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INTRODUCTION

A foam is a structured fluid in which gas bubbles are separated by thin
liquid films and the volume fraction of the continuous liquid phase is small.
While polyhedral air bubbles dispersed in a network of soap films provide
a familiar prototype, concentrated liquid-liquid emulsions display many
of the same characteristics. The liquid phase in persistent foams always
contains a surface-active agent that preferentially accumulates at the gas-
liquid interfaces and imparts varying degrees of stability to the films.
The surfactancy, thin films, and large interfacial area associated with
metastable foams place them in the domain of colloid and interface science.
Interfacial phenomena are central to cell-level mechanisms that determine
the complex rheological behavior of foams—behavior that one could not
anticipate by knowing the physical properties of the constituent phases
alone.

Typical cell dimensions (10 zm—1 cm), which serve as a natural length
scale ¢ for the foam structure, are much larger than the very fine scale
dimensions of simple molecules that compose Newtonian fluids. The large
magnitude of £ promotes strong interactions between the foam structure
and the flow, and these give rise to non-Newtonian rheological effects. The
engineer requires a description of foam flow that applies over macroscopic
length scales that are much larger than Z. Two flow regimes can be dis-
tinguished by comparing ¢ with %, where # is a characteristic length
scale for the space that confines the flow. Foam flow through pipes is a
typical macroflow, which is characterized by ¢ « %. While a continuum
description may apply to the macroflow, the constitutive relation for the
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bulk foam will be nonlinear and the usual no-slip boundary condition may
not be valid at solid surfaces. The formidable rheological complexity of
macroflows carries over to microflows, where £ ~ %. Foam flow in a
porous medium exemplifies the microflow regime, in which continuum
concepts such as foam viscosity are invalid because the dimensions of
bubbles and the minute pore spaces are comparable. Darcy’s law and
conventional two-phase flow theory represent few features of foam dis-
placement in porous media. The structure of foam clearly depends upon
the ratio Z/%. In macroflows, bulk foams are relatively unconstrained
when compared with microflows in fine capillary tubes and porous media,
where elongated bubbles conform to solid boundaries and occur indi-
vidually or in trains.

The systematic study of foam flow draws upon numerous scientific
disciplines, with surface science foremost. Because liquid films control
foam structure, physicochemical principles established from studies of
isolated soap films are fundamental to foam rheology. Molecular and
macroscopic mechanisms that determine the stability of films, their mech-
anical response, and their conformation have been described by Mysels et
al. (1959), Bikerman (1973), Rosen (1978), and Lucassen (1981). Slattery
& Flumerfelt (1982) have discussed balance laws and constitutive equations
that relate to the interfacial region. The presence of surfactants and their
transport influence fluid microstructure and fluid mechanics at the film
level. The fundamental difficulties and uncertainties connected with the
interfacial and intralamellar regions carry over to the description of foam
flow.

This review should be more appropriately considered a preview of issues
relating to foam flow, many of which are unresolved or unaddressed. The
flow of bulk foams (the macroflow regime) is emphasized. Experimentalists
and theorists will find foam flows challenging because these multiphase
fluids are compressible, nonlinear, viscoelastic materials with striking
metastability characteristics. Like solids, foams possess a finite shear
modulus. But unlike them, foams flow and their flow behavior is char-
acterized by a yield stress, shear-thinning viscosity, and slip at the wall.
Many of these phenomena have counterparts in porous media, where the
cell-level mechanisms are different. Such microflows are beyond the scope
of this article. Adler & Brenner (1988) review multiphase flow in porous
media elsewhere in this volume.

PRACTICAL MOTIVATIONS

Applicationsinvolving the flow of foam have not been completelyinhibited
by unresolved fundamental issues. The usefulness of aqueous foams in fire
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fighting motivated early studies of pipe flow; however, technology in the
oil and gas industry has provided the greatest incentive to developing an
understanding of foam flow in pipes as well as porous media. The highly
viscous nature of foams benefits the transport of particulates inwell drilling
and clean-out operations. In foam fracturing, proppant particles (typically
sand) are carried into hydraulic fractures in geological formations to
prevent the fractures from closing. Evidence that foam mobility in porous
media decreases as formation permeability increases suggests that foams
may be useful as blocking and diverting agents, which permit a degree of
control over the path of reservoir fluids. In principle, foam offers a spec-
trum of mobility characteristics in porous media and shows promise for
use in a wide range of mobility control applications relating to enhanced
oil recovery. The reviews of Heller & Kuntamukkula (1987) and Assar &
Burley (1986) cover the petroleum literature on foam flow.

Foam is also a candidate for transporting pulverized coal in pipelines.
In addition, it is an attractive vehicle for dispersing pigments and other
surface treatments in paper coating and fabric finishing, where the energy
budget for drying is important. Liquid foam is often an intermediate stage
in processing synthetic cellular solids, such as rigid and flexible polymeric
“foams.” Since structure influences the properties of these materials, there
is incentive to understand the role of flow in the development of cell
morphology and the orientation of macromolecules and microphases. It
is also desirable to be able to substitute predictive models for empiricism,
like that proposed to correlate certain features of thermoplastic foam
extrusion where the dispersed phase nucleates and expands during flow
through a die (Kraynik 1981).

FOAM STRUCTURE

The structure of bulk foam is basic to understanding its rheology but
difficult to quantify, even though elementary features are obvious. By
observing multiple soap bubbles and soap films supported on wire frames,
Plateau (1873) recognized that three films, each with its own uniform total
curvature, always meet at equal dihedral angles of 120°. The film junction
regions, now called Plateau borders, determine the edges of polyhedral gas
bubbles. Four such edges always join at equal angles of cos™!(—1/3)
=~ 109.47°. Planar films cannot satisfy the latter constraint because a
planar polygon cannot have all angles equal to 109.47°; this necessitates
curved films with complicated shapes. These structural characteristics
balance film tension and minimize surface energy.

Kelvin (1887), in pursuit of ideal foam structure, showed that space
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could be partitioned into identical cells of equal volume and minimal
surface area. His isotropic, minimal tetrakaidecahedron (a modified trun-
cated octahedron) contains six planar quadrilateral and eight nonplanar
hexagonal faces, all with curved edges. It is striking that Matzke (1946)
did not find a single fourteen-sided cell with this edge and face distribution
during meticulous observations of 600 bubbles in ‘“monodisperse” foams.
In fact, pentagonal faces were predominant, and they are not even rep-
resented in Kelvin’s tetrakaidecahedron. Matzke’s extensive statistics indi-
cates that a type cell does not exist; nevertheless, idealized foam cells that
are based upon various plane-faced polyhedra are useful for relating phase
volume fractions to structural parameters, such as cell size, film thickness,
and Plateau border curvature (Princen et al. 1980). Some model cells, like
that based upon the regular pentagonal dodecahedron, do not fill space;
none satisfy equilibrium requirements.

The complexity of three-dimensional structure perhaps explains why
progress in developing micromechanical theories for foam rheology has
been restricted to two-dimensional models, which preserve some essential
features of the Plateau borders. While the spatial arrangement of films is
important, one cannot overemphasize the significance of Plateau borders
in foam transport phenomena.

DILUTE EMULSIONS AND GAS-BUBBLE
SUSPENSIONS

Before describing models of foam rheology, it is instructive to review
theories that apply to dilute gas-bubble suspensions, the other extreme in
volume fraction. This permits one to compare and contrast the rheology
and physical mechanisms for the two concentration regimes. In typical
polymeric foam fabrication processes, the dispersion passes through vari-
ous volume-fraction and rheological regimes as a single-phase fluid
develops into a cellular material, so the dilute regime is of practical interest.
Unlike foams, their dilute counterparts have accounted for substantial
activity within the traditional suspension rheology community. In part, the
progress is due to an emphasis on single “particles” and the mathematical
techniques available for solving the Stokes equations.

Taylor (1932) has shown that when shear rates are small enougn tor
drop deformation to be neglected, the effective viscosity . of a dilute
emulsion of neutrally buoyant drops is given by

5A+2
e = H{l"_d)d[ﬁil):l}’ (1)
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where p is the continuous-phase viscosity, 4 is the viscosity ratio p*/p (u*
refers to the viscosity of the dispersed phase), and ¢ is the volume fraction
of the dispersed phase (which is assumed small). Einstein’s result for a
suspension of rigid spheres is recovered when 1 — c0. The effective vis-
cosity for a dilute suspension of spherical gas bubbles, for which 4 — 0, is
te = u(l+¢y). Since the presence of the bubble disturbs the external flow,
the effective viscosity exceeds that of the continuous phase, even when the
bubble is inviscid. Passing to the limit A — 0 is within the scope of Taylor’s
analysis; however, replacing a neutrally buoyant drop with a much lighter
gas bubble is not, when gravity acts. Velocity disturbances for sedi-
mentation can be neglected relative to those for macroscopic shearing flow
when ap’g/uy « 1, where a is the droplet radius, p’ the density difference,
g the acceleration due to gravity, and 7 the macroscopic deformation rate.
This foretells the difficulty of defining a rest state for foam.

Schowalter et al. (1968) extended Taylor’s theory to account for drop
deformation in steady homogeneous shearing flow. When 4 is not too
large, small departures of drop shape from sphericity depend upon a
capillary number Ca = paj/o, where o is the interfacial tension. The capil-
lary number is a relative measure of viscous forces that tend to distort
the drop and interfacial tension, which favors sphericity. Drop distortion
manifests itself as non-Newtonian behavior with finite normal-stress
differences. The primary and secondary normal-stress functions of visco-
metric flow (Schowalter 1978), for A — 0, are N, = 32¢4u’aj*/5¢ and
N, = —25N,/56, where 7 now represents the shear rate. The signs and
relative magnitudes of these functions are in accord with those for polymer
melts and solutions.

While Schowalter et al. obtained viscometric functions, they could only
infer the proper form of the constitutive equation for dilute emulsions
from their steady-state analysis. Building upon the perturbation analysis
of Cox (1969) for the response of a drop to time-varying shear flow,
Frankel & Acrivos (1970) derived a nonlinear constitutive equation for
dilute emulsions that accounts for unsteady flow. Schowalter (1978) has
provided an insightful account of these developments.

The previous analyses assume the simplest interfacial boundary con-
dition—that tangential stress components are continuous across the drop
interface and normal stresses are balanced solely by surface tension. In
general, and especially when a surfactant is involved, dynamic interfacial
phenomena contribute to the stress jump at an interface. These effects arise
from surface-tension gradients due to mass transfer, interfacial elasticity,
and interfacial viscosity (Levich 1962, Lucassen-Reynders 1981, Slattery
& Flumerfelt 1982). Flumerfelt (1980) has extended the theory of drop
deformation in steady shearing flows by incorporating a more general
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constitutive equation for the surface stress and has shown that Cox’s
solution is unaltered to zero order in drop deformation if the viscosity
ratio 4 is replaced by

, w4 6x
A= p + 5IM+ 5#a+Nm, 2)
where ¢ is the intrinsic surface shear viscosity, k the intrinsic surface
dilatational viscosity, and N, the effective increase in the latter quantity
stemming from mass-transfer-induced variations in surface tension along
the drop interface. The influence of a viscous interface parallels that of
drop-phase viscosity; both result in finite tangential stress components at
theinterface. Interfacial effects, as measured by 1’, increase with decreasing
drop size. Recognizing that the result in Equation (1) only depends upon
the zero-order solution, we obtain the zero-shear viscosity when 4’ replaces
A. The O(¢,) coeflicient for the effective viscosity of a suspension of inviscid
bubbles varies from 1 to 5/2 as A’ varies from 0 to oo, and the interface
ranges from completely mobile to completely immobile, or “rigid.” How-
ever, this analogy between A and A" does not carry over to first-order
solutions in drop deformation.

Shear properties of dilute gas-bubble suspensions represent special cases
of liquid-liquid emulsion theories, which assume incompressible flow.
Taylor (1954) analyzed bubble expansion in an unbounded, otherwise
quiescent fluid to determine the dilatational (bulk or expansion) viscosity
w of a dilute gas-bubble suspension. Chen & Acrivos (1978) accounted for
bubble-pair interactions and computed the first correction for nondilute
concentrations. The primary contribution to g’ from the intrinsic inter-
facial dilatational viscosity x has been obtained by Edwards (1987). The
equation for p’ is

, 4 K
W= u[ga<l + ILZ)— 1.733]. 3)

For the purpose of evaluating various theoretical frameworks, it is inter-
esting to note that Prud’homme & Bird (1978) employed a ‘“‘cell” model
and found the last term, due to interaction, to be — 1.

For dilute emulsions, non-Newtonian effects arise from interactions
between droplets and the external flow. By contrast, the shape of bubbles
in static foam is largely determined by neighbors, and non-Newtonian
behavior even occurs when viscous forces are absent. For these and similar
reasons, there are striking differences between the rheology of foams and
dilute gas-bubble suspensions.
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EXPERIMENTAL OBSERVATIONS OF FOAM FLOW

Experimental difficulties associated with the systematic measurement of
foam flow are both obvious and subtle, and they fall into two categories:
those due to the physical nature of these structured fluids, and those
due to rheological complexity. An outstanding physical characteristic of
foam—its natural tendency to minimize free energy by reducing surface
area—favors the bubble size to increase with time. Instability of the
thin films due to inadequate surfactancy and related physicochemical
mechanisms leads to film rupture and resultant bubble coalescence. Cheng
& Natan (1986) have reviewed other degradation mechanisms that do not
pertain to film stability but affect foam texture, which loosely refers to
liquid content and cell-size distribution. Liquid drainage through foam
due to gravity can cause temporal and spatial variations in the structure
of foam as measured on the macroscale. Pressure differences across thin
liquid films, due to their finite mean curvature, provide a driving force for
gas diffusion between cells, especially in a polydisperse foam. This diffusion
also causes bubble size to increase with time.

These stability considerations and the influence of foam-generation
method and rate upon texture reinforce the need to characterize foam
structure in rheological investigations. While all experimental studies
report the liquid content of foams considered, few report cell size, and
fewer yet its distribution. The degradation mechanisms already discussed
can be suppressed substantially in liquid-liquid emulsions. This and the
necessity to quantify structure and maintain it throughout the course of
sometimes tedious measurements have led some investigators (Princen
1985, Princen & Kiss 1986, Yoshimuraetal. 1987) to exploit the rheological
similarity between foams and concentrated liquid-liquid emulsions. With
the exception of compressibility, the analogy is excellent at low defor-
mation rates, where interfacial phenomena determine rheological response.
Some of the salient features of foam rheology to be described are most
easily quantified with emulsions

Sibree (1934) showed that foam is highly viscous and shear thinning.
Subsequent studies confirm this, even when the surfactant solution is
Newtonian and of low viscosity, such as aqueous soap solutions. The
shear-rate dependence of viscosity must be measured in so-called visco-
metric flows. Theory and practice governing the measurement of visco-
metric functions have been discussed by Coleman et al. (1966), Walters
(1975), Schowalter (1978), Tanner (1985), and Bird et al. (1987). Loosely
speaking, flow in tubes and rotational Couette devices is viscometric under
proper conditions, while flow through contractions (where the deformation
rate of a fluid element varies with time) is not.
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Quite general methods for reducing data from viscometric flows exist;
for example, in tube flow the variation with shear rate of both viscosity
and wall-slip velocity can be determined from measurements of pressure
drop and volumetric flow rate for tubes of different diameter (Mooney
1931). In general, these reduction methods are not parameter-fitting
schemes that require prior knowledge of the explicit functional forms in-
volved. But they do presume the fluid to be homogeneous and the flow
to be incompressible, so foam dilatation must be minimal when the vis-
cosity function is measured. A frequently cited analysis is claimed to cor-
rect for compressibility in capillary viscometry (David & Marsden 1969);
however, it is internally inconsistent and cannot be justified (M. S.
Kuntamukkula, personal communication).

Employing due caution, we can identify the salient features of foam
rheology. Merely to call foam highly viscous is an understatement, because
foam possesses a yield stress 7, below which the deformation rate is zero
and, therefore, the viscosity is infinite. When the shear stress 7 exceeds the
yield stress, the shear-rate-dependent viscosity p(y) can be represented by

w() =t/ +u(P, (>71) 4

where p,(y), often confused with zhe viscosity, is a constitutive function
that depends upon shear rate. The Bingham-fluid model, with g, constant,
is the most familiar form of Equation (4); other viscoplastic fluid models
have been surveyed by Bird et al. (1982).

Barnes & Walters (1985) just considered the yield stress to be a con-
venient empiricism for representing the viscosity function over the shear-
rate range of measurements. Strictly speaking, this range never includes
zero. They conjectured that accurate measurements at lower shear rates
will always disprove the existence of a yield stress, which “only defines
what cannot be measured.” Caution is warranted because many yield-stress
values reported for foams are just parameters obtained by fitting steady-
flow data. Direct methods of yield-stress measurement rely upon assertions
like “‘no flow was observed” below a critical shear stress; these statements
must always be qualified, since the duration of observations and exper-
imental sensitivity is finite. While recognizing the inadequacy of experiment
to prove the existence of a yield stress, we assert that foam does have a
yield stress and base this upon reasonable experimental evidence and the
predictions of micromechanical models.

Early evidence of yield-stress phenomena in foams is due to Blackman
(1948) and to measurements by Penney & Blackman, as described by
Matalon (1953). Princen (1985) has conducted systematic measurements
of the yield stress for concentrated emulsions. Many features of the data
are represented by 7, = 0@i/*F(¢4)/{R), where g is surface tension, F(¢,)
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an experimentally determined function, and {R) a measure of the mean
bubble size. The function F(¢,) increases by over an order of magnitude
with increasing dispersed-phase volume fraction ¢, for the range
0.75 < ¢s < 0.98—the yield stress is a strong function of liquid content.
Yoshimura et al. (1987) use the same emulsions but different experimental
techniques and measure yield-stress values consistent with Princen. It is
significant that their methods include constant-stress rheometry, the same
technique used by Barnes & Walters (1985) to show that certain polymer
solutions probably do not possess a yield stress at all, even though finite
values are inferred from less sensitive measurements.

The rheological complexity of foam goes beyond shear-rate-dependent
viscosity, the existence of a yield stress, and other non-Newtonian charac-
teristics that can, in principle, be described by a constitutive relation for
the bulk foam. ““Slip at the wall” is another curious characteristic of foam
flow. This slip, however, is merely a convenient macroscale description
of the wall boundary condition, whose envisioned cell-level mechanism
depends upon the existence of a thin fluid layer that does not itself slip but
wets the wall and lubricates the foam flow. In steady, fully developed
rectilinear flows, the slip velocity %, can be expressed as a function of the
wall shear stress 7,, according to

U = ‘/]W(Tw)Tw9 (5)

where /,(ty) is the slip coefficient (Mooney 1931) or wall fluidity (Princen
1985). There is experimental evidence for tube flow and rotational Couette
flow [Siehr 1938, Penney & Blackman (as reported by Matalon 1953),
Wenzel et al. 1970, Princen 1985] that the wall fluidity can vanish below
finite values of t,, (called the slip yield stress 7). If the walls are smooth
enough, a shear-stress range can exist where 7, < 1,, < 7,, and the foam
is transported entirely by plug flow. This plug flow has also been reported
by Beyer et al. (1972), Kraynik (1982), and Thondavadl & Lemlich (1985).
When experiments are conducted with smooth transparent tubes so that
it is possible to observe bubbles near the wall, no relative motion between
adjacent bubbles is apparent below the yield stress. This is also true if a
somewhat larger marker bubble is injected at the wall. By increasing the
flow rate until relative motion of the marker and surrounding bubbles is
observed, an estimate of foam yield stress can be obtained. Consistent
with other measurements, the yield stress decreases with increasing liquid
content (Kraynik 1982).

Systematic measurements that include the yield stress, slip at the wall,
and the viscosity function of foam above the yield stress have not been
reported; thus, limited information on the functional form and structural
dependence of u,(3), the last term in Equation (4), is available. Many
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qualitative features of foam rheology may be attributed to the yield stress;
for example, if we neglect p,(7), the foam viscosity is given by p; = 7,/7.
This accounts for shear thinning and the effects of cell size and liquid
content. Foam-viscosity data are sometimes fitted to the familiar power
law gy = my7"~ ', where m and n are constant parameters. When n is signifi-
cantly greater than zero, viscous contributions beyond the yield stress
are indicated, for example, Thondavadl & Lemlich (1985) report n = 0.61.

The slip, yield stress, and shear thinning associated with foam flow in
tubes determine the qualitative velocity profile shown in Figure 1. To
account for compressibility, Beyer et al. (1972) assumed that Bingham-
fluid parameters and wall fluidity depend upon the local gas volume frac-
tion (often called quality), which is related to local pressure through the
ideal gas law. Their empirical model incorporates major features of foam
rheology into calculations of foam flow in tubes and annuli. Mahalingam
et al. (1975) used the data of Wenzel et al. (1967, 1970) to predict velocity
profiles for incompressible flow in tubes. The foam viscosity is fitted to the
Casson and Hershel-Bulkley models for viscoplastic fluids.

MICROMECHANICAL MODELS OF
FOAM RHEOLOGY

Early Models

Empirical correlations of foam-flow data are of limited predictive value
when the connection between structure and rheology is lacking. Until
recently, the only attempt to relate foam viscosity to structure was a
heuristic model for concentrated emulsions (Hatschek 1911, 1913), which

4\ SHEARING FLOW

e 7

Us
Figure 1 Velocity profile for fully developed flow of bulk foam in a tube. Three regions are
illustrated: the solid-like plug region in which the shear stress does not exceed the yield stress
and foam viscosity is infinite; the region of shearing flow in which the shear stress exceeds
the yield stress and foam viscosity is finite; and the wall region in which the macroscopic
foam velocity approaches a finite slip velocity «,. In the absence of the second region, foam
is transported entirely by plug flow due to slip.
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has been applied to foams (Sibree 1934). Hatschek assumed that large
shear rates distort the dispersed phase into parallelepipeds, which arrange
into layers that slide relative to one another. Under the assumption of
immobile interfaces, viscous dissipation in the liquid films between layers
islarge. The predicted foam viscosity ug/p = (1—¢4’*) ™" increases with ¢y,
the only structural parameter to appear. This qualitative dependence upon
¢4 is observed experimentally but can also be attributed to the variation
of yield stress with liquid content.

Assuming that liquid foam supports stress like a solid, Derjaguin (1933)
analyzed its linear elastic behavior. The foam is considered to be a col-
lection of randomly oriented, planar films whose deformations follow the
imposed strain field, i.e. the deformations are affine. The predicted shear
modulus is G = 46S/15 ~ 8¢/5d,,, where S is the surface area per unit
volume, which is inversely related to cell size (e.g. S ~ 6/d;,, where d;, is
the Sauter or surface-volume mean bubble diameter). Derjaguin also
showed that the capillary pressure of foam, which is the difference between
internal bubble pressure and external pressure, is given by P, = 265/3.
It is important to recognize that affine film deformation is a kinematic
hypothesis that implicitly neglects connectivity of the film network and
therefore does not ensure equilibrium at the film junctions. Stamenovic &
Wilson (1984) have indicated that the shear modulus is overestimated when
the equilibrium configuration of the foam is not provided, a limitation that
applies for affine shear deformations.

Spatially Periodic Models: Statics

Hatschek and Derjaguin address separately the viscous and elastic charac-
teristics of foam. Neither approach can predict a yield stress or be gener-
alized to reveal the true viscoelastic nature of these materials. Both treat-
ments of three-dimensional structure are superficial; however, we have
seen that a rigorous description of undeformed structure itself is rather
involved. Suffice it to say that progress in developing micromechanical
theories for foam rheology has been restricted to two-dimensional rep-
resentations of foam structure and, moreover, to perfect order, except for
the notable contributions of Weaire and associates (Weaire & Kermode
1983, 1984, Weaire & Rivier 1984, Weaire et al 1986, Weaire & Fu 1988).

Anidealized foam structure for monodisperse bubbles was proposed by
Princen (1979) and is shown in Figure 2. The hexagonal coordination
minimizes surface free energy. Cell orientation is expressed by the angle
0, which is taken relative to the x-axis of a Cartesian coordinate system
(x,y). Characteristic dimensions are the cell size a, the film thickness 4,
and the Plateau border curvature r. As a result of capillarity, the latter is
responsible for lower pressure in the Plateau borders relative to that in the
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Figure 2 The equilibrium structure of an idealized two-dimensional foam showing films of
finite thickness £, Plateau borders of uniform curvature r, the characteristic cell size a, and
cell orientation angle 6.

bubbles. There is a pressure jump across the flat gas-liquid interfaces
because of disjoining pressure, a quantity proposed by Derjaguin (1955)
to describe the collective fluid microstructure forces in thin films due to
molecular, ionic-electrostatic, and steric interaction effects. A positive
disjoining pressure prevents all liquid from draining into the Plateau
borders, is required for film stability, and depends upon the presence of
surface-active species. In equilibrium, capillary pressure in the Plateau
borders and disjoining pressure II in the flat films are balanced, i.e.
a/r = II. An explicit dependence upon film thickness IT(%4) is needed to
determine the relative distribution of liquid between the Plateau borders
and films. Teletzke and coworkers (Teletzke 1983, Teletzke et al. 1987a,b)
have discussed the role of fluid microstructure forces in thin-film fluid
mechanics and indicated length scales over which various contributions to
disjoining pressure operate. These dimensions are in the range 1-10° nm,
so the proportion of liquid in the films can be very small for typical values
of surface tension and bubble size.

Princen (1983) analyzed static deformations of these “liquid honey-
combs” for simple shear and a particular cell orientation. Some essential
features of this analysis were independently proposed by Prud’homme
(1981). Figure 3 illustrates the variation in foam structure with shear strain
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Figure 3 The Princen-Prud’homme model showing the variation with shear strain y of
foam structure and the corresponding shear stress 7,, and first normal-stress difference
N, = 1,,—1,, for simple shear with 6 = 0 and ¢, — 1: (a) undeformed network, y = 0; (b)
y = 372 (c) coalescence of film junctions (Plateau borders), y = 2(3~'?); and (d) separation
of junctions, y = 2(3~"?), resulting in neighbor switching and, for this cell orientation,
completion of the strain cycle.

y when ¢4 — 1; this is referred to henceforth as the Princen-Prud’homme
model. When surface tension is uniform, three films continue to meet at
equal angles of 27/3 until the critical strain y, = 2(3~'2), where four films
meet, is reached. This marginally stable structure, which is associated with
coalescence of two neighboring Plateau borders, balances surface-tension
forces but does not minimize surface energy. The separation of junctions
and the unique reorganization of films provide a stable structure with
reduced interfacial area and identical cell midpoints. Kraynik & Hanser
(1986, 1987) have called this separation process disproportionation, which
is an unjustified and perhaps confusing label, since it refers to another thin-
film phenomenon. Fortuitously, each coalescence and separation sequence,
also referred to as “hopping,” results in a structure that is identical to the
rest state to within a translation of cells; however, this is only true for the
specific cell orientation chosen. The shear stress, shown in Figure 3, is a
periodic function of strain, and the maximum shear stress t,. = ¢/a3"? has
been interpreted as a yield stress.

Hopping provides an idealized micromechanical mechanism for yield
behavior and flow on the macroscale—the relative separation of cells
corresponds to switching of neighbors. Ashby & Verrall (1973) have noted



Annu. Rev. Fluid Mech. 1988.20:325-357. Downloaded from www.annualreviews.org
by Universite Paris 6 - Pierre et Marie Curie SINGLE SITE on 12/23/13. For personal use only.

338 KRAYNIK

a fundamental topological feature of neighbor switching—it permits
unbounded, permanent deformations on the macroscale while the cell
distortion remains bounded. They observed neighbor switching in con-
centrated emulsions flowing between closely spaced, parallel glass plates.
Similar qualitative observations of foams flowing near the wall of large
rectangular ducts have been described by Wenzel et al. (1967).

Princen (1983) also accounted for finite liquid content in a micro-
mechanical model of foam. The important role of Plateau borders is
reemphasized for the case 4#/r — 0, where the films are stabilized by dis-
joining pressure at vanishing thickness. Plateau borders of finite size
require another film configuration (the so-called Mode II) to represent
coalesced borders, as shown in Figure 4. Mode I refers to situations where
individual Plateau borders and films are distinct. Princen determined the
evolution of shear stress and of foam structure with increasing shear strain
over the volume-fraction range 3'?7/6 =~ 0.9069 < ¢4 < 1. The lower limit
on ¢4 corresponds to maximum packing of cylindrical bubbles. Typical
stress-strain curves for various ¢4 are provided in Figure 5. The yield
stress identified as 7., the maximum shear stress, increases with ¢,.
Mode I - Mode II - Mode I transitions occur for all stress-strain curves
shown—some curves possess turning points. Curves corresponding to
®4 < ¢¥ ~ 0.95 are without turning points and are antisymmetric about
the cycle midpoint y = 372, while those with turning points are not. For
volume fractions below ¢¥*, stress-strain curves and variations in foam
structure—in particular, Mode II - Mode I transitions—are smooth.
Above ¢¢, abrupt changesin stress and structure coincide with the turning
point for increasing strain. While the Plateau border structure just prior
toanabrupttransitionisalways ModeII, the structurefollowing transition
can be either Mode II or, for large ¢4, Mode I. When surface-tension
forces dominate viscous forces in the slow shearing flow of foam, tran-

1
!
I
I
——

MODE | MODE i

Figure 4 Typical repeating elements of foam structure with finite Plateau borders. The
distinct Plateau borders, which characterize Mode I configurations, eventually coalesce with
increasing strain and form a Mode 11 configuration. Adapted, with permission, from Princen
(1983).
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sitions involving turning points will be very rapid on the time scale defined
by the shear rate and therefore cannot be considered quasi-static.

It is important to study rheology in flow types other than simple shear
(e.g. extension). Khan & Armstrong (1986) have provided a theoretical
framework for treating arbitrary homogeneous deformations, for which
the deformation gradient tensor E does not depend upon position. They
explicitly recognize that the motion of bubble centers and film midpoints
is affine when the foam structure is perfectly ordered. When motion is
affine, the displacement of a material point 7 is given by the transformation
x = E-y, where x" is the location at time ¢ of y, and the Cartesian
components of E(¢) are given by E; = 0x;/0x;. Analogous kinematics has
been described by Adler & Brenner (1985) within the context of highly
ordered suspensions and applies to spatially periodic media of quite general

1 1 1 ] |
thy =1.00
0.4 - :0.997
| 0.88 I
i |
0.2 - 0.94 -| | B
>3 :l |
~ "
=15 ' 0.9069 s l l 1
i |
0 Y |
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5 :.. l _I
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Figure 5 Shear-stress vs. shear-strain curves corresponding to two regimes of dispersed-
phase volume fraction ¢, with 8 =0 and 4 — 0. When ¢, < ¢} ~ 0.95, the shear stress is
antisymmetricabouty = 3-"2and Mode II - Mode I transitionsare smooth. When ¢4 > ¢,
Mode II - Mode 1 transitions are abrupt, as indicated by the dashed line; the dotted line
(shown only for ¢4 = 0.98) is the solution beyond the turning point that is inaccessible when
strain is increasing. Adapted, with permission, from Princen (1983).
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description. Proponents of spatially periodic theories recognize that the
order imposed upon the structure is highly artificial with few, if any,
examples in nature. This drawback must be weighed against the rigorous
mathematical formulation and tractability afforded by the approach, as
well as the insights provided by the predictions.

Spatial periodicity reduces the physical domain of interest to a unit cell
that typically contains three half-films and a Plateau border, as shown in
Figure 6. Let the center of a Plateau border and the midpoint of an adjacent
film determine a vector g, When ¢4 = 1, g; represents the length and
orientation of a half-film. The imposed macroscopic deformation deter-
mines the motion of the film midpoints, and the nonaffine junction dis-
placement is governed by a balance of film tensile forces. For static defor-
mations, which only account for uniform surface tension, the equilibrium
relation reduces to algebraic equations expressing equal film angles. Khan
& Armstrong (1986) considered simple shearing of arbitrarily oriented
cells, with affine displacements given by A = ¥ —y% = (yy,0). The shear
stress and first normal-stress difference up to the yield point are given by

T, — (0je3 (14774~ and N, = 1,.,—1,, = 1., (6)

Their analysis for planar extension, where A = (x(e**—1),y(e *—1)),
determines the tensile stress

Toy Ty = 4a/a3"?) sinh (r), ™

where ¢ is the Hencky strain measure. These stresses do not depend upon
the initial orientation of the cells—that is, the nonlinear elastic moduli are

Figure 6 Schematic of an idealized foam structure showing the unit cell and half-film
vectors g..
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isotropic below the yield point. Other implications of this are discussed by
Khan (1987). The yield strain and corresponding yield stress do depend
upon 6, so a unique value for 7, is not predicted. These equations for the
nonlinear elastic stresses also apply for finite liquid content as long
as Plateau borders do not coalesce, i.e. as long as the structure remains
Mode L.

For comparison, if the deformation of complete films in an arbitrarily
oriented two-dimensional foam is assumed to be affine, as in the three-
dimensional analysis of Derjaguin (1933), the linear shear modulus is
isotropic and given by G = 3"2/2a, which is a factor of 3/2 greater than
that predicted by Equation (6). However, unlike the results of Khan &
Armstrong (1986), isotropy is not maintained beyond the linear region.

Princen (1983) evaluates the shear stress by projecting the tension in the
initially vertical film onto the shear plane, which is convenient for the
particular cell orientation chosen. Khan & Armstrong (1986) show that
work-energy equivalence can be used to determine stress, e.g. shear stress
is given by t1,, = 0 05/0y, where S is the surface area per unit volume;
however, all information on the normal stresses is lost owing to the scalar
nature of the method. The complete instantaneous stress tensor t for the
foam can be derived from a volume average of the local stress tensor t’
over the unit cell (Batchelor 1970, Adler et al. 1985, Khan & Armstrong
1986). When ¢4 — 1 and only surface tension and bubble pressure Py, are
considered, this provides

8¢ 2
= —PJ+ 3972, 2 9iPiPi ®
a;>y

where g; is the magnitude of g; and both are scaled by a, and p; = g;/g; is
a unit vector parallel to the ith film. A spatially periodic framework
explicitly recognizes the inherent position and time dependence of the cell-
level motion; therefore, the evaluation of global rheological properties,
which are relevant to steady flows, requires averaging the instantaneous
stress over time or, equivalently, over strain

1
() = Pa Jyr dt. )

The global properties of the medium are properly represented when the
time interval 7 is equated to the period of the motion (Adler et al. 1985,
Kraynik & Hansen 1986).

The periodic variation of stress and structure with strain is readily
inferred when 0 = 0, as in the Princen-Prud’homme model. Kraynik &
Hansen (1986) identified the infinite set of discrete orientation angles that
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admit strain-periodic behavior for simple shear. By accounting for the
unique film rearrangement that is associated with any hopping process,
the instantaneous stress can be determined for arbitrarily large strains
when ¢4 — 1. The global stress is only evaluated for strain-periodic orien-
tations. It can be argued from energy-dissipation considerations that the
global shear stress {1, for very slow flows can also be identified as a yield
stress. This quantity differs from 7, but, like it, varies with 6. Curiously, the
physical appeal of the cell orientation originally chosen by Princen for
simple shear cannot be justified on energy grounds because the global
shear stress for 8 = 0 is the largest of any evaluated by Kraynik & Hansen.
They also demonstrated the existence of strain-periodic orientations for
planar extensional flow, which has been overlooked; complete analytical
solutions describing the necessary and sufficient conditions have been
obtained (Kraynik 1986). These results permit the evaluation of global
tensile stresses and extensional viscosity.

Although global shear stress was not reported by Princen (1983), it
vanishes for those cases not involving turning points, i.e. ¢4 < ¢¥. Under
those conditions, the elastic strain energy is symmetric.and completely
recovered over the cycle (Khan 1985). The vanishing of global stress in
the quasi-static regime corresponds to fluid-like behavior. Yet, for small
strains below the yield point, the instantaneous stress is finite, corresponding
to solid-like response. This dual character is peculiar and differs from
Bingham-fluid behavior, in which the shear stress approaches a finite
yield stress for slow flow.

Spatially Periodic Models: Viscous Effects

Cell-level viscous flow is a time-dependent free-surface problem. Many
fundamental issues involving these fluid motions are unresolved, even
when constraints imposed by idealized structure are accepted.

If we assume all liquid to be in the thin films, which either drain freely
or do not drain at all, viscous effects can be estimated for simple shearing
flow with velocity v = (yy, 0), cell orientation 8 = 0, and liquid volume
fraction ¢ small but finite. The variation of structure with strain is assumed
to be quasi-static, and the film-level flow is taken to be quasi-steady planar
extension. For freely draining films, the instantaneous film thickness and
extension rate are uniform throughout the foam. The estimated global
shear stress fits the Bingham-fluid model with 7, =0.31c/a and u,
~ 0.026¢p. Khan & Armstrong (1986) consider nondraining films, which
do not exchange liquid with their neighbors and require the instantaneous
film thickness and extension rate to vary between the films. They predict
much larger viscous effects: pu, = 13¢u.

A quasi-static approximation, which uncouples foar. structure and vis-
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cous flow, constrains rheological response. The coupling is responsible for
many striking characteristics of fluids with structure. Kraynik & Hansen
(1987) and Khan & Armstrong (1987) assume nondraining films and
develop an ad hoc model to depict the strong interaction between structure
and viscous forces. The nondraining limit corresponds to large drag forces
resisting flow along the thin films. This assumption also provides a mech-
anism for the net tension in a film to differ from its neighbors, because
respective stretch rates can vary, not only in magnitude but also in sign.
The tensile force along the ith nondraining film is given by

F, = 20[1+(3"*/9)¢ Cag/gilp, (10)

where Ca = pay/o is the capillary number, and ¢; denotes the time deriva-
tive of g;, with time scaled by the macroscopic deformation rate j. A force
balance at the junction, 2, F; = 0, provides a set of coupled nonlinear
ordinary differential equations that determine the film vectors g; given the
film midpoint motion for the imposed flow. Junction coalescence is
assumed to occur whenever a film’s length becomes less than its thickness,
i.e. g2 < 3'2¢/8. Plausible initial conditions for junction separation and
fast growth of the new film are then prescribed. The stress-strain curve
that corresponds to the Princen-Prud’homme model with viscous effects,
shown in Figure 7, illustrates the influence of film-level viscous flow when
Ca = 4(37'?), ¢ = 0.01, and 0 = 0. The asymptotic approach to periodic

/’\/\/\/\/ _

s 1.0 [
2|8 -

0.0 |- X . . -

y

Figure 7 Variation with shear strain y of the instantaneous shear stress t,, and first
normal-stress difference N, = ,,—1,, for simple shearing flow with 6 = 0, ¢ = 0.01, and
Ca=4(37'#).
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stress represents the spatially periodic analog of steady shearing flow. To
within isotropic terms, the instantaneous stress tensor is given by

i

8¢ |2 2 gi
v=335, | 2 | 1+ G126 Cals |lampl- (n
Global material functions for simple shearing flow are shown in Figure 8
(Kraynik & Hansen 1987). The quasi-static regime, Ca — 0, determines a
yield stress. The dashed curve represents the contribution of the surface-
tension term in Equation (11) to the global shear stress. Its variation
with capillary number reflects the rate dependence of foam structure. The
remaining, viscous contribution to the shear stress is relatively small. The
primary role of viscous forces is their influence upon instantaneous film
length and orientation, which differs substantially from the quasi-static
regime. The computed material functions terminate at a critical capillary
number beyond which the stress does not converge to periodic behavior
for very large strains, so the time average in Equation (9) is not meaningful.
This is accompanied by large cell distortion and film thinning, which
promotes film rupture. Thus, a plausible mechanism for shear-induced
failure of foams is suggested. Interpreting Figure 8 literally, the shear-
stress range that corresponds to steady shearing flow is relatively small.

Kraynik (1987) determined the linear viscoelastic response for this
model. Complex interfacial rheology can be introduced into the analysis
by using intrinsic interfacial parameters to represent Gibbs elasticity 1
and the interfacial viscosities « and ¢. The tension in a nondraining film i:
given by

w 1 1 1 1
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Figure8 Material functions for simple shearing flow with 8 = 0 and ¢ = 0.01: global shear
stress {t,,) and global first normal-stress difference (N,) = {z,,»—(z,,>. The dashed curve
represents the contribution of the surface-tension term in Equation (11) to the global shear
stress.
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F, = 20{1+ Ng In(29)+[Nsgi '+ (4g)~*14:}p (12)

where Ng = I'/o, Ns = 37 "*(k+¢)/dua, and ° denotes the time derivative,
with time scaled by 3'2¢ua/o. Restricting the analysis to small defor-
mations eliminates the need to consider Plateau border coalescence. The
predicted stress-relaxation modulus is given by

G(t*) = (143N +2¢") (13)
32q(1+ Ng) G ’
where time t* has been scaled by (3'2¢pa+ i« +¢)/(6 + ), the characteristic
relaxation time. The stress-relaxation modulus G(¢*), derived by con-
sidering arbitrary cell orientation with respect to the principal axes of
strain for simple shear, is isotropic and consistent with a similar analysis
for planar extension. Realistic qualitative behavior is captured by Equation
(13); for example, a finite equilibrium shear modulus G(:* — o) is indica-
tive of the gel-like response of foam. The dependence of the material time
scale upon parameters relating to texture, viscous flow, and dynamic
interfacial properties evinces the complexity of foam rheology.

For freely draining films, dissipative effects do not appear in the linear
regime because the variation in total film length is O(y?). The cor-
responding response is purely elastic, with the stress-relaxation modulus
the same as the static shear modulus G = ¢/a3'?, consistent with Equation
(6).

Assuming all of the liquid to be in the films and neglecting interfilm flow
provides a tractable mathematical model for the interaction between cell
structure and viscous flow, but film-level transport and foam structure
are compromised when Plateau borders are neglected. Pacetti (1985) and
Schwartz & Princen (1987) have proposed different models that incor-
porate Plateau borders.

Pacetti (1985) considered simple shearing flow and the initial cell orien-
tation originally investigated by Princen (1983). The foam structure con-
sists of Plateau borders with uniform curvature and flat films of uniform
thickness that are stabilized by disjoining pressure. In effect, the thickness
is permitted to vary slightly between films. This structure is consistent with
quasi-static deformations, but the rapid separation of Plateau borders
(Mode II - Mode I), for ¢4 close to unity, is not. Recognizing this, Pacetti
only considers volume fractions that produce stress-strain curves without
turning points—recall that the corresponding Mode II - Mode I tran-
sitions are smooth, and therefore the flow can be considered quasi-steady.
Within the limitations of a flat-film approximation, results are obtained
for mobile interfaces, along which surface tension is uniform and shear
stress vanishes in the films. Fluid exchange with the Plateau borders and
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neighboring filmsis accounted for, and flow in the films is taken to be quasi-
steady planarextension. Viscous tractions arise from the small variationsin
film thickness during a strain cycle. These variations are required to con-
serve liquid and balance border suction with disjoining pressure. The
instantaneous shear stress is evaluated by a method that requires veri-
fication against a rigorous volume average; however, qualitative features
predicted by the analysis should not be affected. The interfaces do not
contribute to the global shear stress, and the viscous contribution is very
small, consistent with our previous estimate for mobile films. The choice
of conditions that are consistent with a quasi-steady approximation to
viscous flow, for all times, is a unique and noteworthy feature of Pacetti’s
approach.

To incorporate viscous effects, Schwartz & Princen (1987) considered
all liquid to be in the Plateau borders, except for a very small amount
confined to immobile equilibrium films stabilized by the disjoining
pressure. They analyzed viscous dissipation due to immobile films being
drawn from or falling into the border. The quasi-static response of foam
to time-periodic planar extensionis considered, with the strain magnitude
sufficiently small that adjacent Plateau borders do not coalesce. A par-
ticular orientation, with some films parallel to a macroscopic stretching
direction, is analyzed. Their theory parallels the steady-state analysis of
Mysels et al. (1959), who studied flow due to soap films moving relative
to their borders. For slow speeds, the significant fluid flow and viscous
forces are confined to a small transition region where the film enters the
mouth of the Plateau border. Figure 9 illustrates the four regions of the
film, which correspond to the Plateau border (a static meniscus), a tran-
sition region, a liquid-entrainment region, and an equilibrium thin (black)
film. The exact film profile in the liquid-entrainment region depends upon

PLATEAU LIQUID- BLACK
BORDER TRANSITION ENTRAINMENT FILM

Figure 9 Schematic of the four film regions that are accounted for in the analysis of
Schwartz & Princen (1987): the Plateau border, the transition region, the liquid-entrainment
region, and equilibrium thin (black) film.
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time and position, in contrast to steady-state analyses where it is uniform.
The quasi-steady lubrication version of the Stokes equations applies to the
transition region, where interfaces are nearly parallel, and leads to an
ordinary differential equation for the film profile

n" = @—1)/n (14)

Here # represents film thickness scaled to that in the liquid-entrainment
region A%, primes denote differentiation with respect to the stretched film
coordinate, which is fixed to the border & = x(3Ca*)"?/h*, and Ca* is the
capillary number based upon film speed (which is small). An asterisk
indicates instantaneous quantities.

Equation (14) arises in the analysis of many free-boundary, visco-
capillary-flow problems (Schwartz et al. 1986). It has been used to analyze
coating flows (Landau & Levich 1942, Ruschak 1985), the soap-film with-
drawal already mentioned, and the motion of long bubbles in small tubes
(Bretherton 1961). Such model problems represent important features
of viscous dissipation in bulk foams, their slip at the wall, and foam
displacement in porous media. The techniques of matched asymptotic
analysis are required to fully resolve flow in the transition zone, which
must match conditions in both the border and liquid-entrainment regions
(Park & Homsy 1984).

The instantaneous entrained-film thickness can be expressed as A% =
2r(3Ca*)**P, where P = 5" is the asymptotic curvature on the border side
of the transition region evaluated in the stretched variables. A unique
solution, P = 0.6340, is obtained when thin film is withdrawn from the
border. However, the problem is underdetermined when film falls into the
border (Mysels et al. 1959), and a one-parameter family of solutions
corresponding to different values of P is possible. Schwartz & Princen
exploit the temporal periodicity of both the imposed motion and the quasi-
static evolution of foam structure to resolve theindeterminacy at any time.
The viscous dissipation per unit cell per cycle is calculated, which they
express as an effective foam viscosity y, ~ uCa~'?, where Ca is based
upon the apparent deformation rate of the foam during a cycle. The
quantity p. can be compared with the Bingham viscosity parameter of
previous estimates, for which u, ~ ¢u. The effective viscosity p. is large
for small capillary numbers and does not depend upon the liquid content
of the foam. The relative strength of the dissipation mechanism proposed
by Schwartz & Princen is due to the large magnitude of shearing in the
thin transition regions whose interfaces are assumed to be immobile.
The same assumption leads to Frankel’s law for soap-film withdrawal:
H = 1.88Ca**(a/pg)""?, where H is film thickness, and the capillary number
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is based upon film speed (Mysels et al. 1959). Mysels & Cox (1962) and
Lyklema et al. (1965) have confirmed Frankel’s law experimentally when
film thickness is large enough to neglect disjoining pressure effects and
surfactant solutions that provide an immobile interface are used.

The complete independence of effective viscosity on liquid volume frac-
tion ¢, predicted by Schwartz & Princen, should not carry over to the
global contribution of dissipation to stress in steady shearing flows. This
hypothesis assumes that the proportion of time spent in Mode I and Mode
IT is important and depends upon ¢. Restricting attention to small strains
avoids mode transitions and their fundamental role in foam flow. Focusing
on smooth mode transitions offers a convenient approach to incorporating
viscous effects into micromechanical theories. The eventual analysis of
rapid transitions is essential to an improved understanding of foam rhe-
ology; however, the analytical and computational techniques required of
that time-dependent free-boundary analysis, which couples viscous forces
in adjacent films, represents a significant challenge.

The ideas of Princen and Schwartz suggest a point of departure for
future studies of film-level flow, within the constraints of foam structure.
Strictly speaking, their analysis applies when entrained film is much thicker
than the equilibrium film thickness set by disjoining pressure. This restric-
tion has been relaxed by Teletzke and coworkers (Teletzke 1983, Teletzke
et al. 1987b), who extend the hydrodynamic film evolution equation to
include fluid microstructure forces of molecular and colloidal origin. When
a positive disjoining pressure, taken to decrease with film thickness, is
included into a steady-state analysis corresponding to film withdrawal, a
second, quasi-static regime appears for very small capillary numbers. The
transition to this quasi-static regime, in which film tension and thickness
take on their static values and dissipation vanishes rapidly, is very abrupt,
occurring over a narrow range in capillary number that depends upon the
length scale set by disjoining pressure. This transition has been observed
experimentally by Lyklema et al. (1965).

The process of Plateau border coalescence and separation—fun-
damental to foam flow—is captured by spatially periodic models. The
constraints imposed by ordered structure provide a convenient theoretical
framework for investigating this fundamental mechanism, which in itself
justifies spatially periodic theories. The hope, however, is that other pre-
dictions are not so hampered by constraints of perfect order as to render
these analyses into mathematical exercises barren of physical content. One
cannot rigorously choose between fact and artifact produced by these
theories; instead, one must rely upon intuition and experience, proven
enemies in the past. While the ultimate test of a theory is experiment, one
can gain partial confirmation of spatially periodic models and probe their
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limitations by comparing the reswiung predictions with those for dis-
ordered media.

Statics of Disordered Two-Dimensional Foams

Khan & Armstrong (1987) have analyzed the static response of bidisperse,
spatially periodic foams; however, entirely different methods are required
for polydisperse systems that are highly disordered. Such techniques have
been developed by Weaire & Kermode (1983, 1984), initially to study the
role of intercellular diffusion in the temporal evolution of structure. This
in itself is of interest because the rheology of foam depends upon its
texture. Simulations of diffusion phenomena in foams can be compared
with their experimental counterparts in two dimensions (Glazier et al.
1987) and three dimensions (Cheng & Lemlich 1985). The close analogy
between foams and random cellular media of various origins has been
reviewed by Weaire & Rivier (1984) and motivates broad interest in the
subject.

Many will find the cellular structures analyzed by Weaire & Kermode
to be a refreshing departure from the constraints of perfect order. One
hundred cells that comprise a typical spatially periodic unit cell are shown
in Figure 10. Various algorithms are employed to specify a random dis-
tribution of points that serve as the nuclei for a periodic Voronoi network.
The Voronoi polygons, which possess straight sides and unequal film
angles as shown in Figure 10, are adjusted to achieve an equilibrium rest
state. The resulting disordered structure consists of cells with varying
numbers of curved films. The second moment p, = X* ;(n—6)°f(n) of

Figure 10 Typical disordered two-dimensional foam structure analyzed by Weaire & Ker-
mode (1983, 1984) showing the unadjusted Voronoi polygons with straight sides and unequal
film angles (on the left), and the relaxed structure in which three films meet at equal angles.
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the number distribution of cell sides f(n) is used as a measure of disorder.
In Figure 10, this value is y, =~ 1.00.

Therheological studies arerestricted to static planar extensionand ¢4 —

1. The tensile stress is evaluated by the energy method, i.e. T=1,,—1,
= ¢ 0S/0e. An iterative numerical scheme was developed to solve the
system of algebraic equations determined by cell volume, equilibrium,
and deformation constraints, along with an algorithm to specify the
abrupt coalescence and separation of film junctions, which Weaire &
Kermode refer to as a T1 process.

The initial study of mechanics by Weaire & Kermode (1984) considered
periodic deformations large enough to require numerous T1 processes.
Within the disordered medium, T1 events occur sporadically throughout.
By contrast, two simultaneous T1 events are forced upon each and every
monodisperse cell in the idealized case—the cells alternate between six
and four sides. This perfect correlation of Tl events causes large dis-
continuities in stress and structure, as shown in Figure 3. However, the
essentially uncorrelated T1 processes in disordered media result in fluc-
tuations of diminished intensity in stress and structure. Presumably, on
the macroscale, fluctuations vanish and stress-strain response becomes
smooth when the population of the unit cell is sufficiently large and dis-
ordered.

Quantitative comparisons of the linear shear modulus G for disordered
and ideal media are quite satisfying. Weaire et al. (1986) have computed
G for several structures with p, values up to 2.9 and report that a reduced
modulus G* = (a)G/20 is relatively insensitive to disorder, decreasing
slightly with u,. Here, the characteristic cell size is given by {a)?=
N—1ZN | 4, where 4, is the area of the ith cell in a population of N
cells. For a perfectly ordered system, the reduced modulus value is given
by G* = 3'427%2 & 0.465. This represents an upper bound for all of their
simulations and leads Weaire et al. to conjecture that it is a strict upper
bound. Princen (1983, 1985) recommends correlating stress and modulus
data with a characteristic cell size based upon the Sauter mean diameter
ds, = (X nd?})/(Z nd?), where there are n; bubbles of equivalent spherical
diameter d,. Neither {(a> nor the two-dimensional counterpart of d, is
justified by analysis. Simulations could guide the experimentalist to an
optimal choice of length scale.

Weaire & Fu (1988) have simulated complete stress-strain curves 7'(e)
for ¢ up to about 1.2, various p,, and 64 cells per repeat. To a good
approximation, thereduced tensilestress T* = {(a)T/20 is amonotonically
increasing function of strain, apart from fluctuations, and is fit by
T* =T tanh(2¢’), where & is a linear strain measure given by
¢ = In (1 +¢'). The asymptotic value T, is of order unity for all simulations.
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Kraynik & Hansen (1986) have shown that ideal structure, with 6 = 7/12,
provides the simplest strain-periodic response in planar extension. The
corresponding global average of T*(e) is a lower bound for all the cases
that Kraynik & Hansen consider and is comparable in magnitude to T,
computed by Weaire & Fu.

The agreement between ideal and disordered systems for both the linear
moduli and global stress is very encouraging. It emphasizes the intrinsic
value of simulations and substantiates the validity of properly interpreted
spatially periodic theories. However, these favorable comparisons should
be viewed as preliminary and require further study.

It is important to note that the concept of a yield stress is also supported
by simulations of disordered foams.

SLIP AT THE WALL

Slip at the wall on the macroscale is a major feature of foam flow. Consider
a conceptual model of the wall region consisting of a thin liquid film of
uniform thickness /. and viscosity p. Assume that the slip velocity u, is
equal to the uniform velocity of the gas-liquid interface, which is immobile
and translates with the average velocity of bubbles adjacent to the wall. If
the slip velocity is given by u, = A,1,/u, then the wall fluidity of equation
(5) is simply ¥, = h./u. Effective film thicknesses calculated from typical
data can be as large as 10 um but are usually smaller and vary with wall
shear stress (Wenzel et al. 1970, Princen 1985, Thondavadl & Lemlich
1985). Wall slip is an appropriate boundary condition when 4, « %, the
macroscopic length scale of the flow.

A more realistic model of the wall region accounts for Plateau borders,
as shown in Figure 11. At rest and neglecting gravity, the wall film-

e

T \\\\\\\\\\}\\\ TR TR R

Figure 11  Schematic of the wall region when the continuous liquid phase completely wets
the wall. Plateau borders with curvature r and thin liquid films of thickness 4,,,, are shown.
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thickness profile is determined by wetting effects that depend upon capil-
lary pressure in the Plateau borders and disjoining pressure in the wall
film I1,(h,), which may differ from I1(%) for films in the bulk foam.
Mannheimer’s (1972) experiments with concentrated emulsions show a
strong influence of wall materials with different wetting characteristics on
slip. Princen (1985) measured slip velocities for well-characterized series
of emulsions and treated the walls to ensure complete wetting by the
continuous phase. He measured the fractional area of static thin films
adjacent to the wall, assumed that wall shear stress on the macroscale is
determined entirely by shear flow in thin films with immobile interfaces,
and calculated film thicknesses less than the corresponding values of 4.,
e.g. 17 nm vs. 45 nm. In some cases, slip could not be measured below
finite wall shear stresses of order 1 Pa, suggesting a slip yield stress whose
origin Princen attributed to wall roughness. Thondavadl & Lemlich (1985)
did not observe slip in rough pipes, whereas it was prevalent in smooth
ones.

Wall slip on the macroscalecan berelated to foam structure and viscous
flow near the wall by extending Bretherton’s (1961) analysis, which
describes the motion of large bubbles in small capillaries. Consider steady
flow near the wall of a two-dimensional, monodisperse foam with immobile
interfaces. Assume that the bulk foam moves in plug flow, i.e. 7, < 1,.
Neglecting the liquid content of thin films in the bulk foam, the Plateau
border curvature is given by r/a = 2.84¢'* (Princen 1979). The analysis
of Teletzke and coworkers (Teletzke 1983, Teletzke et al. 1987b) could be
used to relate the uniform thickness of entrained film, A,., to Plateau
border curvature r and a capillary number based upon slip velocity,
Ca, = uu,/o. For Ca, — 0, the equilibrium wall film thickness is obtained
from II,(h,) = a/r, given the functional form of disjoining pressure.
Bretherton’s solution, h,./r = 2.12 CaZ?, which applies when A, »
hyo(Ca, — 0) and Ca, « 1, provides the following relation for the slip
velocity:

Cal’ = 6.02a¢ %z, /of, (15)

where = 1—3.28¢ "/ represents the fraction of the wall covered by thin
film. Equation (15) is in qualitative agreement with Princen’s (1985) sys-
tematic measurements, which indicate that wall fluidity ¥, increases with
increasing wall shear stress, continuous-phase volume fraction, and drop
size.

An interest in foam displacement in porous media motivated Hirasaki
& Lawson (1985) to study flow in capillary tubes whose radius R is
comparable to the equivalent spherical radius R, of carefully generated
uniform bubbles. To relate foam flow to structure, they proposed a quan-
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titative model in which Ry/R is permitted to be large, O(1), or small. Plug
flow is assumed in the bulk-foam regime. The model incorporates an ad
hoc modification of the Bretherton analysis to represent diffusion-induced
surface-tension gradients; the interfacial mobility of the bubbles, which
varies from perfectly mobile to immobile, depends upon the value of a
single parameter. The corresponding special case of the Hirasaki-Lawson
model is similar to Equation (15). The model of Hirasaki & Lawson
captures a wide range of phenomena and motivates current systematic
studies (G. M. Ginley & C. R. Radke, E. Herbolzheimer, J. Ratulowski
& H. C. Chang, unpublished results) of dynamic interfacial effects whose
origin may include both diffusion of surfactants and intrinsic properties
such as interfacial viscosity. Falls et al. (1987) have applied the work of
Hirasaki & Lawson to foam displacement in porous media, a currently
active research topic in multiphase flow (e.g. Gauglitz 1986, Ransohoff
1986, Prieditis 1987).

COMPLEX FLOWS OF VISCOPLASTIC FLIIIDS

Scalar material functions for foam viscosity and wall fluidity—specific
forms of Equations (4) and (5), respectively—are sufficient to determine
velocity fields for the steady rectilinear flows emphasized thus far. The
analysis of complex flows with nonrectilinear streamlines requires consti-
tutive equations of proper tensor character for the bulk fluid and, if slip
is considered, the wall boundary condition. Since foams can be modeled
as viscoplastic fluids if their viscoelastic character is neglected, the fol-
lowing two studies of viscoplastic fluids relate to complex flows of foam
and illustrate the numerical simulation techniques required.

The work of Beris et al. (1985) is relevant to the particle-carrying
capacity of foam. They apply finite element methods to analyze the creep-
ing motion of a rigid sphere through a Bingham fluid, assuming no slip.
The sphere moves in an envelope of fluid, whose shape depends upon the
yield stress 7,, when 2t,nR}/F < 0.143, where R, is the sphere radius and
F is the applied force. The boundaries of the envelope include an outer
yield surface and two inner yield surfaces due to unyielded “fluid” at the
front and back of the sphere.

Tilton (1985) has also used finite elements to simulate steady creeping
flow through a tube with a smooth axisymmetric constriction. Bingham
and other viscoplastic fluids that slip at the wall are analyzed. A linear slip
boundary condition, corresponding to constant wall fluidity 1/, is assumed
and is given by

U = ww(n ‘T t)ts (16)
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where n is a unit vector normal to the wall and directed into the fluid, 7 is
the stress, and t is a unit vector tangent to the wall. The solid-like plug
associated with fully developed flow terminates prior to entering the con-
striction and reforms following it—a plug of finite radius cannot survive
passage through the constriction because reversible elastic deformations
of unyielded material are not accounted for.

CONCLUDING REMARKS

The experimental study of foam flow has been pursued for over half a
century; by contrast, less than a decade has passed since the initial devel-
opment of micromechanical theories for foam rheology. The collective
data that predate the theories reveal many curious rheological features of
foam, such as a yield stress and slip at the wall, which stem from foam
structure and the physical characteristics of its constituents and interfaces,
Current theories cannot provide definitive relationships between foam
structure and rheology because they are restricted by two dimensionality
in all cases and perfect order in most cases. Once the proper film-level
mechanisms involving interfacial transport and viscous flow are incor-
porated into disordered two-dimensional models, the significant steps to
three dimensions can be taken. Meanwhile, the current theories provide a
rational basis for developing our intuition and reinforce the need for
careful characterization of foam structure and systematic rheological
measurements.

ACKNOWLEDGMENTS

This work was performed at Sandia National Laboratories and supported
by the US Department of Energy under contract # DE-AC04-76DP00789.
I am very grateful to N. E. Bixler, R. W. Flumerfelt, A. S. Geller, S. A.
Khan, M. S. Kuntamukkula, D. F. McTigue, H. M. Princen, L. W.
Schwartz, G. F. Teletzke, and D. Weaire for providing helpful comments.

Literature Cited

Adler, P. M., Brenner, H. 1985. Spatially 1985. Spatially periodic suspensions of
periodic suspensions of convex particles convex particles in linear shear flows. II.
in linear shear flows. 1. Description and Rheology. Int. J. Multiphase Flow 11: 387—
kinematics. Int. J. Multiphase Flow 11: 417

361-85 Ashby, M. F., Verrall, R. A. 1973, Diffusion-
Adler, P. M., Brenner, H. 1988. Multiphase accommodated flow and superplasticity.

flow in porous media. Ann. Rev. Fluid Acta Metall. 21: 149-63

Mech. 20: 35-59 Assar, G. R., Burley, R. W. 1986. Hydro-

Adler, P. M., Zuzovsky, M., Brenner, H. dynamics of foam flow in pipes, capillary '



Annu. Rev. Fluid Mech. 1988.20:325-357. Downloaded from www.annualreviews.org
by Universite Paris 6 - Pierre et Marie Curie SINGLE SITE on 12/23/13. For personal use only.

tubes, and porous media. In Encyclopedia
of Fluid Mechanics, ed. N. P. Cher-
emisinoff, 3: 26-42. Houston: Gulf

Barnes, H. A., Walters, K. 1985. The yield
stressmyth? Rheol. Acta 24:323-26

Batchelor, G. K. 1970. The stress system in a
suspension of force-free particles. J. Fluid
Mech. 41: 545-70

Beris, A. N., Tsamopoulos, J. A,
Armstrong, R. C., Brown, R. A. 1985.
Creeping motion of a sphere through a
Bingham plastic. J. Fluid Mech. 158: 219—
44

Beyer, A. H., Millhone, R. S, Foote, R. W.
1972. Flow behavior of foam as a well
circulating fluid. S PE 3986, Soc. Pet. Eng,,
San Antonio, Tex.

Bikerman, J. J. 1973. Foams. New York:
Springer-Verlag. 337 pp.

Bird, R. B., Armstrong, R. C., Hassager, O.
1987. Dynamics of Polymeric Liquids, Vol.
I: Fluid Mechanics. New York: Wiley-
Interscience. 649 pp. 2nd ed.

Bird, R. B, Dai, G. C, Yarusso, B. J. 1982.
The rheology and flow of viscoplastic
materials. Rev. Chem. Eng. 1: 1-70

Blackman, M. 1948. On the transformation
of “solid” foam to a “fluid” foam under
shear. Trans. Faraday Soc. 44: 205-6

Bretherton, F. P. 1961. The motion of long
bubbles in tubes. J. Fluid Mech. 10: 166-

88

Chen, H.-S., Acrivos, A. 1978. The effective
elastic moduli of composite materials con-
taining spherical inclusions at non-dilute
concentrations. Int. J. Solids Struct. 14:
34964

Cheng, H. C., Lemlich, R. 1985. Theoryand
experiment for interbubble gas diffusion
2119 foam. Ind. Eng. Chem. Fundam. 24: 44—

Cheng, H. C,, Natan, T. E. 1986. Measure-
ment and physical properties of foam. In
Encyclopedia of Fluid Mechanics, ed. N.
P. Cheremisinoff, 3: 3-25. Houston: Gulf

Coleman, B. D., Markovitz, H., Noll, W.
1966. Viscometric Flowsof Non-Newtonian
Fluids. New York: Springer-Verlag. 130

Pp.

Cox, R. G. 1969. The deformation of a drop
in a general time-dependent fluid flow. J.
Fluid Mech. 37: 601-23

David, A., Marsden, S. S. 1969. The rhe-
ology of foam. SPE 2544, Soc. Pet. Eng.,
Denver, Colo.

Derjaguin, B. V. 1933. Die elastischen Eigen-
schaften der Schiaume. Kolloid-Z. 64: 1-6

Derjaguin, B. V. 1955. Definition of the con-
cept of, and magnitude of the disjoining
pressure and its role in the statics and kin-
etics of thin layers ofliquids. Colloid J. 17:
191-97 (From Russian)

Edwards, D. A. 1987. Surface rheology. PhD

FOAM FLOWS 355
thesis. Ill. Inst. Technol., Chicago. 196

pPp-

Falls, A. H.,, Musters, J. J., Ratulowski, J.
1987. The apparent viscosity of foams in
homogeneous beadpacks. Submitted for
publication

Flumerfelt, R. W. 1980. Effects of dynamic
interfacial properties on drop deformation
and orientation in shear and extensional
flow fields. J. Colloid Interface Sci. 76:
330-49

Frankel, N. A, Acrivos, A. 1970. Theconsti-
tutive equation for a dilute emulsion. J.
Fluid Mech. 44: 65-78

Gauglitz, P. A. 1986. Instability of liquid
films in constricted capillaries: a pore level
description of foam generation in porous
media. PhD thesis. Univ. Calif., Berkeley.
430 pp.

Glazier, J. A., Gross, S. P, Stavans, J. 1987.
Dynamics of two dimensional soapfroths.
Phys. Rev. A 36: 306-12

Hatschek, E. 1911. Die viskositit der dis-
persoide. Kolloid-Z. 8: 34-39

Hatschek, E. 1913. The general theory of
viscosity of two-phase systems. Trans.
Faraday Soc. 9: 80-92

Heller, J. P., Kuntamukkula, M. S. 1987.
Critical review of thefoam rheology litera-
ture. Ind. Eng. Chem. Res. 26: 318-25

Hirasaki, G. J., Lawson, J. B. 1985. Mech-
anisms of foam flow in porous media:
apparent viscosity in smooth capillaries.
Soc. Pet. Eng. J.25: 176-90

Kelvin, Lord (Thompson, W.) 1887. On the
division of space with minimum par-
titional area. Philos. Mag. 24: 503-14

Khan, S. A. 1985. Rheology of large gas
fraction liquid foams. PhD thesis. Mass.
Inst. Technol., Cambridge. 258 pp.

Khan, S. A. 1987. Foam rheology: relation
between elongation and shear defor-
mations in high gas fraction foams. Rheol.
Acta 26: 78-84

Khan, S. A, Armstrong, R. C. 1986. Rhe-
ology of foams: I. Theory for dry foams.
J. Non-Newtonian Fluid Mech. 22: 1-22

Khan, S. A., Armstrong, R. C. 1987. Rhe-
ology of foams: II. Effects of poly-
dispersity and liquid viscosity for foams
having gas fraction approaching unity. J.
Non-Newtonian Fluid Mech. 25: 61-92

Kraynik, A. M. 1981. Rheological aspects
of thermoplastic foam extrusion. Polym.
Eng. Sci.21: 80-85

Kraynik, A. M. 1982. Aqueous foam
rheology. Presented at Ann. Meet. Soc.
Rheol., Evanston, Ill.

Kraynik, A. M. 1986. Extensional motions of
spatially periodic lattices: suspension and
jgam rheology. Presented at Ann. Meet.
AIChE, Miami Beach, Fla.

Kraynik, A. M. 1987. Foam rheology: the



Annu. Rev. Fluid Mech. 1988.20:325-357. Downloaded from www.annualreviews.org
by Universite Paris 6 - Pierre et Marie Curie SINGLE SITE on 12/23/13. For personal use only.

356 KRAYNIK

linear viscoelastic response of a spatially
periodic model. Proc. Can. Congr. Appl.
Mech., 11th, Edmonton, 2: B2-3

Kraynik, A. M., Hansen, M. G. 1986. Foam
and emulsion rheology: a quasistatic
model for large deformations of spatially
periodic cells. J. Rheol. 30: 409-39

Kraynik, A. M., Hansen, M. G. 1987. Foam
rheology: a model of viscous phenomena.
J. Rheol. 31: 175-205

Landau, L., Levich, B. 1942. Dragging of a
liquid by a moving plate. Acta Physico-
chim. URSS 17: 42-54

Levich, V. G. 1962. Physicochemical Hydro-
dynamics. Englewood Cliffs, NJ: Prentice-
Hall. 700 pp.

Lucassen, J. 1981. Dynamic properties of
free liquid films and foams. In Anionic Sur-
factants— Physical Chemistry of Sur-
factant Action, ed. E. H. Lucassen-Reyn-
ders, pp. 217-65. New York: Marcel
Dekker. 412 pp.

Lucassen-Reynders, E. H. 1981. Surface
elasticity and viscosity in compression/
dilation. In Anionic Surfactants— Phys-
ical Chemistry of Surfactant Action, ed.
E. H. Lucassen-Reynders, pp. 173-216.
New York: Marcel Dekker. 412 pp.

Lyklema, J., Scholten, P. C., Mysels, K. J.
1965. Flow in thin liquid films. J. Phys.
Chem. 69: 116-23

Mahalingam, R., Surati, H. S., Brink, J. A.
1975. High-expansion foam flow analyses.
In Advances in Interfacial Phenomena of
Particulate/Solution|Gas Systems: Appli-
cations to Flotation Research, ed. P.
Somasundaran, R. B. Grieves, 71: 52—
58. New York: AIChE. 191 pp.

Mannheimer, R. J. 1972. Anomalous rheo-
logical characteristics of a high-internal-
phase-ratio emulsion. J. Colloid Interface
Sci. 40: 370-82

Matalon, R. 1953. Foams. In Flow Prop-
erties of Disperse Systems, ed. J. J.
Hermans, pp. 323-43. New York: Inter-
science. 445 pp.

Matzke, E. B. 1946. The three-dimensional
shape of bubbles in foam—an analysis of
the role of surface forces in three-dimen-
sional cell shape determination. Am. J.
Bot. 33: 58-80

Mooney, M. 1931. Explicit formulas for slip
and fluidity. J. Rheol. 2: 210-22

Mysels, K. J., Cox, M. C. 1962. An exper-
imental test of Frankel’s law of film thick-
ness. J. Colloid Interface Sci. 17: 136-45

Mysels, K. J., Shinoda, K., Frankel, S. 1959.
Soap Films: Studies of Their Thinning.
New York: Pergamon. 116 pp.

Pacetti, S. D. 1985. Structuralp modeling of
foam rheology. MS thesis. Univ. Houston,
Tex. 156 pp.

Park, C.-W., Homsy, G. M. 1984. Two-

phase displacement in Hele Shaw cells:
theory. J. Fluid Mech. 139: 291-308

Plateau, J. 1873. Statique Expérimentale et
Théorique des Liquides Soumis aux Seules
Forces Moléculaires. Paris: Gauthier-
Villars. 495 pp.

Prieditis, J. 1987. Mechanistic studies of foam
displacement in porous media. PhD thesis.
Univ. Houston, Tex. In preparation

Princen, H. M. 1979. Highly concentrated
emulsions. I. Cylindrical systems. J. Col-
loid Interface Sci. 71: 55-66

Princen, H. M. 1983. Rheology of foams and
highly concentrated emulsions. I. Elastic
properties and yield stress of a cylindrical
model system. J. Colloid Interface Sci. 91:
160-75

Princen, H. M. 1985. Rheology of foams and
highly concentrated emulsions. II. Exper-
imental study of the yield stress and wall
effects for concentrated oil-in-water emul-
sions. J. Colloid Interface Sci. 105: 150-
71

Princen, H. M., Aronson, M. P., Moser, J.
C. 1980. Highly concentrated emulsions.
I1. Real systems. J. Colloid Interface Sci.
75: 246-70

Princen, H. M., Kiss, A. D. 1986. Rheology
of foams and highly concentrated emul-
sions. III. Static shear modulus. J. Colloid
Interface Sci. 112: 427-37

Prud’homme, R. K. 1981. Foam flow. Pre-
sented at Ann. Meet. Soc. Rheol., Louis-
ville, Ky.

Prud’homme, R. K., Bird, R. B. 1978. The
dilatational properties of suspensions of
gas bubbles in incompressible Newtonian
and non-Newtonian fluids. J. Non-New-
tonian Fluid Mech. 3: 261-79

Ransohoff, T. C. 1986. Foam generation in
constricted noncircular capillaries and in
bead packs. MS thesis. Univ. Calif., Berk-
eley. 207 pp.

Rosen, M. J. 1978. Swrfactants and Inter-
facial Phenomena. New York: Wiley. 304

pp.

Ruschak, K. J. 1985. Coating flows. Ann.
Rev. Fluid Mech. 17: 65-89

Schowalter, W. R., Chaffey, C. E., Brenner,
H. 1968. Rheological equation of a dilute
emulsion. J. Colloid Interface Sci. 26: 152—
60

Schowalter, W. R. 1978. Mechanics of Non-
Newtonian Fluids. Oxford: Pergamon. 300

ch»pvartz, L. W., Princen, H. M. 1987. A
theory of extensional viscosity for flowing
foams and concentrated emulsions. J. Col-
loid Interface Sci. 118: 201-11

Schwartz, L. W., Princen, H. M., Kiss, A.
D. 1986. On the motion of bubbles in
capillary tubes. J. Fluid Mech. 172: 259-
75



Annu. Rev. Fluid Mech. 1988.20:325-357. Downloaded from www.annualreviews.org
by Universite Paris 6 - Pierre et Marie Curie SINGLE SITE on 12/23/13. For personal use only.

Sibree, J. O. 1934. The viscosity of froth.
Trans. Faraday Soc. 30: 325-31

Siehr, A. 1938. Zur Kenntnis der mech-
anischen Eigenschatfen von Schiumen,
11 Kolloid-Z. 85: 70-74

Slattery, J. C., Flumerfelt, R. W. 1982. Inter-
facial phenomena. In Handbook of Mulii-
phase Systems, ed. G. Hetsroni, pp. 1—
224-73. Washington, DC: Hemisphere

Stamenovic, D., Wilson, T. A. 1984. The
shear modulus of liquid foam. J. A4ppl.
Mech. 51: 229-31

Tanner, R. 1. 1985. Engineering Rheology.
Oxford: Clarendon. 451 pp.

Taylor, G. 1. 1932. The viscosity of a fluid
containing small drops of another fluid.
Proc. R. Soc. London Ser. A 138: 41-48

Taylor, G. 1. 1954. The two coefficients of
viscosity for an incompressible fluid con-
taining air bubbles. Proc. R. Soc. London
Ser. 4 226: 34-39

Teletzke, G. F. 1983. Thin liquid films: molec-
ular theory and hydrodynamic implications.
PhD thesis. Univ. Minn., Minneapolis.
354 pp.

Teletzke, G. F., Davis, H. T., Scriven, L.
E. 1987a. How liquids spread on solids.
Chem. Eng. Commun. 55: 41-58

Teletzke, G. F., Davis, H. T., Scriven, L. E.
1987b. Wetting hydrodynamics. Rev.
Phys. Appl. In press

Thondavadl, N. N., Lemlich, R. 1985. Flow
properties of foam with and without solid
particles. Ind. Eng. Chem. Process Des.
Dev. 24: 748-53

FOAM FLOWS 357

Tilton, J. N. 1985. Viscocapillary slip flows
with special application to microdisplace-
ment in porous media. PhD thesis. Univ.
Houston, Tex. 285 pp.

Walters, K. 1975. Rheometry. London:
Chapman & Hall. 278 pp.

Weaire, D., Fu, T.-L. 1988. The mechanical
behavior of foams and emulsions. J.
Rheol. In press

Weaire, D., Kermode, J. P. 1983. Computer
simulation of a two-dimensional soap
froth. 1. Method and motivation. Philos.
Mag. B 48: 245-59

Weaire, D., Kermode, J. P. 1984. Computer
simulation of a two-dimensional soap
froth. II. Analysis of results. Philos. Mag.
B 50: 379-95

Weaire, D., Rivier, N. 1984, Soap, cells and
statistics—random patterns in two dimen-
sions. Contemp. Phys. 25: 59-99

Weaire, D., Fu, T.-L., Kermode, J. P. 1986.
On the shear elastic constant of a two-
dimensional froth. Philos. Mag. B 54:
13943

Wenzel, H. G, Brungraber, R. J., Stelson,
T. E. 1970. The viscosity of high expansion
foam. J. Mater. 5: 396-412

Wenzel, H. G., Stelson, T. E., Brungraber,
R. J. 1967. Flow of high expansion foam
in pipes. Proc. Am. Soc. Civ. Eng. EM6:
153-65

Yoshimura, A., Prud’homme, R. K.,
Princen, H. M,, Kiss, A. D. 1987. A com-
parison of techniques for measuring yield
stresses. J. Rheol. In press



	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Fluid Mechanics Online
	Most Downloaded Fluid Mechanics Reviews
	Most Cited Fluid Mechanics Reviews
	Annual Review of Fluid Mechanics Errata
	View Current Editorial Committee


	ar: 
	logo: 



