droplet radius R = L). From this figure
we see that with G1 = −15 and G2 = 10.1, the peak is
around k ∼ 4, while the SC case gives k ∼ 1, correspond-
ing to about 16 droplets in the same volume.

Summarising, we have shown that the inclusion of
a mid-range repulsive potential within the Shan-Chen
formulation of non-ideal lattice fluids, discloses a very rich
physical picture. In particular, it opens up the possibility

Fig. 1: Sketch of the discrete-velocity stencil used in the ex-
tended Lattice Boltzmann scheme. The integers denote the
magnitude of the corresponding discrete speed.

of realising multiphase flows with long-lived metastable
states characterised by multi-droplet configurations. The
model allows the independent tuning of the size of the
droplet and of the density ratio between the liquid and
the gas phases. This should permit the efficient handling
of complex applications, such as micro-emulsions [23],
multiphase sprays, globular protein crystallisation [24]
and, possibly, glassy-like states as well.
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