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Corners, Cusps, and Pearls in Running Drops
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Small drops sliding down a partially wetting substrate bifurcate between different shapes depending
on their capillary number Ca. At low Ca, they are delimited by a rounded, smooth contact line. At
intermediate values they develop a corner at the trailing edge, the angle of which evolves from flat to
60° with increasing velocity. Further up, they exhibit a cusped tail that emits smaller drops (“pearls”).
These bifurcations may be qualitatively and quantitatively recovered by considering the dynamic contact

angle along the contact line.
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The formation and detachment of drops from a nozzle
is a well known phenomenon. Provided that drops are
sufficiently small, they are perfectly spherical except at
breakup where a singularity occurs. A detailed description
of this singularity has only recently been achieved [1].
Similar cusplike shapes are found when a bubble rises
through a polymer or micellar solution [2,3], though in
this particular case the viscoelastic nature of the fluid is a
crucial feature of the problem.

In comparison, drops running down an inclined surface
have received less attention. However, it is a common ex-
perience that drops running on a window pane can exhibit
complex and fascinating behaviors, involving singularities,
coalescence, and breakup. Indeed wetting and dewetting
phenomena arising from the interaction with the solid sub-
strate lead to increased complexity.

Early experimental studies and theories involving drops
sliding under the action of gravity over an inclined sur-
face were aimed at determining the conditions for which
droplets remain pinned on an inclined surface [4,5]. The
shape of static or quasistatic drops and the yield conditions
for displacement under the action of gravity or external
shear flows were considered in asymptotic theories [6,7]
and recent numerical studies [8]. In all these works, the
drops are assumed to be close to equilibrium, and contact
angles close to their static values.

Drops moving at higher velocities were studied in the
case of contact angles close to 180° i.e., when the solid
is almost fully nonwettable. In this case, drops have a
roughly spherical shape and roll down the slope instead of
sliding or flowing [9,10]. However, drops running down a
plane at significant velocities and with usual values of the
contact angles have not been accurately described yet de-
spite the simplicity, at least in principle, of the experiment.

We report here well controlled experiments showing that
drops may exhibit various shapes and remarkable spatio-
temporal patterns. In particular, above a critical capillary
number, drops depart from their classical rounded shape
and exhibit a corner at the trailing edge. This corner be-
comes sharper as the velocity is further increased, up to 60°
where a second threshold is reached above which smaller
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PACS numbers: 68.03.Cd, 47.15.Gf, 47.20.Dr, 68.08.Bc

droplets are released behind the main drop. Several bifur-
cations involving frequency divisions in the droplet release
occur when increasing the capillary number. We show that
the transitions between different shapes depend only on the
physical properties of the fluid/substrate couple and we re-
late them to flow transitions occurring in coating devices.

The main part of the experimental setup is a 20 X
20 cm glass plate which can rotate about a horizontal axis
to vary its inclination between 0° and 90°. The surface
has been coated with a fluoro-polymer (FC725 from 3M)
in order to have a low air-substrate surface tension (about
13 mN/m). In these conditions, poly-dimethyl-siloxane
(PDMS) also known as silicon oil (Rhodorsil brand), wets
partially the surface with a static advancing contact angle
of about 50° and a static receding contact angle of about
40°. Such experimental conditions have several advan-
tages: high reproducibility and good control of wetting
characteristics, availability of silicone oil with a variety
of viscosities. Three types of silicon oil were used (main
characteristics summarized in Table I). Some measure-
ments were also made with water on a polyacrylate sub-
strate to extend the range of explored parameters. Drops of
controlled size are emitted at a constant rate by a pipette
fixed above the upper part of the inclined plate. Typical
volume of emitted drops range from 2 to 20 mm?® (drop
radius of 0.8 to 1.7 mm). After deposition on the surface,
the drops flow down the plate and reach within a few milli-
meters a stationary state: constant velocity, and if appli-
cable constant shape.

Drops are transparent, hence hard to observe without
appropriate lighting. With a mask placed behind the glass
plate, we set a strong illumination gradient perpendicu-
lar to the direction of flow. Drops act as focusing lenses
and appear on the inhomogeneous background, giving a
striking three-dimensional impression (Fig. 1). The mo-
tion was recorded via a CCD camera and frame grabber at
a rate of one to five frames per second and 1/500 s expo-
sure time. The frames were then de-interlaced.

Drops are continuously produced at a frequency of about
1 Hz and we measure their velocity U and record their
shape for various inclinations of the plate «. Since for a
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TABLE I. Main characteristics of liquid-substrate systems used in the experiments. 47Vxx denotes silicon oil type.
Fluid Substrate n (cP)? v (mN/m) 0, (°) Y,, (nm) A (comp.) A (exp.)
47V2 FC725 2.33 18.7 352 10 9.7 X 1073 1.1 X 1072
47V10 FC725 9.15 20.5 42 £ 2 20 1.0 X 1072 1.1 X 1072
47V50 FC725 50.2 20.7 43 £ 2 60 1.1 X 1072 1.2 X 1072
Water” Polyacrylate 0.891 72.0 305 1 8.0 X 1073 4.4 x 1073

*Recorded at 25 °C.
*Ultrapurified (deionized).

given drop volume the velocity U is an increasing function
of a, we actually control U by varying a. At low veloci-
ties, small drops (i.e., with radii of order or smaller than
the capillary length) have an essentially regular contour
and appear as circles or ovals [Figs. 1(a) and 1(b)]. Upon
increasing velocity, drops deform and the contact line even-
tually develops a corner along the trailing edge suggest-
ing a curvature singularity at the tip [Figs. 1(c)—1(e)]. As
the velocity is increased, the corner becomes sharper up
to an angle close to 60° where it jumps to a cusp (0°)
which releases small droplets [Fig. 1(f)]. When the veloc-
ity is further increased, a tail develops which is unstable
via a Rayleigh-like instability [11,12]. It breaks into regu-
lar equally spaced smaller drops which are too light to flow

FIG. 1.
increasing velocity (by increasing inclination). Drops flow
downwards. (a),(b) Rounded drops at low speed, (c)—(e) corner
drops becoming sharper as velocity increases, (e) corner angle
of 60° just before transition to pearling drops, (f) first stage of
the pearling drop regime, (g) pearling drop releasing droplets of
constant size at a constant rate, and (h) pearling drop releasing
periodic series of droplets at higher velocity.

Different shapes of a drop running down a plate when

036102-2

and remain pinned on the surface [Fig. 1(g)]. The final
pattern appears as pearling drops running along a line of
static smaller droplets left by the previous drop. These
droplets are absorbed from the front and recreated in the
back, which ensures mass conservation and a stationary
regime. In the first stages of this regime, droplets are very
small compared to the main drop, and their absorption by
the next drop is not a sufficient perturbation to induce a
measurable fluctuation of its velocity or a correlation be-
tween absorption and emission of droplets. For higher
velocities, a cascade of bifurcations involving frequency
divisions takes place, and the emission of droplets exhibits
a rich variety of dynamical periodic patterns [Fig. 1(h)].
Emitted droplets eventually become large enough to start
running on the substrate, giving rise to even more complex
behavior. The absorption of droplets becomes a significant
perturbation and couples the dynamics of successive drops.

Intuitively, the velocity U of a drop of volume V should
be mainly governed by the in-plane component of its
weight p gV sina, where p is the fluid density and g is the
acceleration of gravity, and a typical viscous drag force
of order nVl/ 3U where 7 is the viscosity. Another force
of capillary origin is also balancing the weight because of
the nonuniformity of the contact angle along the perimeter
of the drops, i.e., because of the contact angle hysteresis.
This force scales as yVl/ 3Ay, where y is the surface
tension and Ay is a perimeter-averaged projection factor
of surface tension. Without going through a detailed
calculation which would involve the exact shape of the
drop and the associated three-dimensional flow field, this
simple force balance implies that the following scaling law
should be satisfied by the capillary number Ca = nU/y
and the Bond number Bo = V¥3pg/y:

Ca ~ Bosina — Ay. (1)

Bosina and Ca are appropriate dimensionless scaling
parameters for this problem, as can be seen in Fig. 2 where
all data for a given fluid/substrate system fall on the same
curve.

Below a minimum value Bo,, = Ay of Bo sina, a drop
remains pinned on the surface. Derivation of Bo, can
be found in Furmidge [5] and Dussan [6]. Above this
threshold, Ca increases nearly linearly with Bo sina as
expected from dimensional analysis [Eq. (1)], even when
drops move at significant speed. However, the slope is

036102-2



VOLUME 87, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JuLy 2001

noticeably higher in the pearling regime. This can be quali-
tatively interpreted as an effect of “drag reduction” asso-
ciated with the release of droplets at the trailing edge and
acceleration associated with absorption of droplets left be-
hind the previous drop at the front. Finally, Fig. 2 shows
that the transitions between the different regimes are in-
dependent of the drop size and depend only on a critical
capillary number Ca.

These transitions can be related to observations of dy-
namic wetting failure occurring in coating devices [13,14].
In that context, the contact line comes to an oblique posi-
tion with respect to the direction of motion when the speed
becomes large enough. For instance, when a plate is with-
drawn from a pool, the wetting line remains static and hori-
zontal at low speeds and takes a saw tooth shape when the
speed is greater than a “maximum speed of dewetting.” It
eventually releases small drops at the tip, which are en-
trained by the moving substrate [14] at higher withdrawal
speeds. This is quite similar to what we observe at the
trailing edge of our liquid drops.

It is experimentally known that the dynamic contact
angle depends on the velocity (or Ca) of the wetting line
[13]. Although no extended theory has been agreed upon,
the experimental dynamic contact angle 6,4 roughly follows
a hydrodynamic theory [15,16] for many liquids. Follow-
ing Blake and Ruschak [14], we further assume that the
contact angle depends only on the velocity component nor-
mal to the contact line. In the general case, the relation
linking 8,4 to Ca involves complicated integral functions
of the contact angle and viscosity ratio as shown by Cox
[16]. However, for contact angles up to 377 /4, it can be
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FIG. 2. Ca versus Bo sina number for 47V10 silicon oil.

Drop volumes range from 3 to 18 mm’® (V: 3 mm® A:
55mm’; O0: 8 mm® ; o: 11 mm?; ¢: 18 mm?). Horizontal
dashed lines show the transitions between the different regimes
(black: rounded, white: corner, and grey: pearling).
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reduced to the simple expression with less than 3% error:

Y
05 =63 + 9<lny—>U ‘m, )

w

where 6; is the static contact angle (6, for receding con-
tact lines, 6, for advancing), Y is a macroscopic length
over which the contact angle is defined (about 1 mm), Y,,
is a microscopic length under which macroscopic hydro-
dynamics fails (of order a few molecular sizes), U is the
velocity of the fluid at the contact line, and n the external
normal to the contact line (Fig. 3). Thus, when pulling
a plate out of (into) a bath, the contact angle can reach
0° (180°) as the velocity is increased, eventually leading
to liquid (air) entrainment. Blake and Ruschak interpret
the obliquity of the contact line as a marginal state where
6, = 0 without fluid entrainment: U - n is below the en-
trainment threshold while U can be above. In our case,
we assume that the orientation ¢ of the contact line adapts
to keep U + n = Casing constant and such that §; = 0°,
i.e., at the verge of liquid entrainment. Hence in the cor-
nered drop regime,

Casing = A6?, (3)

where A = (91n[Y/Y,,]) ! is a constant that characterizes
the fluid only.

We measured the angle ¢ between the contact line and
the direction of motion at the trailing edge in the cornered
drop regime (Fig. 3). As can be seen in Fig. 4, experimen-
tal data for water and several silicon oils are compatible
with Eq. (3). Note that physical properties vary signifi-
cantly between different experiments. The experimental
constant A obtained by fitting Eq. (3) agrees with roughly
estimated values computed from ¥ = 1 mm and ¥,, = 10
molecular sizes for silicon oils (Table I). It is of the right
order of magnitude for water, for which contact angle is
known with a bad precision. Though A does not vary
much between different fluids because the molecular size
appears in a logarithm, the assumption that cornered drops
or a sawtoothlike contact line occurs when 6, is negligible

trailing contact line

FIG. 3. Schematic of a drop running down a plate and nota-
tions. Left: side view of a drop running down a plate. Gravity
is the driving force. U is the velocity of the drop (mean velocity
of the fluid). Right: notations in the cornered drop regime.
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FIG. 4. Measured values of ¢ vs 62/Ca in the cornered
drop regime for various liquid/substrate systems: (A) 47V2
oil/fluoropolymer, (e) 47V10 oil/fluoropolymer, (CJ) 47V50
oil/fluoropolymer, (o) water/polyacrylate. Theoretical linear
relation from Eq. (3) was fitted on the data by adjusting
parameter A (see values in Table I). The horizontal dashed
lines show the transitions to rounded drops at sin¢g = 1 and to
pearling drops at singp = 1/2.

is compatible with the experiment when using a simplified
model of dynamic contact angle.

Expressions for the thresholds between different
regimes can now be deduced from Eq. (3). At the rounded-
corner transition, sin¢y = 1 and the capillary number is

Ca; = A6 . “)

At the corner-pearling transition, we experimentally
have singg = 1/2, hence the capillary number is

Cay = 2463 (5)

These critical capillary numbers, which can be measured
on a macroscopic scale, depend only on the fluid-solid-gas
interactions and microscopic properties of the fluid.

With well controlled experiments, we have shown that
drops running down an inclined surface can exhibit various
shapes (rounded, corners, and pearling). We identified
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the capillary number as the control parameter governing
the transitions between different states. We related these
transitions to the dynamic contact angle at the trailing edge
of the drop and related this problem to air entrainment in
coating applications.

The corner formation is linked to the existence of conical
similarity solutions to the lubrication equations governing
the flow near the tip of the drop. An interpretation for the
occurrence of the transition from corner to pearling drops is
the appearance of another static conical solution. We report
this theoretical work in a forthcoming publication [17].
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Stone and S. K. Wilson for valuable discussions on theo-
retical aspects of this work.
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