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ABSTRACT

We discuss the thickness of the liquid layer entrained by a solid drawn out of a bath,
focusing on the case where the solid is a fiber or a wire. Slow withdrawals out of
a pure or a complex fluid are described as well as quick coatings. We specify the
general laws of entrainment and stress the cases where the fiber curvature plays
a role. We finally give an overview on the further evolution of the coated film.

1. INTRODUCTION

Fluid coating is our name for the operation of forcing a fluid to coat a solid
by a movement. Painting a wall by moving a brush saturated with paint and
coating a solid by drawing it out of a bath of liquid are two ways to do fluid
coating. The question is often what are the parameters fixing the thickness
of the deposited film and which are the entrainment laws? If this question is
asked to a (scientific) audience, it receives a large variety of answers, even
if one restricts it to the sign of variation of the thickness versus the velocity.
A very simple argument shows that everybody is right (and thus reveals that
the question is demagogic): when the velocity is zero, we find no film, since
the coating results from a dynamic process; when the velocity is infinite, the
same result is expected because the film has no time to develop. These rough
arguments favor a picture of a nonmonotonous variation of the thickness as a
function of the velocity. One of our primary aims therefore is to describe the
shape of this curve. We base the following presentation on recent experimental
data and try to understand the observations by the use of scaling arguments.

The pioneering works on fluid coating can be classified by the geometry of
solids. The problem of a plate drawn out of an infinite reservoir (Figure 1a) was
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Figure 1 Various geometries for fluid coating. (a) Plate coating; (b) making of a soap film;
(c) roll coating; (d ) fiber coating; (e) coating of the inside of a tube (or a Hele-Shaw cell). In each
case, a relative motion between the solid and the liquid implies the deposition of a thin liquid layer
of a liquid on the solid.
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the first to be experimentally studied (Goucher & Ward 1922, Morey 1940), and
a famous theory was proposed in the forties by Landau & Levich (1942) and
Derjaguin (1943). We summarize this LLD theory, which can be extended to
all kinds of geometry. A particular case of planar withdrawal is the making of
soap films from a surfactant solution (Mysels et al 1959, Mysels & Cox 1962)
(Figure 1b).

As natural extensions, roll coating (Gatcombe 1945, Taylor 1963) (Figure 1c)
and fiber withdrawal (Goucher & Ward 1922, White & Tallmadge 1966) (Fig-
ure 1d ) were the topics of early investigations. Cylindrical geometry also
arises in tubes; emptying of a capillary tube has been extensively studied since
1913 (Vaillant 1913, Fairbrother & Stubbs 1935, Taylor 1960, Bretherton 1961)
(Figure 1e). A closely related problem leading to similar results is the drainage
of a Hele-Shaw cell (Park & Homsy 1984, Tabeling & Libchaber 1986). Devel-
opment of the pioneering works and extension to more complicated geometries
are described in Ruschak’s review (1985).

Here, we are mostly concerned with the case in which a solid to be fluid
coated is a fiber or a wire (Figure 1d ), which provides a convenient control pa-
rameter (the fiber radius) and allows us to isolate the effects from each other. In
particular, gravity can be generally ignored if the fiber is thin enough. Besides,
this case is of practical importance. Just after they are made, glass and poly-
meric fibers are lubricated with a liquid to prevent them from breaking during
further operations. Since fibers are often used for reinforcing composites, the
function of the coating may also be to provide compatibility and the desired
degree of bonding with the ceramic or polymer matrix. Practically, the coating
is generally achieved by drawing the fiber at high velocities (on the order of
10 m/s) out of a complex liquid (often an emulsion).

Other techniques, often described in technical reviews, can be used for more
specific purposes. Freeze coating (or hot dipping), for example, consists of
passing a cold wire through a globule of molten metal (Arridge & Heywood
1967). The control parameter is mainly the dipping timeτi , which typically
ranges between 1 ms and 1 s (Carreker 1963, Kornmann et al 1978). Since
a thin layer of metal freezes onto the wire surface, the film thickness first
increases withτi (Bubnov et al 1994) up to the point where the wire and the
bath have the same temperature, after which it decreases. When coming out
of the bath, the wire entrains molten metal, and the coating thickness finally
depends on both freezing and viscous drag (Xiao et al 1994). Practically, steel
wires can be coated with aluminium (Kornmann et al 1983) or polymer (Akter
& Hashmi 1997) for protection against corrosion, or with copper (Brelin &
Kornmann 1990) for improving the mechanical properties. As a variation on
freeze coating, consider a traditional way of making candles by drawing a wick
out of molten wax! Another way to achieve continuous thin films on fibers is
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Figure 2 Industrial device for lubrication of glass fibers. Fibers are quickly drawn downwards
and pass through a layer of a liquid coating a roll partially immersed in liquid. (Courtesy of
Saint-Gobain Recherche.)

chemical vapor deposition, which provides the advantages of high purity and
applicability to oxides, carbides, metals, etc. Furthermore, it eliminates the
need to use a liquid phase and is well adapted to the achievement of very thin
(successive) layers. A description of this technique together with an abundant
bibliography can be found in a report by Lackey et al (1991).

Here, we restrict our analysis to fluid coating by using a Newtonian solution,
which corresponds to many practical situations. Figure 2 presents a device for
glass fiber lubrication, which combines roll and fiber coating; a roll immersed in
an aqueous solution turns at a velocity of about 10 cm/s, so that it is constantly
coated with a layer of liquid through which series of fibers pass at high speed
(typically 30 m/s). The velocity is directed downwards since the fibers are drawn
from an oven just above the lubrication stage.

One of the aims of this report is to connect the academic case (slow withdrawal
from a pure liquid) with practical applications. After a presentation of the LLD
theory, we discuss different causes of deviation (in order of increasing complex-
ity): (i) gravity and effects related to the solid-liquid interface, at small velocity;
(ii) influence of inertia on quick withdrawals; (iii) effects related to the liquid-air
interface for coating with a complex fluid (a soapy water or an emulsion).

The different regimes are illustrated by experimental results, generally ob-
tained by using a film balance (Figure 3) devised for this purpose (de Ryck &
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Figure 3 Film balance for measuring the film thickness entrained by a wire drawn out of a bath
(of radius R and length L).

Quéré 1994). The liquid bath is a drop trapped inside a horizontal Teflon tube
through which a fiber passes. The massmof this drop is recorded as a function
of time t. The entrainment is found to be stationary in most cases; as the fiber
moves, the mass of the reservoir decreases linearly with time, from which the
(constant) film thickness can be easily deduced. But since the measurements
are done while depositing the film, this device also appears to be well adapted
to unstationary entrainments; we present two examples of such behaviors.

2. SLOW AND PURE COATINGS: THE
VISCOCAPILLARY REGIME

2.1 The Goucher Picture
In their pioneering work, Goucher & Ward (1922) identified the key parameters
of the problem: if the solid is drawn slowly, the liquid layer will be thin (since it
is zero when the velocity is zero, where the possible existence of a microscopic
wetting film is neglected). Thus, the main roles are played by the interfaces. The
solid-liquid interface is essential because the boundary condition at this interface
is responsible for the liquid entrainment. Because of the liquid viscosity, the
liquid near the solid must move at the same velocity as the solid (and thus comes
out with it). At the same time, the motion of the solid provokes a deformation
of the liquid-air interface, what the surface tension opposes. Thus, viscous and
capillary forces play antagonist roles, and it is natural to consider as a key
parameter the ratio of these forces. It is the so-called capillary number, which

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
9.

31
:3

47
-3

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ite

 P
ar

is
 6

 -
 P

ie
rr

e 
et

 M
ar

ie
 C

ur
ie

 S
IN

G
L

E
 S

IT
E

 o
n 

12
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



           
P1: NBL/spd/mbg P2: NBL/plb QC: NBL/uks T1: NBL

November 16, 1998 17:29 Annual Reviews AR075-10

352 QUÉRÉ

is computed by

Ca= ηV

γ
, (1)

whereη andγ are the liquid viscosity and surface tension, respectively, and
V is the coating velocity. Thus, it is expected that the film thickness can be
expressed as

h = `f(Ca), (2)

wherè is some static length, which should depend on the geometry of the solid;
i.e. the capillary length for a large solid (a plate or a roll) and its radius for a fi-
ber or a tube thinner than the capillary length. Goucher and Ward also obtained
experimental data by coating metallic wires with melted beeswax and weighing
them after solidification. They found that f(Ca) is an increasing function close
to linearity.

2.2 The LLD Theory
The first (correct) determination of the function f(Ca) in Equation 2 was the
theory developed by Landau, Levich, and Derjaguin (LLD theory). We sum-
marize it by using scaling arguments. The description is based on Figure 4,
drawn for the fiber case.

The region where the film forms is called the dynamic meniscus, with a
thickness of orderh and lengthλ. In this region, a flow takes place because of
the Laplace pressure1p caused by the curvature of the film: for small thickness

Figure 4 The LLD picture. At low speed, the top of the static meniscus is slightly deformed in a
dynamic meniscus (of lengthλ) where the film forms.
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(h� r), 1p equalsγ /r. If inertia can be neglected, the viscous force balances
the pressure gradient along the dynamic meniscus, which is written as

ηV

h2
∼ 1

λ

γ

r
. (3)

In the latter equation,λ is unknown. Some authors have proposed to make
it constant (equal to the fiber radius), but this statement is not correct. One
guesses thatλ varies for example with the velocity. The LLD theory proposed
to determineλ by matching the static meniscus with the dynamic meniscus.
The matching is done by balancing the Laplace pressure, which is zero in the
static meniscus ifr is smaller than the capillary length (James 1974, White &
Tallmadge 1965a), but incorporates two terms of opposite signs in the dynamic
meniscus: one caused by the curvature of the fiber and one relative to the second
derivative of the profile. Thus, the matching dimensionally is written as

γ

r + h
− γ h

λ2
∼ 0. (4)

For thin films (h� r), it yields

λ ∼ √
hr . (5)

This simple relation appears to be very general. The length of the dynamic
meniscus is the geometric mean of the two lengths of the problem (namely the
thickness and the radius). Equation 5 allows us to eliminateλ in Equation 3,
which leads to power laws for the film thickness and for the length of the
dynamic meniscus. One finds:

h ∼ r Ca
2
3 (6a)

λ ∼ r Ca
1
3 . (6b)

The careful calculation derived from the LLD theory is an asymptotic match-
ing that provides the numerical coefficient in Equation 6a (Levich 1962,
Derjaguin & Levi 1964). The exact LLD law is written

h = 1.34r Ca
2
3 . (7)

Equation 7 is sometimes referred to as the Bretherton law, since Bretherton
(1991) showed that it gives the thickness of the film left behind a drop moving
inside a capillary tube of inner radiusr. It also gives the thickness of the film
remaining at low capillary number on the walls of a Hele-Shaw cell (of spacing
2r) emptied by a nonviscous fluid (Park & Homsy 1984). The special case in
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which the fluid driving out the liquid has a nonnegligible viscosity was studied
by Schwartz et al (1986). Then the film thickness should increase from the LLD
value to 22/3 (about 1.6) times the LLD value when the ratio of the surrounding
fluid viscosity to the liquid one increases from zero to infinity.

2.3 The White & Tallmadge Correction
Equation 7 is derived for small capillary number (it is supposed thath� r, which
implies Ca� 1). As Ca increases,r must be replaced byr + h in Equations 3
and 5 and thus in Equations 6 and 7. The entrainment law becomes (White &
Tallmadge 1966)

h = 1.34r Ca
2
3

1 − 1.34Ca
2
3

. (8)

The latter expression diverges for Ca= 0.64. At this point, the gradient of
pressure between the film and the reservoir vanishes. In the absence of gravity,
the reservoir is fully entrained by the fiber.

In Figure 5, the measured thickness divided by the wire radius is displayed
as a function of the capillary number for various wires and viscous silicone
oils (de Ryck & Quéré 1996). Equation 8 is drawn in the same plot and fits
quite well with the experimental data. As long as the thickness is much smaller
than the radius, the LLD equation is followed; then the capillary divergence
predicted by White and Tallmadge can be observed. Thus, for a model system
(smooth fibers, wetting viscous liquids, and slow withdrawal), Equation 8 is
obeyed on a wide range of capillary numbers. The film thickness results from
a balance between the viscous forces, which are responsible for the existence
of a macroscopic film, and the capillary forces, which tend to make it as thin
as possible. Therefore, the visco-capillary regime concerns slow fluid coating
for all pure wetting fluids.

The capillary divergence predicted by Equation 8 is specific of the fibers.
Conversely, a regime of capillary convergence is expected for the film remaining
behind a drop in a tube (Figure 1e), where the obvious inequalityh< r must
be satisfied. Indeed, it was shown by Taylor that the film thickness becomes
constant (h∼ 0.34r) as the capillary number increases (Taylor 1960, Cox 1962).
The crossover regime from the LLD law to the limiting value was theoretically
studied by Reinelt & Saffman (1985), who took into account the particular
shape of the finger of air blowing away the liquid from the tube. Of course,
a similar saturation is observed when draining a Hele-Shaw cell, whereh is
observed to tend to be about 0.2r (with r the half-spacing of the cell) (Tabeling
et al 1987).
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Figure 5 Slow coating of thin wires (r = 12.5, 63.5, or 88.5µm) by various viscous silicone oils;
the viscosities range between 20 mPa· s and 500 mPa· s and the coating velocities between 0.1
mm/s and 5 cm/s. The symbols correspond to different radii and oil viscosities, but all the data
obey the WT equation (Equation 8), a generalized form of the LLD law (Equation 7).

3. DEVIATIONS FROM THE LLD LAW
AT LOW VELOCITIES

Natural limitations on Equations 7 and 8 may be significant, even with the re-
striction to slow withdrawal out of a pure Newtonian fluid. In this section,
we successively review the influence of gravity, the role of intermolecular
forces, and the case of partial wetting. Other important deviations concern-
ing high-velocity withdrawal (inertial effects) and the use of complex fluids
as coating liquids (Marangoni coating) will be treated separately in Sections 4
and 5.

3.1 Influence of Gravity
Gravity has been neglected up to now, which is justified if the Laplace pressure
is much larger than the hydrostatic one. It corresponds to the limit of a small
Bond number, which compares gravity and capillary forces; for a fiber (or a
tube), it is written as Bo= ρgr2/γ = r2κ2 (with ρ the liquid density,g the
gravity acceleration, andκ−1 the capillary length). The condition Bo� 1 is
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usually fulfilled up to radius of a fraction of a millimeter. For example, for a
fiber of radiusr = 400µm in a silicone oil, we get Bo= 0.07.

When the Bond number (or its square root, often referred to as the Goucher
number) is not negligible compared with unity, the film thickness depends on
both the capillary and the Bond numbers (Tallmadge et al 1965). A particular
case is the limit of an infinite fiber radius (Bo→ ∞), which is clearly not de-
scribed by Equation 7, where it implies an infinite thickness. In this case, which
corresponds to the withdrawal of a plate, the characteristic length becomes the
capillary lengthκ−1, which is the typical size of the static meniscus of a wetting
liquid along a vertical plate. Thus,r must be replaced byκ−1 in Equation 7;
besides, the numerical coefficient changes from 1.34 to 0.94 (Derjaguin & Levi
1964) and the coating equation is written

h = 0.94κ−1Ca
2
3 (9)

which is the original form of the LLD equation.
The crossover from the fiber to the plate occurs around Bo= 1 (r = κ−1),

as shown theoretically and experimentally by White and Tallmadge (1965b &
1966). Improvements in the theory were proposed by Wilson (1988). Similar
studies were done for the drainage of capillary tubes of large inner radius
(Lasseux & Quintard 1991).

In the plate case (Figure 1a), increasing the capillary number makes the
film thicker (Equation 9), which thus becomes more and more sensitive to
gravitational drainage. Hence for large capillary numbers, the surface tension
should not play any role. Derjaguin suggested looking for a behavior of the
form h∼ κ−1Can independent ofγ , which gives n= 1/2 (Derjaguin & Levi
1964). In this visco-gravitational regime, the film is not flat but has a parabolic
profile because of the gravitational drainage (Jeffreys 1930). The crossover
from the capillary regime to the gravitational one is particularly large (6 orders
of magnitude in capillary number), which makes the two asymptotic regimes
difficult to study separately (White & Tallmadge 1965b).

3.2 Role of the Intermolecular Forces
At a very low velocity, the entrained film is so thin that intermolecular forces
cannot be ignored (the range of van der Waals forces is of the order of 100 nm).
When these forces favor a thick film, van der Waals forces are often described
via a disjoining pressure5(h), which is the pressure that must be applied to the
film surface to maintain it at a thicknessh smaller than the range of the force
(Derjaguin 1955). For nonretarded forces, it is written as5(h) = −A/6πh3,
where A is the Hamaker constant which is negative for most wetting films
(Israelashvili 1985, de Gennes 1985). Because of the thickening effect of long-
range forces, the film is expected to be thicker than predicted by Equation 7 and
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to settle at a value independent of the capillary number (Teletzke et al 1988).
The equilibrium thickness is determined by balancing the disjoining pressure
with the capillary one (of orderγ /r for thin films on fibers), which yields

h = a
2
3 r

1
3 , (10)

wherea is a microscopic length (a= √−A/6πγ ), generally on the order of
1 Å. Thus, the equilibrium thickness is expected to be between 1 and 10 nm.
Together with Equation 7, Equation 10 finally provides the capillary number
below which the thickness should be a constant. It is written simply Ca∼ a/r ,
of order 10−5–10−4 for fiber radii between 10 and 100µm. Such a plateau
was indeed observed for a very slow withdrawal out of a bath of wetting liquid
(Quéré et al 1989). Effect of disjoining pressure on the film thickness was
also investigated for films remaining inside a capillary tube by Derjaguin and
Bondarenko, from which the Hamaker constant could be measured (Derjaguin
et al 1972, Bondarenko et al 1977). All these different experiments require
smooth solids, since the surface roughness would also be a natural cause of
plateau in the limit of small thicknesses, as emphasized by Bretherton (1961)
and shown experimentally by Chen (1986).

A closely related problem is the spontaneous formation of a microscopic
wetting film on a fiber put in contact (i) with a liquid (Brochard 1986) or (ii) with
a vapor likely to condense on the fiber (Gelfand & Lipowsky 1987, Upton et al
1989). The main feature is the effect of curvature, which fixes the film thickness
as in Equation 10. Comparing the situation with a planar one, slight shifts for
the threshold in spreading parameter (case i) or in wetting temperature (case ii)
have also been theoretically predicted. The existence of such microscopic films
was shown by di Meglio (1986), by depositing two drops close to each other
on a fiber; after a while (corresponding to the progression of a microscopic
film finally able to connect the drops), it could be observed that the smaller
drop, of higher Laplace pressure, emptied in the larger one via this microscopic
channel.

3.3 The Dry Regimes
When the solid is only partially wetted by the liquid, long-range forces generally
squeeze the film (the disjoining pressure is negative). Hence one could expect
that a transition would be observed as a function of the capillary number—no
film below a threshold, then a sharp increase up to the thickness corresponding
to the range of the intermolecular forces (typically 100 nm), and finally the
LLD law (Teletzke et al 1988).

Such a transition between a dry and a wet regime indeed is observed (Petrov
& Radoev 1981), but the critical thickness for which there is a sharp transition
is found to be generally on the order of 1µm, much larger than the range of
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Figure 6 Dry regimes: (a) in partial wetting situations, a solid can come dry out of a bath if slowly
drawn; (b) if plunging a solid quickly in a liquid bath, the dynamic contact angle is obtuse; (c) at
still higher velocities, film of air can be entrained.

van der Waals forces (Qu´eré & Archer 1993). Actually, the dry regime involves
a moving contact line (the line where the solid, the liquid, and the vapor coexist);
the liquid wedge close to it is able to resist to viscous dissipation provided that
the line velocity is not too high (de Gennes 1986) (Figure 6a). Above a threshold
(typically about 1 cm/s), viscous forces dominate capillary ones. A film is left,
and the LLD regime is recovered (Figure 1d ). The critical velocity above which
fluid coating occurs is mainly fixed by the material’s properties (Sedev & Petrov
1992). In particular, it sharply increases with the static receding contact angle
(Quéré & Archer 1993) but does not depend on the fiber curvature (Sedev &
Petrov 1988, 1992).

Conversely, the fiber (or more generally the solid) can be dipped inside
the bath (Figure 6b). By taking photographs, Inverarity (1969) measured the
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dynamic contact angle between the liquid and a fiber at the entrance of the bath
as a function of the velocity V (ranging between 10µm/s and 10 m/s) and the
liquid viscosityη (between 1 mPa· s and 1 Pa· s). The contact angle is found
to be an increasing S-shaped function ofηV, from 0◦ (when the solid is wetted
by the liquid) to 180◦. These results were confirmed by Hoffman (1975), who
showed by a series of measurements inside a capillary tube that the dynamic
contact angle for a wetting liquid is a function only of the capillary number.

The problem of the dynamic contact angle has been widely covered since
these pioneering studies but remains quite controversial (Dussan 1979, Blake
1993). Various angle-velocity relationships have been found experimentally
(see for example Hayes & Ralston 1993 for a good summary); recent progress
concerns the vicinity of the contact line where accurate descriptions of the
shape of the meniscus have been reported (Dussan et al 1991, Shen & Ruth
1998). On the theoretical side, different approaches were proposed: (i) hy-
drodynamic models, where surface forces are balanced by viscous ones in the
liquid wedge (Voinov 1976, de Gennes 1986, Cox 1986); (ii) molecular ki-
netic theory, involving molecular jumps close to the contact line (Blake &
Haynes 1969, Blake 1988). [These approaches should be complementary; at
low velocity, the hydrodynamic model seems adequate whereas molecular fea-
tures should dominate at high speed (Brochard-Wyart & de Gennes 1992,
Ruckenstein 1992, Petrov & Petrov 1992)]; (iii) numerical simulations, par-
ticularly interesting to investigate the boundary condition (i.e. the possibility of
slip) in the microscopic vicinity of the contact line (Koplik et al 1988, Thomson
& Robbins 1989, 1990).

As the dynamic angle approaches 180◦, Inverarity (1969) observed that air
entrainment can occur at the entrance of the bath (Figure 6c). The criteria
for making a film of air at the entrance of a bath have been investigated by
several authors (Blake & Ruschak 1979, Burley & Kennedy 1976, Burley et al
1984, Ghannam & Esmail 1990), often by plunging tapes into a bath. Similar
studies were also performed with fibers by Ghannam & Esmail (1993), who
show that the results are independent of the fiber radius. In each case, the critical
velocity Vo above which air entrainment occurs was measured. Some interest-
ing correlations were obtained (for example, the higher the viscosity, the lower
the threshold), but there are no general laws; for example, the role of the static
advancing angle was not clearly investigated; otherwise, measurements of the
thickness of the film of air (which is highly unstable) are missing. In practice, a
full understanding of the laws of air entrainment would be very useful; the criti-
cal velocity Vo is often a limit in coating processes because air entrainment at the
entrance of the bath can be the cause of an irregular coating or even of no coating
at all if the time spent by the solid in the bath is on the order of the lifetime of
the air film.
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4. QUICK COATINGS: INERTIAL EFFECTS

Even for large capillary numbers (Equation 8), we have supposed small coat-
ing velocities, which can be practically achieved with very viscous oils, as in
Figure 5. We now describe the coating with a liquid of low viscosity, for which
the condition of a small capillary number can be fulfilled even at large veloc-
ity: coating with water at Ca= 0.01 implies a velocity on the order of 1 m/s,
much larger than considered up to now. Then inertia, which was neglected (in
Equation 3) to derive the LLD law, may become important. The Weber number
evaluates its influence by comparing inertia with capillary force. It is written as

We = ρV2r

γ
(11)

whereρ is the liquid density. (Alternatively, a Reynolds number could also be
introduced, as suggested by Tallmadge and Soroka (1969); taking as a charac-
teristic length the fiber radius, this is written as Re= ρrV/η, and thus is simply
We/Ca.)

For a thin fiber (of radius 10–100µm) coated with usual liquids, a small
Weber number means withdrawal velocities smaller than 1 m/s; for a liquid of
low viscosity, this condition also implies a small capillary number. To evaluate
the influence of inertia in plate coating, the dynamic pressure,∼ρV2, must be
compared with a typical hydrostatic pressure in the dynamic meniscus, which
is ρgκ−1. Hence the radius must be replaced by the capillary length in the
definition of the Weber number. A negligible Weber number corresponds to
withdrawal velocities<

√
gκ−1 (typically on the order of 10–20 cm/s).

4.1 The Viscoinertial Regime
To understand the influence of inertia on fiber coating, liquids of low viscosity
must be used. For water, for example (η = 1 mPa· s), varying the velocity
between 1 cm/s and 1 m/s for a fiber of radius 50µm increases the Weber
number from 10−4 to 1, whereas the capillary number always remains much
smaller than 1. The latter condition allows us to compare the observed behavior
with the LLD law (Equation 7).

Then, as shown in Figure 7, inertia strongly affects the coating laws. The
data were obtained by drawing thin wires (r = 63.5µm andr = 12.5µm) out
of water at velocities ranging from 30 to 180 cm/s (de Ryck & Qu´eré 1996).
The LLD law (Equation 7 or Equation 8) is pictured in full line.

For both wires, the film thickness can be fitted by the LLD equation only at
low velocity. Above a threshold in capillary number, the film thickness sharply
rises with the capillary number, since it increases about tenfold by simply dou-
bling of the velocity. A diverging behavior was also encountered with viscous
oils (Figure 5), but it was observed for a capillary number of order 1 (instead
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Figure 7 Quick coating out of water. The data quit the LLD and WT laws (Equations 7 and 8)
above a threshold in velocity (typically 1 m/s) which depends on the fiber radius (black squares:
r = 12.5µm; white squares:r = 63.5µm).

of 0.01 here) and had a smoother shape. The capillary number Ca∗ for which
the thickness diverges depends on the wire radius, because it roughly doubles
when the radius is divided by 5. Thus, at large coating velocities, the capillary
number is not sufficient for describing the data and a second dimensionless
number must be introduced. Evaluated at the point where the thickness leaves
the Landau law in Figure 7 (for Ca∼ Ca∗), the Weber number is found to be
in both cases∼1, which confirms that inertia is responsible for the observed
effect.

The reason inertia sharply thickens the film can be understood by considering
Figure 4. The liquid enters the dynamic meniscus at a velocity of order V, and
there undergoes a gradient of Laplace pressure. If the fluid kinetic energy per
unit volume is larger than the capillary pressure, the latter can be neglected, and
nothing retains the liquid any longer; the thickness diverges. The Weber number
compares these two quantities, and thus a Weber number of unity provides the
velocity V∗ for which the divergence occurs. From Equation 11, we find

V∗ ∼
(

γ

ρr

) 1
2

(12)

V∗ varies slowly with the different parameters it contains and is generally
∼1 m/s, which corresponds to a critical capillary number of 0.01 for pure
water. Equation 12 also explains the dependence on wire radius observed in
Figure 7 (Ca∗ ∼ 1/

√
r ).
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To have a feeling on the shape of the divergence, we can write dimensionally
the Navier-Stokes equation:

−ρV2

λ
+ 1

λ

γ

r
∼ ηV

h2
, (13)

which is Equation 3 written with the convective term. The Laplace pressure
gradient and the convective term are of opposite signs, as explained above.
Thus, the effective pressure in the film is written p= γ /r − ρV2, from which
the lengthλ of the dynamic meniscus can also be evaluated. The matching is
then shown as (still supposingh� r):

γ

r
− γ h

λ2
∼ ρV2. (14)

Putting together Equations 13 and 14 yields an expression for the thickness,
as a function of both the capillary and the Weber numbers:

h ∼ r Ca
2
3

1 − We
, (15)

where the numerator is the LLD thickness (Equation 6a). The denominator in
Equation 15 appears to be the simplest factor making the thickness diverge for
We= 1. This first-order analysis clearly emphasizes the parameters responsible
for the divergence and appears to be in agreement with the data (de Ryck &
Quéré 1996). On the base of a model proposed by Esmail & Hummel (1975),
detailed calculations have been done, in quantitative agreement with the exper-
iments (de Ryck & Qu´eré 1993b, Koulago et al 1995).

This regime of viscoinertial divergence can be observed if it occurs at a
capillary number<1, the value for which a smooth capillary divergence takes
place (see Equation 8). Together with Equation 12, it provides a condition
for observing this regime. Written on the viscosity, it readsη <

√
γρr . For

standard values of the parameters, it implies a viscosity smaller than 40 mPa· s,
a condition fulfilled in most practical situations where aqueous solutions are
used.

Another question is whether the divergence could be also observed in plate
coating experiments. On this point, the situation is rather confused since some
papers predict that the effect of inertia should be to make the film thinner
(and not thicker as observed) (Soroka & Tallmadge 1971, Esmail & Hummel
1975). Unfortunately, experimental data concerning high coating velocities
were obtained with viscous oils, enlarging both the capillary and the Weber
numbers (Spiers et al 1974), possibly with non-Newtonian effects (Gutfinger
& Tallmadge 1965). In such conditions, calculations are hard to achieve. Re-
cent numerical results, obtained from the case in which the capillary number
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remains smaller than unity while the Weber number becomes nearly unity, ex-
hibit a smooth divergence (de Ryck & Qu´eré 1998)—smoother than in the fiber
case because of gravity, which makes the liquid flow down and thus limits the
thickness. To the best of our knowledge, there is only one experiment corre-
sponding to these conditions on We and Ca (Tallmadge & Stella 1968). For
quick coating of a plate by pure water, a sharp increase of the film thickness
above a threshold in velocity is indeed reported at small capillary number
(Ca< 10−3).

4.2 Entrainment of a Viscous Boundary Layer
We now examine the coating at higher velocities. When the solid passes through
the reservoir, the liquid close to it is put in motion because of the liquid viscosity.
The layer entrained in volume is the viscous boundary layer, of thicknessδ

dimensionally given by balancing the acceleration of the fluid (of orderρV/t,
wheret is the contact time of the solid with the liquid) with the viscous force
(of orderηV/δ2). Thus, we find at the exit of the reservoir (of length L):

δ ∼
√

ηL

ρV
. (16)

At low velocity, δ is large compared with the thickness of the entrained film,
given by Equations 7, 8, or even 15, and the arguments proposed above can be
used. But if the Weber number is larger than 1, the regime is purely inertial
(the capillary suction can be neglected), so that the film which comes out with
the solid is the film that the solid has entrained in the volume, i.e. the viscous
boundary layer. Then, we expect the film thickness to be simply given by
Equation 16.

The proof that the high-velocity regime is unstationary is given by allowing
the reservoir to be emptied by the running wire (de Ryck & Qu´eré 1994). In
Figure 8, the mass of the reservoir is plotted versus time for a fiber (r = 110µm)
drawn at V= 1.6 m/s out of a bath of water of initial length Lo= 5.1 cm (at point
A, the wire is entrained; at point B, the reservoir is empty). The corresponding
Weber number is 6, which implies a purely inertial regime.

The curvem(t) is not linear but rather looks like a parabola. This shape is in
agreement with the arguments exposed above: as time goes on, the reservoir
gets shorter and the film thinner. Ifh is given by Equation 16, we haveh ∼ √

L.
Together with dL/dt ∼ dm/dt ∼ −h (for h� r), it yieldsm∼ L ∼ t2, as observed
in Figure 8.

Conversely, for a given length, the entrained thickness can be deduced from
a slope measurement in Figure 8. It is plotted in Figure 9 versus the velocity
for two reservoir lengths. After a slow and a quick increasing (respectively, the
LLD and the visco-inertial regimes), the thickness indeed decreases with the
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Figure 8 Mass of the reservoir when emptied by a moving wire at high speed (here 2 m/s). The
entrainment is not stationary.

velocity, according to Equation 16 (drawn in full line). The fit provides a con-
stant numerical coefficient in Equation 16 of 1.2 (±0.1). Detailed calculations
remain to be done to understand this value and to describe the transition be-
tween the divergence and the viscous boundary regime. In recent experiments
done with pure water on the industrial device pictured in Figure 2, the viscous

Figure 9 Summary of the different inertial regimes. Beyond the LLD regime (in full line, close
to the origin) the film thickness first diverges; then it slowly decreases with the coating velocity. It
follows Equation 16 (in full line) and depends on the length L of the reservoir.
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boundary regime (h∼ 1/
√

V) was shown to be valid at least up to 30 m/s
(Huguet et al 1997).

Inertia finally appears to play two antagonist roles, as summarized in Figure 9:
first, at intermediate speed (typically around 1 m/s), the inertia of the fluid mov-
ing close to the fiber thickens the film; then inertia of the immobile bath makes
the film thinner. The film thickness is finally given by the smallest value be-
tween Equations 15 and 16. If the dipping timeτ i = L/V is chosen as a control
parameter, a similar nonmonotonous behavior is expected—first a parabolic
increasing function (Equation 16); then, aboveτ ∗

i = L/V∗ (see Equation 12),
a decreasing of the film thickness. Such a behavior was also reported in freeze
coating processes (where a cold wire is drawn from a hot molten phase), even
if the problem is complicated in this case by the growth of a solid phase onto
the wire surface, as stressed in the introduction.

4.3 Expulsion of Droplets
A third effect related to inertia can be observed if working with a long reservoir
of small aperture (de Ryck & Qu´eré 1996). Figure 10 shows what happens with
a reservoir of water about 10 times longer (initial length L= 30 cm). At point
A, a nickel wire (r = 88.5µm) is moved at V= 0.5 m/s.

Between A and B, the curvem(t) has a stairs shape. Each step corresponds
to the visible expulsion of a drop of radius R, the aperture of the reservoir.
Between two stairs, the mass is not a constant but slowly decreases because the
wire continuously entrains a film. After B, the expulsions stop.

The expulsion of droplets is caused by the impact of the viscous boundary
layer on the outside meniscus of the bath. The capillary force retaining the

Figure 10 Quick coating out of a long reservoir. Its mass is plotted versus time. Drops are
expelled, until point B.
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meniscus and anchoring the drop inside the horizontal tube isγ R, while the
viscous force is the dynamic pressure (ρV2) times the surface on which it
applies,δ2 (L is large, and we haveδ � r), whereδ is given by Equation 16.
Hence the viscous force is written simply:ηVL. If it exceeds the capillary
force, the meniscus twists (as an umbrella in the wind) and a drop is removed.
Equating these two forces gives the threshold of the expulsion regime, shown as

LCa ∼ R. (17)

For a given velocity V and aperture R, the drop expulsion occurs if the
reservoir is longer than L∗ = R/Ca. If a long reservoir is emptied by drawing
a fiber out of it, first drops are expelled up to the point where L(t) reaches L∗

(point B in Figure 10). Determined as a function of the velocity for different
liquids, L∗ was found to be in good agreement with Equation 17 (de Ryck &
Quéré 1996). The characterization of this regime is practically important since
drop expulsion is noxious for achieving a well-controlled regular coating.

5. COMPLEX FLUIDS

5.1 Coating from a Soapy Water: the Thickening Effect
Even a child knows that a film of water can be made in the absence of a solid:
when blowing a bubble, a film of (soapy) water is sustained in air. Thus, in
the presence of surfactants, the liquid-air interface has an ability of towing
matter, like a solid-liquid interface. If a solid is drawn out of a bath containing
surfactants, both the solid and the free interface can entrain matter, and the film is
expected to be thicker than predicted for a pure liquid of the same characteristics.

This effect is indeed observed, as first reported by Carroll and Lucassen
(1973). In their experiment, a textile fiber was pulled through an oil-water
interface where surfactants were present. The thickness was deduced from a
gravimetric analysis, after dissolution of the film in a solvent. For Ca varying
from 2 × 10−3 to 10−1, they showed that the presence of surfactants thickens
the film by a factor of∼2.5.

The simplest analysis of this thickening effect consists in supposing that the
free interface moves at the same velocity as the solid. Such an assumption is
classical in the closely related problem of the making of a soap film by moving a
frame out of a solution of soapy water. Then it is supposed that the film surfaces
go at the same velocity as the frame (rigid interface), which leads to Frankel’s
law for the soap film thickness (Mysels et al 1959):

h = 1.88κ−1 Ca
2
3 , (18)

which is the LLD law (Equation 9) fortwoplates (one per surface) drawn out of
liquid. Mysels & Cox (1962) and Lyklema et al (1965) have confirmed Frankel’s
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law for solutions that provide a rigid interface, under the usual condition
Ca� 1 and for films thick enough to neglect the effect of long range forces
(h> 100 nm).

For fluid coating on a solid, supposing a rigid free interface implies that the
film thickness still follows the LLD law at low speed (h∼ Ca2/3) but modifies
the numerical coefficient. Ratulowski & Chang (1990) and Park (1991) have
shown that the thickening factorα (ratio of the actual thickness on the LLD
one) is equal to

α = 4
2
3 , (19)

which is 2.52, in close agreement with Carroll’s experimental results (Carroll
& Lucassen 1973).

Equation 19 is asymptotic, since the liquid-air interface cannot move faster
than the solid; 42/3 is the maximum thickening factor, and each value between
1 and 42/3 should be observed. In Figure 11 for example, the film thickness is
displayed versus the capillary number, for wire coating (r = 88.5µm) out of a
solution of SDS (sodium dodecyl sulfate) at a concentration of 20 g/L (about 8
times the critical micellar concentration) (Qu´eré et al 1997).

In this example, the thickening factor is found to be 1.8 (±0.1), smaller than
its predicted maximum of 42/3 (Equation 19). Besides, it is independent of the
drawing velocity, except for quick withdrawal (Ca> 0.02), where the beginning

Figure 11 Coating a wire out of a solution of surfactant. At low velocity, all the data are above
the LLD law (in full line); the film is thicker by a factor of order 2; at larger velocity, the beginning
of the inertial regime can be observed.
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Figure 12 Drawing a solid out of a solution of surfactants can generate a gradient of concentration
(and thus of surface tension) at the free surface.

of the divergence caused by inertia can be observed. Our aim is to understand
what fixes the value ofα and why it is independent of the velocity.

We first try to understand the reason the film is thicker than in the absence of
surfactant (Carroll & Lucassen 1973, Ratulowski & Chang 1990, Park 1991).
When drawing the solid, a gradient of surface concentration (and thus of surface
tension) takes place in the dynamic meniscus, the region where the film forms
(Figure 12). It is not an equilibrium situation. A so-called Marangoni flow sets
up between the reservoir, of low surface tensionγ , and the film of higher surface
tensionγ + 1γ , which causes the thickening of the film. This raises a delicate
question since we need to know the actual value of the surface tension which
holds in the dynamic meniscus to be able to calculate the capillary number (and
then the thickening factor). In Figure 11, for example, the equilibrium surface
tension was taken to calculate Ca.

To measure the surface tension in situ, we can take advantage of the diverging
behavior caused by inertia. Since the thickness diverges when the Laplace
pressure is similar to the dynamic pressure, the location of the divergence in
Figure 11 gives access to the value of the surface tension at the exit of the
dynamic meniscus (Equation 12). It is found that the divergence location can
be understood only if a value very close to the equilibrium one is taken for the
surfactant solution (Qu´eré et al 1997).

Thus, the tension difference1γ is much smaller than the tensionγ itself. It
can be understood by a simple argument (Ratulowski & Chang 1990). Before
the detail of the velocity profile inside the dynamic meniscus can be found, two
boundary conditions must be written. Very generally, there is no slippage at the
solid-liquid interface, so that the velocity of the liquid at that boundary is the

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
9.

31
:3

47
-3

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ite

 P
ar

is
 6

 -
 P

ie
rr

e 
et

 M
ar

ie
 C

ur
ie

 S
IN

G
L

E
 S

IT
E

 o
n 

12
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



              
P1: NBL/spd/mbg P2: NBL/plb QC: NBL/uks T1: NBL

November 16, 1998 17:29 Annual Reviews AR075-10

FLUID COATING ON A FIBER 369

solid velocity. This condition is responsible for liquid entrainment, in any case.
At the liquid-air interface, the viscous stress, which is zero for a pure liquid,
can be balanced by a surface tension gradient when surfactants are present. If x
and z are the directions parallel and perpendicular to the flow (Figure 12), this
condition is written

η
∂u

∂z

∣∣∣∣∣
surface

= dγ

dx
, (20)

where u is the fluid velocity along x. The experimental results justify the utiliza-
tion of the LLD scaling for the characteristic lengths (Equation 6), so that
Equation 20 dimensionally reads

1γ

γ
∼ Ca

2
3 . (21)

Thus, for small capillary numbers (Ca� 1), the surface tension difference is
found to be much smaller than the surface tension itself (1γ � γ ), although
it generates a strong thickening effect (1h∼ h).

5.2 The Thickening Factor
A gradient of surface concentration of surfactants is responsible for the thicken-
ing effect. Diffusion could erase this gradient but it is dominated by convection
in the experiments (and in most coating processes). Otherwise, the effect is ob-
served above the critical micellar concentration: a large reservoir of surfactants
stands under the surface, and adsorption from the volume is another possible
mechanism for opposing the gradient. The timeτv spent by the surfactant in
the dynamic meniscus (of lengthλ ∼ r Ca1/3, Equation 6b), or transit time, is
'λ/V, and thus is written

τv ∼ r η

γ

1

Ca
2
3

. (22)

Drawing a thinner fiber from a given solution makes the transit time shorter.
Adsorption has less time to take place so that the thickening effect should be
larger. This hypothesis was confirmed by doing systematic experiments with
different wires. If plotted versus the fiber radius (Figure 13), the thickening
factor is found to decrease monotonously withr, while remaining smaller than
its maximum predicted valueα = 42/3 ≈ 2.5 (Equation 19).

Thus adsorption plays a key role in the thickening process. The kinetics of
adsorption can be described by taking a linear form for the surfactant flux Q (per
unit length) from the volume to the surface: Q= ν∗c10/0o, where0o is the
equilibrium surface concentration,10 the shift from equilibrium,c the volume
concentration, andν∗ an intrinsic velocity depending on the surfactant (Ginley

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
9.

31
:3

47
-3

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ite

 P
ar

is
 6

 -
 P

ie
rr

e 
et

 M
ar

ie
 C

ur
ie

 S
IN

G
L

E
 S

IT
E

 o
n 

12
/2

3/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



             
P1: NBL/spd/mbg P2: NBL/plb QC: NBL/uks T1: NBL

November 16, 1998 17:29 Annual Reviews AR075-10

370 QUÉRÉ

Figure 13 Thickening factor caused by the presence of surfactants in the bath as a function of the
wire radius (for a given solution). The full line is Equation 24.

& Radke 1989). The surface concentration and the surface tension are related
by the Marangoni number M (M= −0/γ (∂γ /∂0)). For small differences
(Ca� 1, Equation 19),10/0o is simply proportional to1γ/γ , the relative
difference in surface tension across the dynamic meniscus.

The instantaneous adsorption timeτadrelated to this flux isτad= 0o/Q. Using
Equation 21, its scaling with the different parameters is shown as

τad ∼ M0o

ν∗c

1

Ca
2
3

. (23)

It appears thatτad decreases with the velocity (the slower the withdrawal, the
smaller the gradient and thus the smaller the adsorption flux) and in the same
way asτv (see Equation 22). The ratio of these times isτad/τv = µ/r, where
µ depends only on the liquid (µ = M0γ /ν∗cη is typically 100µm, thus∼r).
For any given solution and wire, the ratioτad/τv is independent of V, which
explains why the thickening is a constant as a function of the velocity (a result a
priori paradoxical). The (dimensionless) thickening factorα is expected to be
a function of the only (dimensionless) ratio,µ/r. The calculation can be done
by balancing convection and adsorption. A simple interpolation function going
from 1 to 42/3 asµ/r goes from 0 to infinity is finally derived (Ou Ramdane &
Quéré 1997):

α ≈
(

4µ + 2r

µ + 2r

) 2
3

. (24)
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Figure 14 Thickening factor as a function of the surfactant concentration (for a given wire) (the
cmc is the critical micellar concentration).

Equation 24 is illustrated in Figure 13 (full decreasing line) in good agreement
with the data. The fit provides a value forµ (µ = 240µm), which finally yields
ν∗ ∼ 1 cm/s if taking M= 1. This velocity can be understood as the product of
a velocity for crossing the interface times a Boltzmann factor since adsorption
implies electrostatic and steric barriers. If V is the energy of the barrier anda
and D the molecular size and diffusion constant of the surfactant,ν∗ should be
computed asν∗ ∼ D/a exp(−V/kT), which would equal 1 cm/s if V is a few
kT (with k the Boltzmann constant).

It is finally logical to be interested in the way the thickening factor depends
on the surfactant concentrationc (de Ryck and Qu´eré 1993a). This variation
is displayed in Figure 14 for a nickel wire (r = 63.5µm) drawn out of an SDS
solution (the critical micellar concentration (cmc) is 8 mM).

Different features can be observed:

1. At a low concentration (c< 1 mM), there is no thickening. Experimen-
tal results can be hard to obtain in this regime because (i) the surfactant
reservoir can gradually run out (Qu´eré & de Ryck 1998), and (ii) acciden-
tal contamination may occur. Nevertheless, it is clearly observed in Fig-
ure 14 that traces of contaminant do not generate any appreciable thicken-
ing, in contradiction with what is put forward to explain deviations to the
LLD law in capillary tubes (Bretherton 1961, Ratulowski & Chang 1990,
Park 1992). An important difference between the two geometries is the
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existence in the tube of a point of accumulation at the top of the air bubble,
where the surfactant can be concentrated.

2. For a concentration of about 0.1 cmc, the thickening effect suddenly ap-
pears;α sharply rises to a maximum (α = 2.2 ± 0.1< 42/3) reached for
c≈ 0.4 cmc. At this particular concentration, the curveγ (c) (for the SDS)
has an inflexion point; thus, dγ /dc is maximum; this might be the reason
the Marangoni flow is most efficient there.

3. Then the thickening slowly decreases with the concentration, in qualita-
tive agreement with Equations 23 and 24: The larger the concentration, the
quicker the adsorption. Quantitative comparison is hard to achieve because
of the nontrivial dependence ofτad with c; it is not only inversely propor-
tional toc, since0o, M andν∗ should also depend on the concentration. In
particular, above the cmc (where the thickening effect is still present), the
way M andν∗ depend onc is not obvious.

4. For very concentrated systems (typically above 100 mM), the thicken-
ing effect does not remain independent of the capillary number. This case
does not appear in Figure 14, where all the data correspond to a constant
thickening factor versus Ca. It is observed thatα slowly decreases with
increasing Ca (Qu´eré & de Ryck 1998). Empirically,h(Ca)∼ Ca1/2, which
looks like behaviors predicted by Ratulowski & Chang (1990). Quan-
titative fits are not possible because Ratulowski’s model is restricted to
trace amounts of impurities. At still higher concentrations (above 300 mM),
the data get very close to the LLD behavior (α → 1); an excess of sur-
factant kills the thickening effect. There is no theory for concentra-
ted solutions which would allow us to understand quantitatively these
observations.

As a conclusion, surfactants at intermediate concentrations provoke a thick-
ening of the film, because of the Marangoni flow they induce in the dynamic
meniscus. The film thickness is roughly doubled by the presence of surfac-
tants, because each interface has the ability of entraining matter. In detail, the
thickening factor depends on the surfactant concentration and the wire radius
but surprisingly not on the drawing speed. These facts can be understood by
balancing convection and adsorption of the impurities in the dynamic meniscus.
Other regimes predicted by Ratulowski & Chang (1990) remain to be charac-
terized. An extension of these results to the making of soap films (and bubbles)
would be welcome.
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5.3 Emulsions
What finally happens when drawing a solid out of an emulsion? This case
was historically studied very early, since the LLD theory was developed to
characterize the deposition of photographic light-sensitive emulsions on flexible
solids (Derjaguin & Levi 1964). Although the LLD theory concerns Newtonian
fluids, concentrated emulsions (or suspensions) are generally non-Newtonian
and often behave as Bingham fluids: the forceτ (per unit area) necessary to
move two adjacent layers with a velocity gradientuz is not simply proportional
to uz, but also implies a minimum forceτo to put the liquid in motion (τo is the
so-called yield stress). Thus,τ writes:

τ = τo + ηuz. (25)

More generally, the coefficientη may itself depend on the shear rateuz. A
survey on this kind of viscoplastic fluid can be found in Bird et al (1982).

The calculation for the entrainment of a Bingham fluid is hard to achieve,
but an interesting limit pointed out by Derjaguin & Levi (1964) is the case in
which the term proportional to the velocity gradient can be ignored in Equa-
tion 25. Then the dynamic meniscus is the place of plastic deformations, and
the viscous stress attains its limiting valueτo in the vicinity of the solid surface.
Neglecting gravity, the balance between the Laplace pressure and the viscous
stress is dimensionally written (instead of Equation 3, for a Newtonian fluid):

τo

h
∼ 1

λ

γ

r
. (26)

The length of the dynamic meniscus is still given by Equation 5. Thus, the
film thickness follows the Derjaguin-Levi (DL) law:

h ∼ τ 2
o

γ 2
r 3. (27)

Like in the LLD theory, the numerical constant in Equation 27 can be calculated
by an asymptotic matching: it is found to be∼13.0 (Derjaguin & Levi 1964).
The dimensionless number B= (τor/γ )2 is generally negligible compared with
unity (for τo = 1 Pa, B is∼10−6), a condition necessary for Equation 27 to
be valid. Of course, Equation 27 can be generalized to other geometries, for
example to plate withdrawal, by replacing the fiber radius by the capillary
length; the numerical coefficient is affected in such a modification.

Equation 27 is independent of the withdrawal velocity, which is logical since
the velocity gradient was neglected in Equation 25. Derjaguin’s proposition for
considering the effect of viscosity just consists in adding the LLD (Equation 7)
and the DL (Equation 27) thicknesses. To the best of our knowledge, there is no
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experimental evidence of the DL theory. For the fiber case, it should concern
such unexpected situations as coating of eyelashes by mascara!

Another interesting case concerns the very dilute emulsions, for which there
is no non-Newtonian effect. Among the questions that can be raised, we want
to know whether the film has necessarily the same composition as the reservoir.
When one empties a glass of milk, an opalescent film remains on the glass,
which indicates that the film contains oil drops. The LLD law allows us to
evaluate the film thickness; it is typically about 20µm (taking 1 cm/s for the
emptying velocity of the glass), which is large compared with the drop diameter
8 in an emulsion (8 ∼ 1 µm).

In the other limit (h< 8), which concerns very slow coatings, it was found
in preliminary experiments that the film is often enriched in oil (Qu´eré &
de Ryck 1998). A model of capture was proposed to understand this effect. If
we suppose that the solid entrains all the droplets present in its vicinity, the oil
quantity is independent of the velocity, increases with the concentration, and
exceeds at small velocity what would be predicted by the LLD law—as observed
experimentally.

Of course, this result cannot be general. The capture can be promoted by
attractive long-range interactions between the oil drops and the solid (through a
layer of water), but repulsive interactions can also exist (if decreasing the oil or
solid polarizability), so that the film could be impoverished in oil if compared
with that in the reservoir. A detailed classification remains to be done but such
an experiment could be a direct way to evaluate interactions of oil droplets
with a solid (in a water environment), a subject for which results are rather
contradictory. The role of the droplets’ deformability can be also questioned:
we can wonder what happens if the drop is not deformable (i.e. a suspension
instead of an emulsion); for attraction, does the capture resist as in the shear in
the dynamic meniscus? Finally, the regime of very high speed, where the same
interesting limit (h< 8) is also reached, should be worth studying.

6. AFTER THE COATING

6.1 The Plateau-Rayleigh Instability
A fluid film on a fiber is generally unstable (Plateau-Rayleigh instability) (see
for example Middleman 1995). Because of the liquid surface tension (Plateau
1873), it spontaneously undulates and finally breaks into a periodic array of
droplets. Plateau showed that all the axisymmetric wavelengths larger than
the circumference 2π (r + h) of the fluid cylinder are unstable. The selection of
one unique wavelength is a dynamic process, as understood by Lord Rayleigh;
among all the possible ones, the fastest mode predominates (Rayleigh 1892,
Tomotika 1935). For thin films on fibers (h� r), the selected wavelength
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(which often corresponds to the distance between droplets) is found to be
2π

√
2r .

In the same limit (h� r), the characteristic time scaleto of the instability is
obtained by balancing capillary with viscous forces. It is found thatto scales
asηr 4/γ h3, which can be very large because of the viscous resistance to flow.
If the film thickness is given by the LLD law (Equation 7),to is written as
γ r/ηV2. For a typical Landau velocity (let us say 1 cm/s), this time is much
longer than the formation time of the film (given in Equation 22). The ratio
between these two times is typically 105, which shows that the droplet and
the film formations are completely decoupled. The dynamics of the instability
can be different for thick films (h� r, which includes the particular case of
liquid columns for whichr = 0): for liquids of low viscosity, the viscous force
can be neglected, and the characteristic growth time for the drops is obtained
by balancing capillary forces and inertia, which yieldst ∼ (ρh3/γ )1/2 (much
smaller thanto).

Goren (1962) measured the selected unstable wavelength by brushing honey
onto metallic wires and taking photographs. The results were found to be in
good agreement with the above predictions. He also plotted the shape of the
undulating cylinder of fluid during the instability and successfully compared it
with calculations (Goren 1963). He showed in particular that the film between
two growing bumps is cylindrical, so that a satellite droplet can appear between
the main ones. An accurate description of the formation of such satellite drops
was proposed by Yarin et al (1993). The shape of the ultimate succession of
drops and the coverage rate of the fibers were studied by Roe (1975).

Extensions of Goren’s works to the case of non-Newtonian fluids were pro-
posed by Dumbleton & Hermans (1970). Effect of the presence of a surfactant
at the liquid-fluid interface, of practical importance in detergency, was studied
by Carroll & Lucassen (1974): they found by theory and experiment that the
growth of instability is slowed down by a factor of∼4 (as compared with a
clean interface), because of the resistance of the surface against deformations
caused by the surfactant. The case of extremely thin films, for which the long-
range forces cannot be neglected, was studied by Starov & Churaev (1978) and
Brochard-Wyart (1986). For a positive disjoining pressure, the film should be
stabilized if it is thin enough (h < a1/2r 1/2), wherea is defined in Equation 10;
this microscopic length reflects the strength of the intermolecular forces.

For a thin viscous fluid inside a capillary tube, the same instability occurs. A
description for the film evolution equation was proposed by Hammond (1983)
who modeled the appearance and growth of periodically spaced lobes. Above
a threshold in thickness (of 0.2r ), Gauglitz & Radke (1988) showed that lobes
finally pinch off and form lenses across the tube, as confirmed experimentally by
Aul & Olbricht (1990). In this limit of thick films, linear approximations break
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down, which requires improved theoretical treatments (Newhouse & Pozrikidis
1992).

6.2 Annular Films Flowing
The films along a rod or a fiber are often flowing, for example because of
gravity. Generated by a famous study by Kapitza (1965), the nonlinear theory
of evolution of waves in a viscous layer was mainly developed by Shkadov
(Esmail & Shkadov 1971, Shkadov 1977, Bunov et al 1984, Demekhin &
Shkadov 1985). A remarkable point is that the flow can keep the film from
rupturing in droplets (as it should because of the Plateau-Rayleigh instability),
as shown by Frenkel et al (1987). This is owing to a non-linear saturation of the
instability, generated by the coupling between the growth of the instability and
the flow. Then the interface chaotically oscillates, with an amplitude smaller
than the average film thickness (Shlang & Sivashinsky 1982) so that the film
seems to be stabilized.

Quéré (1990) found experimentally the condition for observing the perma-
nence of such a continuous macroscopic film on vertical fibers covered with a
liquid: the film thickness must be smaller thanr3/κ−2 (whereκ−1 is the cap-
illary length), which corresponds to a growth time of the instabilityto smaller
than the convection time of liquid on a wavelength, a condition for saturation
to take place. This criterion was confirmed by Frenkel (1992), and a complete
quantitative theory including a numerical film evolution equation was finally
proposed by Kalliadasis & Chang (1994).

A related interesting case concerns core-annular flows, i.e. oil flows lubri-
cated with water in a pipe. A complete description of the flows generated in
such a situation can be found in the review by Joseph et al (1997). A remark-
able set of shapes for the oil-water interface (including a spectacular bamboo
profile) is reported, according to the flow.

6.3 Pearls and Drops
The droplets that generally form on fibers are the reason it is commonly said
that it is impossible to wet fibers. It must be emphasized that the cylindrical
geometry makes possible that a droplet makes a zero-contact angle on the fiber
without being spread—a noticeable difference with the planar case. A question
of practical importance often raised is whether a (microscopic) film can remain
between the drops (di Meglio 1986).

The shape of the drops is given by a pressure balance. In the absence of grav-
ity (small Bond numbers), it is just written that the Laplace pressure must be a
constant. Then drops can have an unduloidal shape that conserves the axisym-
metry; on a wire, droplets look like pearls. Furthermore, in wetting situations
(Figure 15), the profile has generally an inflection point since the drop must
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Figure 15 A wetting drop on a wire generally forms a pearl (conservation of axisymmetry) (from
Carroll 1986).

join the fiber with a very small (possible zero) contact angle (MacHale et al
1997).

It is often of practical interest to measure the contact angle of liquids on fibers,
and two broad classes of methods were developed: the Wilhelmy method and
the drop shape analysis.

In the Wilhelmy method, the fiber is attached to a balance and partially
immersed in a bath of liquid. The force acting on the fiber is recorded while
slowly moving it (up and down), from which the static (receding and advancing)
contact angles can be deduced (Miller 1985). Moving the fiber more quickly
gives access to dynamic contact angles (Figures 6a & 6b).

Direct observations, which allow in-situ measurements, and drop shape anal-
ysis are also possible (Yamaki & Katayama 1975, Carroll 1976, Wagner 1991).
For a given volume, measuring the length and height of the drop (and comparing
them with computed values deduced from the Laplace equation) gives access
to the contact angle, with an accuracy much better than obtained with a simple
observation. An improvement of this technique consisting in digitalizing and
calculating the whole profile of the drop was recently proposed by Song et al
(1998).

Such observations were used to characterize the wetting of fibers in three
practical situations. (i) The influence of surface roughness was studied by
Carroll (1984), which is particularly useful to understand the wetting of natural
fibers. Hairs for example exhibit a succession of scales (with a typical roughness
of 0.5 µm) on which the contact line has the ability to hinge (Carroll 1990).
(ii) Kumar & Hartland (1988 & 1990) extended the description to the case
of drops on vertical fibers, for which gravity induces deformations, and in
particular a difference between the upper and lower contact angles. (iii) Carroll
studied the evolution of the contact angle in a detergency situation. A fiber
coated with oil was put in an aqueous solution containing surfactants, and the
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Figure 16 For a larger contact angle, the drop rolls on one side of the fiber (from Carroll 1986).

progressive dissolution of the oil was recorded photographically together with
the evolution of the contact angle (Carroll 1981, Doyle 1991). Because of the
presence of a surfactant, the contact angle (generally) increases with time, and
drops get smaller (because of the dissolution). Then the drop can loose its
axisymmetry; for minimizing its interfacial energy, it rolls on one side of the
fiber (Figure 16). This process, first reported by Adam (1937) and called roll-
up, is a fundamental step in detergency processes since it implies a reduction
of the drop-fiber area. Carroll (1986) studied this transition experimentally and
calculated the critical contact angle (depending on the fiber radius and drop
volume) above which the axisymmetric configuration becomes metastable.

7. CONCLUSION

A simple question opened this review: what is the thickness of the film en-
trained by a solid, and more specifically by a fiber? Thanks to a series of
experiments, we can now propose a classification (and in each class, an answer
to the question), founded on the coating velocity.

1. At low velocity (corresponding to negligible Weber numbers) and if using
a viscous oil, fluid coating obeys the LLD law (Equation 7), possibly corrected
by White and Tallmadge (Equation 8) when the thickness approaches the fiber
radius. This regime was referred to as visco-capillary, since the film thickness
results from a balance between capillarity and viscosity. In the case of extremely
slow coating, long-range forces must be taken into account: the film thickness
becomes independent of the velocity (Equation 10).

Since low velocities correspond to thin films, it is logical that interfaces play
a key role in this limit. The solid-liquid interface entrains matter because of the
liquid viscosity, but the liquid-air interface can also do this if surfactants are
present in the bath. Coating a solid from a surfactant solution provokes a thick-
ening of the entrained film, if compared with coating from a pure liquid of the
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same viscosity and surface tension. The effect is caused by the Marangoni flow
that takes place when drawing the solid out of the solution, and the thickening
factor lies between 1 and 42/3. In most usual cases (concentrations between
1 and 100 mM), its value results from a balance between convection (which
causes the thickening) and surfactant adsorption from the volume (which may
erase the surface gradient).

For entrainment of an emulsion, the film can be enriched in oil because of
the capture of oil droplets by the solid-liquid interface, if there is an attraction
between the drops and the solid. As stressed above, coating with complex fluids
is a world in itself and will need further studies to be fully understood, which
is of practical importance, since most of the coating solutions are emulsions or
suspensions.

2. At high velocity (typically above 1 m/s), measurements deviate tremen-
dously from the Landau law, in spite of the capillary number remaining negli-
gible compared with unity. Two successive regimes were discussed. First the
film thickness sharply increases around a critical velocity V∗ (Equation 12),
and then slowly decreases for V much larger than V∗.

The diverging behavior was shown to happen when the Weber number We
(Equation 11) becomes∼1. It is caused by inertia and thus was called the visco-
inertial regime. The kinetic energy of the fluid (per unit volume) increases with
the velocity so that the fluid close to the solid becomes insensitive to the Laplace
pressure, which tries to send it back to the reservoir: the thickness diverges
(Equation 15). At larger velocities (We> 1), the viscous boundary layer is thin
and limits the entrainment; the film thickness decreases as 1/

√
V and does not

depend any longer on the surface tension (Equation 16). Practically, the viscous
boundary layer regime should affect most industrial coating processes, where
fibers or wires are lubricated at a velocity of 10–100 m/s.

If simple cases can be isolated, fluid coating still raises open problems. We
mainly cite the case of non-Newtonian fluids, which are commonly used. These
fluids are often heterogeneous, which is in itself a cause of eccentric behaviors
(as shown in a very preliminary discussion on emulsions). This field should
require further studies. It would be also worth trying to extend observations
described here to other geometries, particularly to planar ones, where contra-
dictory viewpoints coexist. The role of inertia is not clearly understood, and
the making of soap films would require new experiments. As a final point, let
us stress again that once a film is deposited on a fiber, the story is not finished;
it undulates before breaking into a periodic array of droplets because of the
liquid surface tension. In many cases where a regular coating is needed, the
understanding of fluid coating must be coupled with a reflection on the way
to stabilize it (generally by some drying or freezing mechanism). From this
viewpoint, coating with a paste behaving as a Bingham fluid can be a solution,
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by choosing a yield stress low enough to make possible the deposition but large
enough to prevent the instability to develop. Such a situation would also deserve
fundamental study—but we gradually leavefluid coating.
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