
Implementation of boundary conditions

Jérôme Hoepffner
hoepffner@irphe.univ-mrs.fr

June 2007

When discretizing partial differential equations, one has to implement boundary con-
ditions. I present here a simple and general way to implement boundary condition. This
method is useful when doing a matrix approach to the discretization, for instance in
stability analysis: computing eigenmodes of a system, but as well for time marching,
optimisation . . .

In general, one can see boundary conditions as linear constraints on the state of our
system. Thus, for n independant boundary conditions and a state variable of N degrees of
freedom, one can remove n degrees of freedom, since they are slaved to the other degrees
of freedom.

I will first present the general idea, valid for any boundary conditions, or in general for
any state constraint, showing how we can decompose the state in degrees of freedom that
we keep and degrees of freedom that we remove, how we can express the removed state
variables as a function of the kept ones, thus preserving their action in the dynamical
equations.

This method is as long to explain as simple to implement, so don’t hesitate to often
compare the description in §1 with the Matlab examples in §3.

1 Presentation

We express all boundary conditions and constraints in a matrix that we call C, we thus
have

Cx = b,

where x is the vector of state variables, and b is a vector accounting for non-homogeneous
boundary conditions. C is a n ×N matrix with on each row a boundary condition, b is
a n× 1 column vector with on each row the value of the associated boundary condition.
For instance considering a single homogeneous Dirichlet condition, C will be a zeros row
vector, but with a 1 at the location of the boundary condition, for instance the first or
the last position, and b will be zero, indicating that the state at this location should be
zero. For a non-homogeneous boundary condition, b will be nonzero.

We can now decompose x into xk, the part of x that we keep, and xr the part of x
that we remove. Reordering the state to emphasize this decomposition, we obtain(

Ck, Cr

)(xk

xr

)
= b, (1)

1

where C has been reordered similarly to x. We will see in the matlab example, that this
reordering is very simple to implement.

We can now express xr as a function of xk:

Ckxk + Crxr = b ⇒ xr = −C−1
r Ck︸ ︷︷ ︸
G

xk + C−1
r︸︷︷︸
H

b. (2)

In this expression, we have identified the matrix G, which we can call the ”give-back”
matrix, since it gives the removed degrees of freedom from the kept ones, and the H
matrix, that accounts for the possible non-homogenous boundary conditions. or homo-
geneous boundary conditions, we would simply have xr = Gxk, thus G really being a
give-back operator.

We have now done the first step, we have reduced the dimentionality of the state
variable x, so that we have really N − n independent degrees of freedom. We now use
this expression to implement the boundary condition in our discretized partial differen-
tial equation, which we will consider for generality as a dynamic system (with a time
derivative). If the time derivative was zero, like for instance when computing steady
state solutions, nothing is changed, but the equations would be simpler. We have

Eẋ = Ax, (3)

where ẋ is the time derivative of the state variable, A is the dynamic operator (the
discretized version of the PDE, also called as drift matrix in dynamical system, or stiffness
matrix in finite element discretization), and E is the mass matrix (in finite element
context). Note that E might be a singular matrix, in which case, (3) is known as a
descriptor system or a diferential/algebraic system or as a singular system.

We know reorder E and A conformally to x to separate kept and removed variables
to obtain (

Ekk Ekr

Erk Err

)(
ẋk

ẋr

)
=

(
Akk Akr

Ark Arr

)(
xk

xr

)
.

We are not interested in describing the evolution of the removed degrees of freedom of
the state, since we can at any time recover them from the kept degrees of freedom, so we
hope to write an evolution equation for xk only

Ekkẋk + Ekrẋr = Akkxk + Akrxr.

We now inject (2)

Ekkẋk + Ekr(Gẋk +Hḃ) = Akkxk + Akr(Gxk +Hb),

that we sort as

(Ekk + EkrG)ẋk + ErkHḃ = (Akk + AkrG)xk + AkrHb),

and finally
(Ekk + EkrG)︸ ︷︷ ︸

Ẽ

ẋk = (Akk + AkrG)︸ ︷︷ ︸
Ã

xk + AkrHb− ErkHḃ︸ ︷︷ ︸
F̃

,

2

where Ẽ and Ã are the mass matrix and stiffness matrix, modified to account for the
boundary conditions, and F̃ is a (possibly time-varying) forcing vector accounting for non-
homogeneous boundary conditions. Note that if the boundary conditions are not varying
in time, then ḃ will be zero, and that if the boundary conditions are homogeneous, then
F̃ will be itself zero, in which case we simply have Ẽẋk = Ãxk.

We can now do anything we like with this reduced version of the dynamic equations,
like computing eigenvalues λ and eigenvectors v (with homogeneous boundary conditions)

λẼv = Ãv,

or computing a steady state xs (with non-homogenous boundary conditions)

Ẽ ẋs︸︷︷︸
0

= Ãxs + F̃ ⇒ xs = −Ã−1F̃ .

Once the kept degrees of freedom are obtained in any of these computations, we can
recover the removed degrees of freedom using xr = Gxk +Hb.

2 Remarks

In most cases, we can apply the procedure described above without any problem, the
only two rules being:

1. For Dirichlet or Neuman boundary condition, remove the mesh points at the loca-
tion where the boundary condition applies.

2. For clamped boundary conditions (Dirichlet and Neuman at the same location),
remove the mesh points at and next to where the boundary condition applies.

3 Example

In this section, I discuss a Matlab script that implement this method, on the three basic
problems of eigenmodes, time marching and stationary state computation for the case of
a beam with imposed boundary conditions. The dynamic equation is

ẋ = −∂ssssv.

The state variable x represents the position of the beam along the spatial direction
s ∈ [−1, 1]. We have a fourth order derivative, we thus must impose four independent
boundary conditions, in general

x(−1) = d−1, x(1) = d1, ∂sx|−1 = n−1, ∂sx|1 = n1.

We discretize x in space using chebyshev collocation (see appendix A), without a priori
imposing any boundary conditions. We build the constraint matrix C,

3

N=60;

[D,s]=cheb(N-1);

I=eye(N);

c1=I([1,N],:); % dirichlet at first and last mesh point

c2=D([1,N],:); % Neuman at first and last mesh point

C=[c1;c2]; % the constraint matrix

we now define the degrees of freedom to be removed, for this we build the two vectors k

and r that store the indices of mesh points to keep and to remove

r=[1,2,N-1,N]; % removed degrees of freedom

k=3:N-2; % kept degrees of freedom

We now build the give-back matrix G and H

G=-C(:,r)\C(:,k); % give-back matrix

H=inv(C(:,r)); % non-homogeneous contribution

and implement the decomposition in the dynamic equation

A=-D^4; % operator

AA=A(k,k)+A(k,r)*G; %implement boundary conditions

We are now set to compute the eigenmodes of the system. These modes tell about the
oscillatory behaviour of the beam if for instance it is initially hit and then left alone to
its intrinsic dynamics.

[Uk,S]=eig(AA); % compute eigenmodes

S=diag(S); [t,o]=sort(-real(S)); S=S(o); Uk=Uk(:,o); %sort

we recover the removed degrees of freedom and plot the 5 first eigenmodes:

Ur=G*Uk; % recover removed degrees of freedom

U=zeros(N,N-4); U(k,:)=Uk; U(r,:)=Ur;

plot(s,real(U(:,1:5)))

We now pass to the computation of the steady state for (time-invariant) non-homogeneous
boundary condition, we chose for instance

x(−1) = −1, x(1) = 1, ∂sx|−1 = −1, ∂sx|1 = −1.

We build the boundary condition values vector b, and the corresponding forcing term F̃ .
Considering the steady state i.e. when x does not vary in time, we solve for xs with zero
time derivative, and plot the result

b=[1;-1;-1;-1]; % values of boundary conditions

FF=A(k,r)*H*b; % forcing term

xk=-AA\FF; % solve for steady state

xr=G*xk+H*b; % recover removed degrees of freedom

x=zeros(N,1);x(k)=xk;x(r)=xr;

plot(s,x)

4

A Spectral collocation

Here I put the Matlab code to compute the first order differentiation matrix using
Chebyshev collocation. This comes from professor Nick Trefethen’s book and home page
(http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/).

function [D,x] = cheb(N)

% CHEB compute D = differentiation matrix, x = Chebyshev grid

if N==0, D=0; x=1; return, end

x = cos(pi*(0:N)/N)’;

c = [2; ones(N-1,1); 2].*(-1).^(0:N)’;

X = repmat(x,1,N+1);

dX = X-X’;

D = (c*(1./c)’)./(dX+(eye(N+1))); % off-diagonal entries

D = D - diag(sum(D’)); % diagonal entries

5

