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Exercice : Self-similar Free-shear flow

We consider the plane jet generated in a medium at rest by a plane nozzle
of width H, in which the velocity u = U0 is initially uniform. Pressure can be
always assumed to be uniform. The Reynolds number Re0 = U0H

ν � 1, is high
enough for the flow in the nozzle to be fully turbulent. This allows us to
neglect the effect of molecular viscosity

The jet is directed along the longitudinal coordinate x, develops along the
cross-stream y, and can be considered statistically independent of the span-wise
direction z. Therefore, the problem will be considered as perfectly 2-D.
The characteristic jet width is called δ, the characteristic longitudinal length is
L.

Since we are interested in mean quantities a Reynolds decomposition will
be performed, ui = ūi + u′i (the usual hydrodynamics symbols can also be used
ū = (ū, v̄)). The characteristic velocities are U, V for the x and y component
respectively. U is the mean velocity of the jet in its centreline.

The flow is considered statistically stationnary.
We recall here that Navier-Stokes equations are

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xi
+ ν∆ui

∂uj
∂xj

= 0

Remark : Much information is given inside questions, which can be used for
the following points, even without giving the answer. The two parts are largely
independent, except for the definitions.

Part 1 : setting of the problem

1. Equations
Using the Reynolds decomposition, write the ensemble averaged conti-
nuity equation.

2. Write the momentum equations for the mean velocity field (RANS). The
Reynolds stress tensor will be denoted Rij = u′iu

′
j
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3. Given that the medium is initially at rest, give the boundary conditions
at infinity (y = ±∞), for ū, v̄, R12.
Réponse:

u = v = Rxy = 0 , y = ±∞
4. Dimensional analysis

Let’s assume that the growth of the jet width is sufficiently slow to neglect
longitudinal derivatives with respect to transversal ones :

∂
∂x
∂
∂y

= O(δ/x)� 1 , (1)

where the ratio δ/x = α represents the spreading rate.
Using the averaged continuity eq. (point 1), make a dimensional analysis
and show that

V ∼ αU

Réponse:

U/L ∼ V/δ
5. In order to solve our problem, we have to model the Reynolds stress. We

use an eddy viscosity approximation. The eddy viscosity will be of the
form

νt = CUaδb, (2)

where C is a constant parameter without dimensions of the model. Give
by dimensional analysis the exponent a, b.
Estimate the parameter C of the model knowing that the turbulent Rey-
nolds number defined as Ret = Uδ

νt
can be roughly said to be Ret ≈ 20.

Justify the use of U, δ as length scales in (2).
Réponse:

a = b = 1

Ret =
Uδ

νt
= 1/C → C ≈ 0.05

6. Momentun Flux Using the dimensional analysis of (1), and the fact
that the flow is at rest at |y| � δ, reduce the RANS longitudinal and
transversal equations obtained in question (2) to a single equation for
longitudinal momentum. It is recalled that both viscous and pressure
terms can be neglected.
Réponse:
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By dimensional analysis, x− eq ∼ U2/L ∼ O(1) ; y − eq ∼ V 2/δ ∼ O(α)

u∂xu+ v∂yv = −∂yR12

7. With the help of the continuity equation, show that the longitudinal
averaged momentum eq. can be written as

∂ū2

∂x
+
∂ūv̄

∂y
= −∂R12

∂y
(3)

Réponse:

Immédiat. Ici Je leur donne l’équation correcte pour pouvoir éventuelle-
ment même partir d’ici.

8. We define the total momentum flux per unit span as

J =

∫ ∞
−∞

ū2dy , (4)

Integrate the equation (3) over y and remembering that the flow is at
rest at the infinity, using boundary conditions defined in question 3, show
that the total momentum flux is independent of x :

dJ

dx
= 0

Give the dimensions of J .
Réponse:

Banal. [J ] = [L]3/[T ]2

9. Far from the nozzle exit, x � H, and as long the Reynolds number of
the jet stays large enough fro the effect of viscosity on the mean flow
to be negligible, the only parameters which can control the behaviour of
the jet are : the conserved momentum J , and x itself. By dimensional
analysis, find the two dimensionless groups that can be formed with the
only relevant quantities : J, x, δ, U .
Réponse:

α = δ/x , B = U2x/J

10. Using this information, obtain the evolution laws for U(x), δ(x) and the
local Reynolds number of the flow Re = Uδ

ν . (Hint : The dimensionless
groups can depend on nothing and thus they are constant)
Réponse:

The dimensionless groups have to be constant, since they cannot depend
on anything. Therefore, δ = αx, and U = (BJ/x)1/2.
The local Re is then Re = α(BJx)1/2/ν
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11. If the jet is initially turbulent, would it stay turbulent forever, or relami-
narize downstream?
Réponse:

Since the Reynolds number increases downstream, it will stay turbulent.

Part 2 : Self-similar solution
We seek for a similarity solution for the mean velocity profile.

Let us define precisely the thickness of the jet δ as the point where the mean
velocity is ū(δ) = U/2. The evolutionary laws previously obtained suggest that
the flow should be expressible in terms of a single variable ξ = y/δ.

1. Since the flow is incompressible, it is useful to use the averaged stream
function ψ, instead of the velocity, to enforce continuity equation. Let us
recall its definition

ū =
∂ψ

∂y

v̄ = −∂ψ
∂x

The similarity solution has the form

ψ = Af(ξ) ,

where A is given by the relevant length scales. By dimensional analysis
give A in terms of J, δ. Justify the choice of these two scales.
Réponse:

A = (Jδ)1/2

2. Remembering that δ = αx, eq. (1), calculate the velocities in terms of f .
These are the similarity solutions in symbolic form.
Réponse:

ū = (
J

δ
)1/2f ′, v̄ = α(

J

δ
)1/2(ξf ′ − f/2)

3. Using the definition (4), show that∫ ∞
−∞

(f ′)2dξ = 1 (5)

Give the boundary conditions for f ′.
Moreover, since by symmetry ξ = 0 is a streamline, we can define f(0) =
0.
Réponse:

f ′(±∞) = 0
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4. We now look for us write the differential equation for f .
Using eddy viscosity approximation Rxy = νt

∂ū
∂y , with νt given by (2),

write the momentum differential equation in terms of f .
Réponse:

2(ff ′)′ +Kf ′′′ = 0, K = 4Cf ′(0)/α

5. Integrate twice the previous equation, using the boundary conditions
found in question 4, and show that we obtain the following equation

Kf ′ = f2
∞ − f2,

where K is a constant whose expression can be deduced from the previous
point.
Réponse:

2(ff ′) +Kf ′′ = A1 ;

f2 +Kf ′ = Aξ +B

ξ =∞ ⇒ A = 0, B = f2
∞

6. The solution of the equation is given by

f(ξ) = f∞tanh(f∞ξ/K) (6)

From this equation, compute f ′(0), and using the definition of K give the
value for f∞/K.
Réponse:

f∞/K = (α/4C)1/2

7. We can use the experimental value for the growth rate, dδ/dx ≈ 0.1, to
estimate the empirical constant C used in (2). It turns out to be C ≈ 0.32.
Does it agree roughly with the answer to point 5 of first part ? What is
the implied value of the turbulent Reynolds number Ret = Uδ/νt ?
Réponse:

Reε ≈ 30

8. The mean mass flux per unit spam is defined as

M =

∫ ∞
−∞

ūdy .
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By dimensional analysis compute the behaviour with x of the mean mass
flux. What can you deduce about entrainment of the fluid by (from) the
jet ? Is there ingestion (or expulsion) ?
Réponse:

M ∼ Uδ ∼ x1/2

As it increases downstream, the jet must ingest fluid from infinity.
9. Compute the evolution of the corresponding cross-stream velocity at in-

finity, vI .
Réponse:

vI = −αf∞
2

(J/δ)1/2 = −f∞
2

(Jα/x)1/2
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