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FOAM FLOWSl 
Andrew M. Kraynik 

Fluid and Thermal Sciences Department, Sandia National Laboratories, 
Albuquerque, New Mexico 87185 

INTRODUCTION 

A foam is a structured fluid in which gas bubbles are separated by thin 
liquid films and the voluine fraction of the continuous liquid phase is small. 
While polyhedral air bubbles dispersed in a network of soap films provide 
a familiar prototype, concentrated liquid-liquid emulsions display many 
of the same characteristics. The liquid phase in persistent foams always 
contains a surface-active agent that preferentially accumulates at the gas­
liquid interfaces and imparts varying degrees of stability to the films. 
The surfactancy, thin films, and large interfacial area associated with 
metastable foams place them in the domain of colloid and interface science. 
Interfacial phenomena are central to cell-level mechanisms that determine 
the complex rheological behavior of foams-behavior that one could not 
anticipate by knowing the physical properties of the constituent phases 
alone. 

Typical cell dimensions ( 10  pm-l cm), which serve as a natural length 
scale t for the foam structure, are much larger than the very fine scale 
dimensions of simple molecules that compose Newtonian fluids. The large 
magnitude of t promotes strong interactions between the foam structure 
and the flow, and these give rise to non-Newtonian rheological effects. The 
engineer requires a description of foam flow that applies over macroscopic 
length scales that are much larger than t. Two flow regimes can be dis­
tinguished by comparing t with 2', where 2' is a characteristic length 
scale for the space that confines the flow. Foam flow through pipes is a 
typical macro flow, which is characterized by t « .P. While a continuum 
description may apply to the macroflow, the constitutive relation for the 

1 The US Government has the right to retain a nonexclusive royalty-free license in and to 

any copyright covering this paper. 
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326 KRAYNIK 

bulk/oam will be nonlinear and the usual no-slip boundary condition may 
not be valid at solid surfaces. The formidable rheological complexity of 
macroflows carries over to microflows, where t:::::; g. Foam flow in a 
porous medium exemplifies the micro flow regime, in which continuum 
concepts such as foam viscosity are invalid because the dimensions of 
bubbles and the minute pore spaces are comparable. Darcy's law and 
conventional two-phase flow theory represent few features of foam dis­
placement in porous media. The structure of foam clearly depends upon 
the ratio tlg. In macroflows, bulk foams are relatively unconstrained 
when compared with microflows in fine capillary tubes and porous media, 
where elongated bubbles conform to solid boundaries and occur indi­
vidually or in trains. 

The systematic study of foam flow draws upon numerous scientific 
disciplines, with surface science foremost. Because liquid films control 
foam structure, physicochemical principles established from studies of 
isolated soap films are fundamental to foam rheology. Molecular and 
macroscopic mechanisms that determine the stability of films, their mech­
anical response, and their conformation have been described by Mysels et 
al. (1959), Bikerman (1973), Rosen (1978), and Lucassen (1981). Slattery 
& Flumerfelt (1982) have discussed balance laws and constitutive equations 
that relate to the interfacial region. The presence of surfactants and their 
transport influence fluid microstructure and fluid mechanics at the film 
level. The fundamental difficulties and uncertainties connected with the 
interfacial and intralamellar regions carry over to the description of foam 
flow. 

This review should be more appropriately considered a preview of issues 
relating to foam flow, many of which are unresolved or unaddressed. The 
flow of bulk foams (the macroflow regime) is emphasized. Experimentalists 
and theorists will find foam flows challenging because these multiphase 
fluids are compressible, nonlinear, viscoelastic materials with striking 
metastability characteristics. Like solids, foams possess a finite shear 
modulus. But unlike them, foams flow and their flow behavior is char­
acterized by a yield stress, shear-thinning viscosity, and slip at the wall. 
Many of these phenomena have counterparts in porous media, where the 
cell-level mechanisms are different. Such microflows are beyond the scope 
of this article. Adler & Brenner (1988) review multiphase flow in porous 
media elsewhere in this volume. 

PRACTICAL MOTIVATIONS 

Applications involving the flow offoam have not been completely inhibited 
by unresolved fundamental issues. The usefulness of aqueous foams in fire 
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FOAM FLOWS 327 

fighting motivated early studies of pipe flow; however, technology in the 
oil and gas industry has provided the greatest incentive to developing an 
understanding of foam flow in pipes as well as porous media. The highly 
viscous nature of foams benefits the transport of particulates in well drilling 
and clean-out operations. In foam fracturing, proppant particles (typically 
sand) are carried into hydraulic fractures in geological formations to 
prevent the fractures from closing. Evidence that foam mobility in porous 
media decreases as formation permeability increases suggests that foams 
may be useful as blocking and diverting agents, which permit a degree of 
control over the path of reservoir fluids. In principle, foam offers a spec­
trum of mobility characteristics in porous media and shows promise for 
use in a wide range of mobility control applications relating to enhanced 
oil recovery. The reviews of Heller & Kuntamukkula (1987) and Assar & 
Burley (1986) cover the petroleum literature on foam flow. 

Foam is also a candidate for transporting pulverized coal in pipelines. 
In addition, it is an attractive vehicle for dispersing pigments and other 
surface treatments in paper coating and fabric finishing, where the energy 
budget for drying is important. Liquid foam is often an intermediate stage 
in processing synthetic cellular solids, such as rigid and flexible polymeric 
"foams." Since structure influences the properties of these materials, there 
is incentive to understand the role of flow in the development of cell 
morphology and the orientation of macromolecules and microphases. It 
is also desirable to be able to substitute predictive models for empiricism, 
like that proposed to correlate certain features of thermoplastic foam 
extrusion where the dispersed phase nucleates and expands during flow 
through a die (Kraynik 1981). 

FOAM STRUCTURE 

The structure of bulk foam is basic to understanding its rheology but 
difficult to quantify, even though elementary features are obvious. By 
observing multiple soap bubbles and soap films supported on wire frames, 
Plateau (1873) recognized that three films, each with its own uniform total 
curvature, always meet at equal dihedral angles of l 20°. The film junction 
regions, now called Plateau borders, determine the edges of polyhedral gas 
bubbles. Four such edges always join at equal angles of cos-1( -1/3) 
� 109.47°. Planar films cannot satisfy the latter constraint because a 
planar polygon cannot have all angles equal to 109.47°; this necessitates 
curved films with complicated shapes. These structural characteristics 
balance film tension and minimize surface energy. 

Kelvin (1887), in pursuit of ideal foam structure, showed that space 
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328 KRAYNIK 

could be partitioned into identical cells of equal volume and minimal 
surface area. His isotropic, minimal tetrakaidecahedron (a modified trun­
cated octahedron) contains six planar quadrilateral and eight nonplanar 
hexagonal faces, all with curved edges. It is striking that Matzke (1946) 
did not find a single fourteen-sided cell with this edge and face distribution 
during meticulous observations of 600 bubbles in "monodisperse" foams. 
In fact, pentagonal faces were predominant, and they are not even rep­
resented in Kelvin's tetrakaidecahedron. Matzke's extensive statistics indi­
cates that a type cell does not exist; nevertheless, idealized foam cells that 
are based upon various plane-faced polyhedra are useful for relating phase 
volume fractions to structural parameters, such as cell size, film thickness, 
and Plateau border curvature (Princen et al. 1980). Some model cells, like 
that based upon the regular pentagonal dodecahedron, do not fill space; 
none satisfy equilibrium requirements. 

The complexity of three-dimensional structure perhaps explains why 
progress in developing micromechanical theories for foam rheology has 
been restricted to two-dimensional models, which preserve some essential 
features of the Plateau borders. While the spatial arrangement of films is 
important, one cannot overemphasize the significance of Plateau borders 
in foam transport phenomena. 

DILUTE EMULSIONS AND GAS-BUBBLE 

SUSPENSIONS 

Before describing models of foam rheology, it is instructive to review 
theories that apply to dilute gas-bubble suspensions, the other extreme in 
volume fraction. This permits one to compare and contrast the rheology 
and physical mechanisms for the two concentration regimes. In typical 
polymeric foam fabrication processes, the dispersion passes through vari­
ous volume-fraction and rheological regimes as a single-phase fluid 
develops into a cellular material, so the dilute regime is of practical interest. 
Unlike foams, their dilute counterparts have accounted for substantial 
activity within the traditional suspension rheology community. In part, the 
progress is due to an emphasis on single "particles" and the mathematical 
techniques available for solving the Stokes equations. 

Taylor (1932) has shown that when shear rates are small enougn tor 
drop deformation to be neglected, the effective viscosity Jle of a dilute 
emulsion of neutrally buoyant drops is given by 

(1) 
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FOAM FLOWS 329 

where J-l is the continuous-phase viscosity, A. is the viscosity ratio J-l* / p, (J-l* 
refers to the viscosity of the dispersed phase), and <Pd is the volume fraction 
of the dispersed phase (which is assumed small). Einstein's result for a 
suspension of rigid spheres is recovered when A. -+ 00. The effective vis­
cosity for a dilute suspension of spherical gas bubbles, for which A -+ 0, is 
J-l. = p,(l  + <Pd)· Since the presence of the bubble disturbs the external flow, 
the effective viscosity exceeds that of the continuous phase, even when the 
bubble is inviscid. Passing to the limit A -+ 0 is within the scope of Taylor's 
analysis; however, replacing a neutrally buoyant drop with a much lighter 
gas bubble is not, when gravity acts. Velocity disturbances for sedi­
mentation can be neglected relative to those for macroscopic shearing flow 
when ap'g/wy« 1, where a is the droplet radius, p' the density difference, 
9 the acceleration due to gravity, and y the macroscopic deformation rate. 
This foretells the difficulty of defining a rest state for foam. 

Schowalter et al. (1968) extended Taylor's theory to account for drop 
deformation in steady homogeneous shearing flow. When A. is not too 
large, small departures of drop shape from sphericity depend upon a 
capillary number Ca = J-lay/a, where a is the interfacial tension. The capil­
lary number is a relative measure of viscous forces that tend to distort 
the drop and interfacial tension, which favors sphericity. Drop distortion 
manifests itself as non-Newtonian behavior with finite normal-stress 
differences. The primary and secondary normal-stress functions of visco­
metric flow (Schowalter 1978), for A -+ 0, are N\ = 32<pdJ-l2ay2/Sa and 
N2 = -25Nd56, where y now represents the shear rate. The signs and 
relative magnitudes of these functions are in accord with those for polymer 
melts and solutions. 

While Schowalter et al. obtained viscometric functions, they could only 
infer the proper form of the constitutive equation for dilute' emulsions 
from their steady-state analysis. Building upon the perturbation analysis 
of Cox (1969) for the response of a drop to time-varying shear flow, 
Frankel & Acrivos (1970) derived a nonlinear constitutive equation for 
dilute emulsions that accounts for unsteady flow. Schowalter (1978) has 
provided an insightful account of these developments. 

The previous analyses assume the simplest interfacial boundary con­
dition-that tangential stress components are continuous across the drop 
interface and normal stresses are balanced solely by surface tension. In 
general, and especially when a surfactant is involved, dynamic interfacial 
phenomena contribute to the stress jump at an interface. These effects arise 
from surface-tension gradients due to mass transfer, interfacial elasticity, 
and interfacial viscosity (Levich 1962, Lucassen-Reynders 1981, Slattery 
& Flumerfelt 1982). Flumerfelt (1980) has extended the theory of drop 
deformation in steady shearing flows by incorporating a more general 
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330 KRAYNIK 

constitutive equation for the surface stress and has shown that Cox's 
solution is unaltered to zero order in drop deformation if the viscosity 
ratio A is replaced by 

(2) 

where e is the intrinsic surface shear viscosity, II: the intrinsic surface 
dilatational viscosity, and Nm the effective increase in the latter quantity 
stemming from mass-transfer-induced variations in surface tension along 
the drop interface. The influence of a viscous interface parallels that of 
drop-phase viscosity; both result in finite tangential stress components at 
the interface. Interfacial effects, as measured by A', increase with decreasing 
drop size. Recognizing that the result in Equation (1) only depends upon 
the zero-order solution, we obtain the zero-shear viscosity when A' replaces 
A. The O( o/d) coefficient for the effective viscosity of a suspension of in viscid 
bubbles varies from 1 to 5/2 as A' varies from 0 to co, and the interface 
ranges from completely mobile to completely immobile, or "rigid." How­
ever, this analogy between A and A' does not carry over to first-order 
solutions in drop deformation. 

Shear properties of dilute gas-bubble suspensions represent special cases 
of liquid-liquid emulsion theories, which assume incompressible flow. 
Taylor (1954) analyzed bubble expansion in an unbounded, otherwise 
quiescent fluid to determine the dilatational (bulk or expansion) viscosity 
tt' of a dilute gas-bubble suspension. Chen & Acrivos (1978) accounted for 
bubble-pair interactions and computed the first correction for nondilute 
concentrations. The primary contribution to tt' from the intrinsic inter­
facial dilatational viscosity K has been obtained by Edwards (1987). The 
equation for Jt' is 

(3) 

For the purpose of evaluating various theoretical frameworks, it is inter­
esting to note that Prud'homme & Bird (1978) employed a "cell" model 
and found the last term, due to interaction, to be -1. 

For dilute emulsions, non-Newtonian effects arise from interactions 
between droplets and the external flow. By contrast, the shape of bubbles 
in static foam is largely determined by neighbors, and non-Newtonian 
behavior even occurs when viscous forces are absent. For these and similar 
reasons, there are striking differences between the rheology of foams and 
dilute gas-bubble suspensions. 
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FOAM FLOWS 331 

EXPERIMENTAL OBSERVATIONS OF FOAM FLOW 

Experimental difficulties associated with the systematic measurement of 
foam flow are both obvious and subtle, and they fall into two categories: 
those due to the physical nature of these structured fluids, and those 
due to rheological complexity. An outstanding physical characteristic of 
foam-its natural tendency to minimize free energy by reducing surface 
area-favors the bubble size to increase with time. Instability of the 
thin films due to inadequate surfactancy and related physicochemical 
mechanisms leads to film rupture and resultant bubble coalescence. Cheng 
& Natan (1986) have reviewed other degradation mechanisms that do not 
pertain to film stability but affect foam texture, which loosely refers to 
liquid content and cell-size distribution. Liquid drainage through foam 
due to gravity can cause temporal and spatial variations in the structure 
of foam as measured on the macroscale. Pressure differences across thin 
liquid mms, due to their finite mean curvature, provide a driving force for 
gas diffusion between cells, especially in a polydisperse foam. This diffusion 
also causes bubble size to increase with time. 

These stability considerations and the influence of foam-generation 
method and rate upon texture reinforce the need to characterize foam 
structure in rheological investigations. While all experimental studies 
report the liquid content of foams considered, few report cell size, and 
fewer yet its distribution. The degradation mechanisms already discussed 
can be suppressed substantially in liquid-liquid emulsions. This and the 
necessity to quantify structure and maintain it throughout the course of 
sometimes tedious measurements have led some investigators (Princen 
1985, Princen & Kiss 1986, Yoshimura et al. 1987) to exploit the rheological 
similarity between foams and concentrated liquid-liquid emulsions. With 
the exception of compressibility, the analogy is excellent at low defor­
mation rates, where interfacial phenomena determine rheological response. 
Some of the salient features of foam rheology to be described are most 
easily quantified with emulsions 

Sibree (1934) showed that foam is highly viscous and shear thinning. 
Subsequent studies confirm this, even when the surfactant solution is 
Newtonian and of low viscosity, such as aqueous soap solutions. The 
shear-rate dependence of viscosity must be measured in so-called visco­
metric flows. Theory and practice governing the measurement of visco­
metric functions have been discussed by Coleman et al. (1966), Walters 
(1975), Schowalter (1978), Tanner (1985), and Bird et al. (1987). Loosely 
speaking, flow in tubes and rotational Couette devices is viscometric under 
proper conditions, while flow through contractions (where the deformation 
rate of a fluid element varies with time) is not. 
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Quite general methods for reducing data from viscometric flows exist; 
for example, in tube flow the variation with shear rate of both viscosity 
and wall-slip velocity can be determined from measurements of pressure 
drop and volumetric flow rate for tubes of different diameter (Mooney 
1931). In general, these reduction methods are not parameter-fitting 
schemes that require prior knowledge of the explicit functional forms in­
volved. But they do presume the fluid to be homogeneous and the flow 
to be incompressible, so foam dilatation must be minimal when the vis­
cosity function is measured. A frequently cited analysis is claimed to cor­
rect for compressibility in capillary viscometry (David & Marsden 1969); 
however, it is internally inconsistent and cannot be justified (M. S. 
Kuntamukkula, personal communication). 

Employing due caution, we can identify the salient features of foam 
rheology. Merely to call foam highly viscous is an understatement, because 
foam possesses a yield stress 'ry below which the deformation rate is zero 
and, therefore, the viscosity is infinite. When the shear stress 'r exceeds the 
yield stress, the shear-rate-dependent viscosity Jif(Y) can be represented by 

(4) 

where I1p(-Y), often confused with the viscosity, is a constitutive function 
that depends upon shear rate. The Bingham-fluid model, with I1p constant, 
is the most familiar form of Equation (4); other viscoplastic fluid models 
have been surveyed by Bird et al. ( 1982). 

Barnes & Walters ( 1 985) just considered the yield stress to be a con­
venient empiricism for representing the viscosity function over the shear­
rate range of measurements. Strictly speaking, this range never includes 
zero. They conjectured that accurate measurements at lower shear rates 
will always disprove the existence of a yield stress, which "only defines 
what cannot be measured." Caution is warranted because many yield-stress 
values reported for foams are just parameters obtained by fitting steady­
flow data. Direct methods of yield-stress measurement rely upon assertions 
like "no flow was observed" below a critical shear stress; these statements 
must always be qualified, since the duration of observations and exper­
imental sensitivity is finite. While recognizing the inadequacy of experiment 
to prove the existence of a yield stress, we assert that foam does have a 
yield stress and base this upon reasonable experimental evidence and the 
predictions of micromechanical models. 

Early evidence of yield-stress phenomena in foams is due to Blackman 
(1948) and to measurements by Penney & Blackman, as described by 
Matalon (1953). Princen (1985) has conducted systematic measurements 
of the yield stress for concentrated emulsions. Many features of the data 
are represented by.y = (JcPJ/3F(cPd)/<R), where (J is surface tension, F(cPd) 
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an experimentally determined function, and (R) a measure of the mean 
bubble size. The function F(<Pd) increases by over an order of magnitude 
with increasing dispersed-phase volume fraction <Pd for the range 
0.75 ;5 <Pd ;5 0.98-the yield stress is a strong function of liquid content. 
Yoshimura et al. (1987) use the same emulsions but different experimental 
techniques and measure yield-stress values consistent with Princen. It is 
significant that their methods include constant-stress rheometry, the same 
technique used by Barnes & Walters (1985) to show that certain polymer 
solutions probably do not possess a yield stress at all, even though finite 
values are inferred from less sensitive measurements. 

The rheological complexity of foam goes beyond shear-rate-dependent 
viscosity, the existence of a yield stress, and other non-Newtonian charac­
teristics that can, in principle, be described by a constitutive relation for 
the bulk foam. "Slip at the wall" is another curious characteristic of foam 
flow. This slip, however, is merely a convenient macro scale description 
of the wall boundary condition, whose envisioned cell-level mechanism 
depends upon the existence of a thin fluid layer that does not itself slip but 
wets the wall and lubricates the foam flow. In steady, fully developed 
rectilinear flows, the slip velocity Us can be expressed as a function of the 
wall shear stress 'Ow according to 

(5) 

where I/Iw('cw) is the slip coefficient (Mooney 1931) or wall fluidity (Princen 
1985). There is experimental evidence for tube flow and rotational Couette 
flow [Siehr 1938, Penney & Blackman (as reported by Matalon 1953), 
Wenzel et al. 1970, Princen 1985] that the wall fluidity can vanish below 
finite values of 'Ow (called the slip yield stress Tsy). If the walls are smooth 
enough, a shear-stress range can exist where Tsy < 'Ow < Tyo and the foam 
is transported entirely by plug flow. This plug flow has also been reported 
by Beyer et al. (1972), Kraynik (1982), and Thondavadl & Lemlich (1985). 
When experiments are conducted with smooth transparent tubes so that 
it is possible to observe bubbles near the wall, no relative motion between 
adjacent bubbles is apparent below the yield stress. This is also true if a 
somewhat larger marker bubble is injected at the wall. By increasing the 
flow rate until relative motion of the marker and surrounding bubbles is 
observed, an estimate of foam yield stress can be obtained. Consistent 
with other measurements, the yield stress decreases with increasing liquid 
content (Kraynik 1982). 

Systematic measurements that include the yield stress, slip at the wall, 
and the viscosity function of foam apove the yield stress have not been 
reported; thus, limited information on the functional form and structural 
dependence of !lp(Y), the last term in Equation (4), is available. Many 
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334 KRAYNIK 

qualitative features of foam rheology may be attributed to the yield stress; 
for example, if we neglect J-lp(Y), the foam viscosity is given by J-lr = 7:y/Y. 
This accounts for shear thinning and the effects of cell size and liquid 
content. Foam-viscosity data are sometimes fitted to the familiar power 
law J-lr = my" - 1, where m and n are constant parameters. When n is signifi­
cantly greater than zero, viscous contributions beyond the yield stress 
are indicated; for example, Thondavadl & Lemlich (1985) report n = 0.61. 

The slip, yield stress, and shear thinning associated with foam flow in 
tubes determine the qualitative velocity profile shown in Figure 1. To 
account for compressibilitY, Beyer et al. (1972) assumed that Bingham­
fluid parameters and wall fluidity depend upon the local gas volume frac­
tion (often called quality), which is related to local pressure through the 
ideal gas law. Their empirical model incorporates major features of foam 
rheology into calculations of foam flow in tubes and annuli. Mahalingam 
et al. (1975) used the data of Wenzel et al. (1967, 1970) to predict velocity 
profiles for incompressible flow in tubes. The foam viscosity is fitted to the 
Casson and Hershel-Bulkley models for viscoplastic fluids. 

MICROMECHANICAL MODELS OF 

FOAM RHEOLOGY 

Early Models 
Empirical correlations of foam-flow data are of limited predictive value 
when the connection between structure and rheology is lacking. Until 
recently, the only attempt to relate foam viscosity to structure was a 
heuristic model for concentrated emulsions (Hatschek 1911, 1913), which 

Us 
Figure 1 Velocity profile for fully developed flow of bulk foam in a tube. Three regions are 

illustrated: the solid-like plug region in which the shear stress does not exceed the yield stress 
and foam viscosity is infinite; the region of shearing flow in which the shear stress exceeds 

the yield stress and foam viscosity is finite; and the wall region in which the macroscopic 
foam velocity approaches a finite slip velocity u,. In the absence of the second region, foam 
is transported entirely by plug flow due to slip. 
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has been applied to foams (Sibree 1934). Hatschek assumed that large 
shear rates distort the dispersed phase into parallelepipeds, which arrange 
into layers that slide relative to one another. Under the assumption of 
immobile interfaces, viscous dissipation in the liquid films between layers 
is large. The predicted foam viscosity Jlr/ Jl = (1 - ¢J/3)-1 increases with ¢d, 
the only structural parameter to appear. This qualitative dependence upon 
¢d is observed experimentally but can also be attributed to the variation 
of yield stress with liquid content. 

Assuming that liquid foam supports stress like a solid, Derjaguin (1933) 
analyzed its linear elastic behavior. The foam is considered to be a col­
lection of randomly oriented, planar films whose deformations follow the 
imposed strain field, i.e. the deformations are affine. The predicted shear 
modulus is G = 4(JS/15 � 8(J/5d32, where S is the surface area per unit 
volume, which is inversely related to cell size (e.g. S � 6/d32, where d32 is 
the Sauter or surface-volume mean bubble diameter). Derjaguin also 
showed that the capillary pressure of foam, which is the difference between 
internal bubble pressure and external pressure, is given by Pc = 2(JS/3. 
rt is important to recognize that affine film deformation is a kinematic 
hypothesis that implicitly neglects connectivity of the film network and 
therefore does not ensure equilibrium at the film junctions. Stamenovic & 
Wilson ( 1984) have indicated that the shear modulus is overestimated when 
the equilibrium configuration of the foam is not provided, a limitation that 
applies for affine shear deformations. 

Spatially Periodic Models: Statics 
Hatschek and Derjaguin address separately the viscous and elastic charac· 
teristics of foam. Neither approach can predict a yield stress or be gener· 
alized to reveal the true viscoelastic nature of these materials. Both treat­
ments of three-dimensional structure are superficial; however, we have 
seen that a rigorous description of undeformed structure itself is rather 
involved. Suffice it to say that progress in developing micromechanical 
theories for foam rheology has been restricted to two-dimensional rep­
resentations of foam structure and, moreover, to perfect order, except for 
the notable contributions of Weaire and associates (Weaire & Kermode 
1983, 1 984, Weaire & Rivier 1 984, Weaire et a1 1986, Weaire & Fu 1 988). 

An idealized foam structure for monodisperse bubbles was proposed by 
Princen (1979) and is shown in Figure 2. The hexagonal coordination 
minimizes surface free energy. Cell orientation is expressed by the angle 
e, which is taken relative to the x-axis of a Cartesian coordinate system 
(x,y). Characteristic dimensions are the cell size a, the film thickness h, 
and the Plateau border curvature r. As a result of capillarity, the latter is 
responsible for lower pressure in the Plateau borders relative to that in the 
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336 KRAYNIK 

Figure 2 The equilibrium structure of an idealized two-dimensional foam showing films of 
finite thickness h, Plateau borders of uniform curvature T, the characteristic cell size a, and 
cell orientation angle O. 

bubbles. There is a pressure jump across the flat gas-liquid interfaces 
because of disjoining pressure, a quantity proposed by Derjaguin (1955) 
to describe the collective fluid microstructure forces in thin films due to 
molecular, ionic-electrostatic, and steric interaction effects. A positive 
disjoining pressure prevents all liquid from draining into the Plateau 
borders, is required for film stability, and depends upon the presence of 
surface-active species. In equilibrium, capillary pressure in the Plateau 
borders and disjoining pressure II in the flat films are balanced, i.e. 
u/r = II. An explicit dependence upon film thickness II(h) is needed to 
determine the relative distribution of liquid between the Plateau borders 
and films. Teletzke and coworkers (Teletzke 1983, Teletzke et al. 1987a,b) 
have discussed the role of fluid microstructure forces in thin-film fluid 
mechanics and indicated length scales over which various contributions to 
disjoining pressure operate. These dimensions are in the range 1-103 nm, 
so the proportion of liquid in the films can be very small for typical values 
of surface tension and bubble size. 

Princen (1983) analyzed static deformations of these "liquid honey­
combs" for simple shear and a particular cell orientation. Some essential 
features of this analysis were independently proposed by Prud'homme 
(1981). Figure 3 illustrates the variation in foam structure with shear strain 
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Figure 3 The Princen-Prud'homme model showing the variation with shear strain i' of 
foam structure and the corresponding shear stress txy and first normal-stress difference 
NI = txx-tyy for simple shear with 8 = 0 and rPd --> 1: (a) undeformed network, y = 0; (b) 
i' = 

3-1/2; (c) coalescence of film junctions (Plateau borders), y = 2(3-1/2); and (d) separation 
of junctions, y = 2(3 -1/2), resulting in neighbor switching and, for this cell orientation, 
completion of the strain cycle. 

y when <Pd --+ 1; this is referred to henceforth as the Princen-Prud'homme 
modeL When surface tension is uniform, three films continue to meet at 
equal angles of 2n/3 until the critical strain Yc = 2(3 -1/2), where four films 
meet, is reached. This marginally stable structure, which is associated with 
coalescence of two neighboring Plateau borders, balances surface-tension 
forces but does not minimize surface energy. The separation of junctions 
and the unique reorganization of films provide a stable structure with 
reduced interfacial area and identical cell midpoints. Kraynik & Hanser 
(1986, 1987) have called this separation process disproportionation, which 
is an unjustified and perhaps confusing label, since it refers to another thin­
film phenomenon. Fortuitously, each coalescence and separation sequence, 
also referred to as "hopping," results in a structure that is identical to the 
rest state to within a translation of cells; however, this is only true for the 
specific cell orientation chosen. The shear stress, shown in Figure 3, is a 
periodic function of strain, and the maximum shear stress -rye = (f/a31/2 has 
been interpreted as a yield stress. 

Hopping provides an idealized micromechanical mechanism for yield 
behavior and flow on the macroscale-the relative separation of cells 
corresponds to switching of neighbors. Ashby & Verrall (1973) have noted 
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a fundamental topological feature of neighbor switching-it permits 
unbounded, permanent deformations on the macroscale while the cell 
distortion remains bounded. They observed neighbor switching in con­
centrated emulsions flowing between closely spaced, parallel glass plates. 
Similar qualitative observations of foams flowing near the wall of large 
rectangular ducts have been described by Wenzel et al. (1967). 

Princen (1983) also accounted for finite liquid content in a micro­
mechanical model of foam. The important role of Plateau borders is 
reemphasized for the case hlr -+ 0, where the films are stabilized by dis­
joining pressure at vanishing thickness. Plateau borders of finite size 
require another film configuration (the so-called Mode II) to represent 
coalesced borders, as shown in Figure 4. Mode I refers to situations where 
individual Plateau borders and films are distinct. Princen determined the 
evolution of shear stress and of foam structure with increasing shear strain 
over the volume-fraction range 31/2nl6 � 0.9069 � 4>d < 1. The lower limit 
on 4>d corresponds to maximum packing of cylindrical bubbles. Typical 
stress-strain curves for various 4>d are provided in Figure 5. The yield 
stress identified as 'rye, the maximum shear stress, increases with 4>d. 
Mode I -+ Mode II -+ Mode I transitions occur for all stress-strain curves 
shown-some curves possess turning points. Curves corresponding to 
4>d < 4>t � 0.95 are without turning points and are antisymmetric about 
the cycle midpoint y = 3 -1/2, while those with turning points are not. For 
volume fractions below 4>:, stress-strain curves and variations in foam 
structure-in particular, Mode II -+ Mode I transitions-are smooth. 
Above 4>:, abrupt changes in stress and structure coincide with the turning 
point for increasing strain. While the Plateau border structure just prior 
to an abrupt transition is always Mode II, the structure following transition 
can be either Mode II or, for large Q>d, Mode I. When surface-tension 
forces dominate viscous forces in the slow shearing flow of foam, tran-

�----
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
----� 

MODEl MODE II 
Figure 4 Typical repeating elements of foam structure with finite Plateau borders. The 
distinct Plateau borders, which characterize Mode I configurations, eventually coalesce with 
increasing strain and foon a Mode II configuration. Adapted, with permission, from Princen 
(1983). 
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sitions involving turning points will be very rapid on the time scale defined 
by the shear rate and therefore cannot be considered quasi-static. 

It is important to study rheology in flow types other than simple shear 
(e.g. extension). Khan & Armstrong (1986) have provided a theoretical 
framework for treating arbitrary homogeneous deformations, for which 
the deformation gradient tensor E does not depend upon position. They 
explicitly recognize that the motion of bubble centers and film midpoints 
is affine when the foam structure is perfectly ordered. When motion is 
affine, the displacement of a material point X is given by the transformation 
X' = E· X, where X' is the location at time t of X, and the Cartesian 
components of E(t) are given by Eij = oX;/OXj' Analogous kinematics has 
been described by Adler & Brenner (1985) within the context of highly 
ordered suspensions and applies to spatially periodic media of quite general 

0.4 

0.2 
"'I� 

�b 

0 

-0.2 

o 0.2 0.4 0.6 
Y 

0.8 

I 
10.997 
I 
I 
1 
I 
I 
I 
I 

1.0 2 
v'3 

Figure 5 Shear-stress vs. shear-strain curves corresponding to two regimes of dispersed-
phase volume fraction rPd with (J = 0 and h .... O. When rPd < rP: � 0.95, the shear stress is 
antisymmetric about l' = 3 -1/2 and Mode II .... Mode I transitions are smooth. When rPd > cPt, 
Mode II ..... Mode I transitions are abrupt, as indicated by the dashed line; the dotted line 
(shown only for rPd = 0.98) is the solution beyond the turning point that is inaccessible when 
strain is increasing. Adapted, with permission, from Princen (1983). 
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description.  Proponents of spatially periodic theories recognize that the 
order imposed upon the structure is highly artificial with few, if any, 
examples in nature. This drawback must be weighed against the rigorous 
mathematical formulation and tractability afforded by the approach, as 
well as the insights provided by the predictions. 

Spatial periodicity reduces the physical domain of interest to a unit cell 
that typically contains three half-films and a Plateau border, as shown in 
Figure 6. Let the center of a Plateau border and the midpoint of an adjacent 
film determine a vector gi' When <Pd;:::: 1, gi represents the length and 
orientation of a half-film. The imposed macroscopic deformation deter­
mines the motion of the film midpoints, and the nonaffine junction dis­
placement is governed by a balance of film tensile forces. For static defor­
mations, which only account for uniform surface tension, the equilibrium 
relation reduces to algebraic equations expressing equal film angles. Khan 
& Armstrong (1986) considered simple shearing of arbitrarily oriented 
cells, with affine displacements given by A = X' -x = (yy, 0). The shear 
stress and first normal-stress difference up to the yield point are given by 

(6) 

Their analysis for planar extension, where A = (x(e+e-l),y(e-e-l», 
determines the tensile stress 

(7) 

where B is the Hencky strain measure. These stresses do not depend upon 
the initial orientation of the cells-that is, the nonlinear elastic moduli are 

__ --I -9; I 
I 

() 
x 

Figure 6 Schematic of an idealized foam structure showing the unit cell and half-film 
vectors g,. 
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isotropic below the yield point. Other implications of this are discussed by 
Khan (1987). The yield strain and corresponding yield stress do depend 
upon e, so a unique value for Lye is not predicted. These equations for the 
nonlinear elastic stresses also apply for finite liquid content as long 
as Plateau borders do not coalesce, i.e. as long as the structure remains 
Mode 1. 

For comparison, if the deformation of complete films in an arbitrarily 
oriented two-dimensional foam is assumed to be affine, as in the three­
dimensional analysis of Derjaguin (1933), the linear shear modulus is 
isotropic and given by G = 31/2q/2a, which is a factor of 3/2 greater than 
that predicted by Equation (6). However, unlike the results of Khan & 
Armstrong (1986), isotropy is not maintained beyond the linear region. 

Princen (1983) evaluates the shear stress by projecting the tension in the 
initially vertical film onto the shear plane, which is convenient for the 
particular cell orientation chosen. Khan & Armstrong (1986) show that 
work-energy equivalence can be used to determine stress, e.g. shear stress 
is given by Lxy = q 8Sj8y, where S is the surface area per unit volume; 
however, all information on the normal stresses is lost owing to the scalar 
nature of the method. The complete instantaneous stress tensor .or for the 
foam can be derived from a volume average of the local stress tensor .or' 

over the unit cell (Batchelor 1970, Adler et al. 1985, Khan & Armstrong 
1986). When 4>d -+ 1 and only surface tension and bubble pressure Ph are 
considered, this provides 

8q 3 
.or = - PbI + 33/2 L giPiPi, ai�l 

(8) 

where gi is the magnitude of gi and both are scaled by a, and Pi = gJgi is 
a unit vector parallel to the ith film. A spatially periodic framework 
explicitly recognizes the inherent position and time dependence of the cell­
level motion; therefore, the evaluation of global rheological properties, 
which are relevant to steady flows, requires averaging the instantaneous 
stress over time or, equivalently, over strain 

<.or) = � L.or dt. (9) 

The global properties of the medium are properly represented when the 
time interval IT is equated to the period of the motion (Adler et al. 1985, 
Kraynik & Hansen 1986). 

The periodic variation of stress and structure with strain is readily 
inferred when 0 = 0, as in the Princen-Prud'homme model. Kraynik & 
Hansen (1986) identified the infinite set of discrete orientation angles that 
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admit strain-periodic behavior for simple shear. By accounting for the 
unique film rearrangement that is associated with any hopping process, 
the instantaneous stress can be determined for arbitrarily large strains 
when ¢d � 1. The global stress is only evaluated for strain-periodic orien­
tations. It can be argued from energy-dissipation considerations that the 
global shear stress < 'r xy) for very slow flows can also be identified as a yield 
stress. This quantity differs from 'rye but, like it, varies with e. Curiously, the 
physical appeal of the cell orientation originally chosen by Princen for 
simple shear cannot be justified on energy grounds because the global 
shear stress for () = 0 is the largest of any evaluated by Kraynik & Hansen. 
They also demonstrated the existence of strain-periodic orientations for 
planar extensional flow, which has been overlooked; complete analytical 
solutions describing the necessary and sufficient conditions have been 
obtained (Kraynik 1986). These results permit the evaluation of global 
tensile stresses and extensional viscosity. 

Although global shear stress was not reported by Princen (1983), it 
vanishes for those cases not involving turning points, i.e. ¢d < ¢�. Under 
those conditions, the elastic strain energy is symmetric .and completely 
recovered over the cycle (Khan 1985). The vanishing of global stress in 
the quasi-static regime corresponds to fluid-like behavior. Yet, for small 
strains below the yield point, the instantaneous stress is finite, corresponding 
to solid-like response. This dual character is peculiar and differs from 
Bingham-fluid behavior, in which the shear stress approaches a finite 
yield stress for slow flow. 

Spatially Periodic Models: Viscous Effects 
Cell-level viscous flow is a time-dependent free-surface problem. Many 
fundamental issues involving these fluid motions are unresolved, even 
when constraints imposed by idealized structure are accepted. 

If we assume all liquid to be in the thin films, which either drain freely 
or do not drain at all, viscous effects can be estimated for simple shearing 
flow with velocity v = (yy, O), cell orientation () = 0, and liquid volume 
fraction <P small but finite. The variation of structure with strain is assumed 
to be quasi-static, and the film-level flow is taken to be quasi-steady planar 
extension. For freely draining films, the instantaneous film thickness and 
extension rate are uniform throughout the foam. The estimated global 
shear stress fits the Bingham-fluid model with 'ry = O.31crja and J.lP 
� O.026<pJ.l. Khan & Armstrong (1986) consider nondraining films, which 
do not exchange liquid with their neighbors and require the instantaneous 
film thickness and extension rate to vary between the films. They predict 
much larger viscous effects: J.lP � 13<PJ.l. 

A quasi-static approximation, which uncouples foan .• structure and vis-
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cous flow, constrains rheological response. The coupling is responsible for 
many striking characteristics of fluids with structure. Kraynik & Hansen 
(1987) and Khan & Armstrong (1987) assume nondraining films and 
develop an ad hoc model to depict the strong interaction between structure 
and viscous forces. The nondraining limit corresponds to large drag forces 
resisting flow along the thin films. This assumption also provides a mech­
anism for the net tension in a film to differ from its neighbors, because 
respective stretch rates can vary, not only in magnitude but also in sign. 
The tensile force along the ith nondraining film is given by 

(10) 

where Ca = /-wY/(J is the capillary number, and ih denotes the time deriva­
tive of g;, with time scaled by the macroscopic deformation rate y. A force 
balance at the junction, Ll= 1 Fi = 0, provides a set of coupled nonlinear 
ordinary differential equations that determine the film vectors gi given the 
film midpoint motion for the imposed flow. Junction coalescence is 
assumed to occur whenever a film's length becomes less than its thickness, 
i.e. g? < 31/24>/8. Plausible initial conditions for junction separation and 
fast growth of the new film are then prescribed. The stress-strain curve 
that corresponds to the Princen-Prud'homme model with viscous effects, 
shown in Figure 7, illustrates the influence of film-level viscous flow when 
Ca = 4(3-1/2), 4> = 0.01, and e = O. The asymptotic approach to periodic 

0.8 

'"'101 �><"b' 0.4 

0.0 

_10$ 1.0 
Z"b' 

0.0 �----�--�--�--�----�--� 
o 2 4 6 

Figure 7 Variation with shear strain y of the instantaneous shear stress 't"xy and first 
normal-stress difference NI = 'xx-'yy for simple shearing flow with (J = 0, 4> = 0.01, and 
Ca = 4(3-112). 
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stress represents the spatially periodic analog of steady shearing flow. To 
within isotropic terms, the instantaneous stress tensor is given by 

8 { 3 [ .J} _ (J 1/2 9i 
T - 33/2 .L 1+(3 j2)¢ Caz [9iPiP;] . 

a ,=1 9, 
(11) 

Global material functions for simple shearing flow are shown in Figure 8 
(Kraynik & Hansen 1987). The quasi-static regime, Ca - 0, determines a 
yield stress. The dashed curve represents the contribution of the surface­
tension term in Equation (11) to the global shear stress. Its variation 
with capillary number reflects the rate dependence of foam structure. The 
remaining, viscous contribution to the shear stress is relatively small. The 
primary role of viscous forces is their influence upon instantaneous film 
length and orientation, which differs substantially from the quasi-static 
regime. The computed material functions terminate at a critical capillary 
number beyond which the stress does not converge to periodic behavior 
for very large strains, so the time average in Equation (9) is not meaningful. 
This is accompanied by large cell distortion and film thinning, which 
promotes film rupture. Thus, a plausible mechanism for shear-induced 
failure of foams is suggested. Interpreting Figure 8 literally, the shear­
stress range that corresponds to steady shearing flow is relatively small. 

Kraynik (1987) determined the linear viscoelastic response for this 
model. Complex interfacial rheology can be introduced into the analysif 
by using intrinsic interfacial parameters to represent Gibbs elasticity J 
and the interfacial viscosities K and e. The tension in a nondraining film i: 
given by 

en z o 
i= () � 1.0 
LL 
...I « 
il2 
w 
!;;( 0.1 
::::E 

----�----------�./. -'-' -'-'-' - '---' 

10-4 10-2 
Ca 

Figure 8 Material functions for simple shearing flow with (} = 0 and 4> = 0.01: global shear 
stress ('Xy> and global first normal-stress difference <N1> = <'xx> - < 1:"yy> . The dashed curve 
represents the contribution of the surface-tension term in Equation (11) to the global shear 
stress. 
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Fi = 2eJ{I + NG In (2gi) +  [Nsgi 1 + (4gi)- 2]g;}Pi, (12) 
where NG = rjeJ, Ns = 3-1/2(K + e)/c/>J.w, and ° denotes the time derivative, 
with time scaled by 31/2c/>IW/eJ. Restricting the analysis to small defor­
mations eliminates the need to consider Plateau border coalescence. The 
predicted stress-relaxation modulus is given by 

G(t*) = 
31/2a(� + NG) 

(1 + 3NG + 2e-t'), (13) 

where time t* has been scaled by (31/2c/>,ua + K + e)/(a + r), the characteristic 
relaxation time. The stress-relaxation modulus G(t*), derived by con­
sidering arbitrary cell orientation with respect to the principal axes of 
strain for simple shear, is isotropic and consistent with a similar analysis 
for planar extension. Realistic qualitative behavior is captured by Equation 
(1 3); for example, a finite equilibrium shear modulus G(t* --+ (0) is indica­
tive of the gel-like response of foam. The dependence of the material time 
scale upon parameters relating to texture, viscous flow, and dynamic 
interfacial properties evinces the complexity of foam rheology. 

For freely draining films, dissipative effects do not appear in the linear 
regime because the variation in total film length is O(y2). The cor­
responding response is purely elastic, with the stress-relaxation modulus 
the same as the static shear modulus G = a/a31/2, consistent with Equation 
(6). 

Assuming all of the liquid to be in the films and neglecting interfilm flow 
provides a tractable mathematical model for the interaction between cell 
structure and viscous flow, but film-level transport and foam structure 
are compromised when Plateau borders are neglected. Pacetti (1985) and 
Schwartz & Princen (1987) have proposed different models that incor­
porate Plateau borders. 

Pacetti (1985) considered simple shearing flow and the initial cell orien­
tation originally investigated by Princen (1983). The foam structure con­
sists of Plateau borders with uniform curvature and flat films of uniform 
thickness that are stabilized by disjoining pressure. In effect, the thickness 
is permitted to vary slightly between films. This structure is consistent with 
quasi-static deformations, but the rapid separation of Plateau borders 
(Mode II -4 Mode I), for c/>d close to unity, is not. Recognizing this, Pacetti 
only considers volume fractions that produce stress-strain curves without 
turning points-recall that the corresponding Mode II -4 Mode I tran­
sitions are smooth, and therefore the flow can be considered quasi-steady. 
Within the limitations of a flat-film approximation, results are obtained 
for mobile interfaces, along which surface tension is uniform and shear 
stress vanishes in the films. Fluid exchange with the Plateau borders and 
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346 KRAYNIK 

neighboring films is accounted for, and flow in the films is taken to be quasi­
steady planar extension. Viscous tractions arise from the small variations in 
film thickness during a strain cycle. These variations are required to con­
serve liquid and balance border suction with disjoining pressure. The 
instantaneous shear stress is evaluated by a method that requires veri­
fication against a rigorous volume average; however, qualitative features 
predicted by the analysis should not be affected. The interfaces do not 
contribute to the global shear stress, and the viscous contribution is very 
small, consistent with our previous estimate for mobile films. The choice 
of conditions that are consistent with a quasi-steady approximation to 
viscous flow, for all times, is a unique and noteworthy feature of Pacetti's 
approach. 

To incorporate viscous effects, Schwartz & Princen (1987) considered 
all liquid to be in the Plateau borders, except for a very small amount 
confined to immobile equilibrium films stabilized by the disjoining 
pressure. They analyzed viscous dissipation due to immobile films being 
drawn from or falling into the border. The quasi-static response of foam 
to time-periodic planar extension is considered, with the strain magnitude 
sufficiently small that adjacent Plateau borders do not coalesce. A par­
ticular orientation, with some films parallel to a macroscopic stretching 
direction, is analyzed. Their theory parallels the steady-state analysis of 
Mysels et al. (1959), who studied flow due to soap films moving relative 
to their borders. For slow speeds, the significant fluid flow and viscous 
forces are confined to a small transition region where the film enters the 
mouth of the Plateau border. Figure 9 illustrates the four regions of the 
film, which correspond to the Plateau border (a static meniscus), a tran­
sition region, a liquid-entrainment region, and an equilibrium thin (black) 
film. The exact film profile in the liquid-entrainment region depends upon 

PLATEAU BORDER TRANSITION LlQUID­ENTRAINMENT BLACK FILM 

Figure 9 Schematic of the four film regions that are accounted for in the analysis of 
Schwartz & Princen (1987): the Plateau border, the transition region, the liquid-entrainment 
region, and equilibrium thin (black) film. 
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time and position, in contrast to steady-state analyses where it is uniform. 
The quasi-steady lubrication version of the Stokes equations applies to the 
transition region, where interfaces are nearly parallel, and leads to an 
ordinary differential equation for the film profile 

(14) 

Here 1'/ represents film thickness scaled to that in the liquid-entrainment 
region h't" primes denote differentiation with respect to the stretched film 
coordinate, which is fixed to the border � = x(3Ca*)1/3Ih't" and Ca* is the 
capillary number based upon film speed (which is small). An asterisk 
indicates instantaneous quantities. 

Equation (14) arises in the analysis of many free-boundary, visco­
capillary-flow problems (Schwartz et al. 1 986). It has been used to analyze 
coating flows (Landau & Levich 1942, Ruschak 1985), the soap-film with­
drawal already mentioned, and the motion of long bubbles in small tubes 
(Bretherton 1961). Such model problems represent important features 
of viscous dissipation in bulk foams, their slip at the wall, and foam 
displacement in porous media. The techniques of matched asymptotic 
analysis are required to fully resolve flow in the transition zone, which 
must match conditions in both the border and liquid-entrainment regions 
(Park & Homsy 1984). 

The instantaneous entrained-film thickness can be expressed as h't, = 
2r(3Ca *)2/3 P, where P = 1'/" is the asymptotic curvature on the border side 
of the transition region evaluated in the stretched variables. A unique 
solution, P = 0.6340, is obtained when thin film is withdrawn from the 
border. However, the problem is underdetermined when film falls into the 
border (Mysels et al. 1959), and a one-parameter family of solutions 
corresponding to different values of P is possible. Schwartz & Princen 
exploit the temporal periodicity of both the imposed motion and the quasi­
static evolution of foam structure to resolve the indeterminacy at any time. 
The viscous dissipation per unit cell per cycle is calculated, which they 
express as an effective foam viscosity J1e '" J1Ca - 1/3, where Ca is based 
upon the apparent deformation rate of the foam during a cycle. The 
quantity J1e can be compared with the Bingham viscosity parameter of 
previous estimates, for which J1p � <PJ1. The effective viscosity J1e is large 
for small capillary numbers and does not depend upon the liquid content 
of the foam. The relative strength of the dissipation mechanism proposed 
by Schwartz & Princen is due to the large magnitude of shearing in the 
thin transition regions whose interfaces are assumed to be immobile. 
The same assumption leads to Frankel's law for soap-film withdrawal: 
H = 1.88Ca2/3( (II pg)1/2, where H is film thickness, and the capillary number 
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348 KRAYNIK 
is based upon film speed (Mysels et al. 1959). Mysels & Cox (1962) and 
Lyklema et al. (1965) have confirmed Frankel's law experimentally when 
film thickness is large enough to neglect disjoining pressure effects and 
surfactant solutions that provide an immobile interface are used. 

The complete independence of effective viscosity on liquid volume frac­
tion <p, predicted by Schwartz & Princen, should not carry over to the 
global contribution of dissipation to stress in steady shearing flows. This 
hypothesis assumes that the proportion of time spent in Mode I and Mode 
II is important and depends upon cP. Restricting attention to small strains 
avoids mode transitions and their fundamental role in foam flow. Focusing 
on smooth mode transitions offers a convenient approach to incorporating 
viscous effects into micromechanical theories. The eventual analysis of 
rapid transitions is essential to an improved understanding of foam rhe­
ology; however, the analytical and computational techniques required of 
that time-dependent free-boundary analysis, which couples viscous forces 
in adjacent illms, represents a significant challenge. 

The ideas of Princen and Schwartz suggest a point of departure for 
future studies of film-level flow, within the constraints of foam structure. 
Strictly speaking, their analysis applies when entrained film is much thicker 
than the equilibrium film thickness set by disjoining pressure. This restric­
tion has been relaxed by Teletzke and coworkers (Teletzke 1983, Teletzke 
et al. 1987b), who extend the hydrodynamic film evolution equation to 
include fluid microstructure forces of molecular and colloidal origin. When 
a positive disjoining pressure, taken to decrease with film thickness, is 
included into a steady-state analysis corresponding to film withdrawal, a 
second, quasi-static regime appears for very small capillary numbers. The 
transition to this quasi-static regime, in which film tension and thickness 
take on their static values and dissipation vanishes rapidly, is very abrupt, 
occurring over a narrow range in capillary number that depends upon the 
length scale set by disjoining pressure. This transition has been observed 
experimentally by Lyklema et al. (1965). 

The process of Plateau border coalescence and separation-fun­
damental to foam flow�is captured by spatially periodic models. The 
constraints imposed by ordered structure provide a convenient theoretical 
framework for investigating this fundamental mechanism, which in itself 
justifies spatially periodic theories. The hope, however, is that other pre­
dictions are not so hampered by constraints of perfect order as to render 
these analyses into mathematical exercises barren of physical content. One 
cannot rigorously choose between fact and artifact produced by these 
theories; instead, one must rely upon intuition and experience, proven 
enemies in the past. While the ultimate test of a theory is experiment, one 
can gain partial confirmation of spatially periodic models and probe their 
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limitations by comparing the resultIng predictions with those for dis­
ordered media. 

Statics of Disordered Two-Dimensional Foams 
Khan & Armstrong (1987) have analyzed the static response ofbidisperse, 
spatially periodic foams; however, entirely different methods are required 
for polydisperse systems that are highly disordered. Such techniques have 
been developed by Weaire & Kermode (1983, 1984), initially to study the 
role of intercellular diffusion in the temporal evolution of structure. This 
in itself is of interest because the rheology of foam depends upon its 
texture. Simulations of diffusion phenomena in foams can be compared 
with their experimental counterparts in two dimensions (Glazier et al. 
1987) and three dimensions (Cheng & Lemlich 1985). The close analogy 
between foams and random cellular media of various origins has been 
reviewed by Weaire & Rivier (1984) and motivates broad interest in the 
subject. 

Many will find the cellular structures analyzed by Weaire & Kermode 
to be a refreshing departure from the constraints of perfect order. One 
hundred cells that comprise a typical spatially periodic unit cell are shown 
in Figure 10. Various algorithms are employed to specify a random dis­
tribution of points that serve as the nuclei for a periodic Voronoi network. 
The Voronoi polygons, which possess straight sides and unequal film 
angles as shown in Figure 10, are adjusted to achieve an equilibrium rest 
state. The resulting disordered structure consists of cells with varying 
numbers of curved films. The second moment /12 = I::� 3 (n - 6):r(n) of 

Figure 10 Typical disordered two-dimensional foam structure analyzed by Weaire & Ker­
mode (1983, 1984) showing the unadjusted Voronoi polygons with straight sides and unequal 

film angles (on the left), and the relaxed structure in which three films meet at equal angles. 
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the number distribution of cell sidesf(n) is used as a measure of disorder. 
In Figure 10, this value is 112 ;::;::; 1 .00. 

The rheological studies are restricted to static planar extension and <Pd � 
1 .  The tensile stress is evaluated by the energy method, i.e. T = 'xx - 'yy 
= (J oS/oe. An iterative numerical scheme was developed to solve the 

system of algebraic equations determined by cell volume, equilibrium, 
and deformation constraints, along with an algorithm to specify the 
abrupt coalescence and separation of film junctions, which Weaire & 
Kermode refer to as a T I  process. 

The initial study of mechanics by Weaire & Kermode ( 1984) considered 
periodic deformations large enough to require numerous TI  processes. 
Within the disordered medium, T l  events occur sporadically throughout. 
By contrast, two simultaneous T1 events are forced upon each and every 
monodisperse cell in the idealized case-the cells alternate between six 
and four sides. This perfect correlation of T l  events causes large dis­
continuities in stress and structure, as shown in Figure 3. However, the 
essentially uncorrelated T1 processes in disordered media result in fluc­
tuations of diminished intensity in stress and structure. Presumably, on 
the macro scale, fluctuations vanish and stress-strain response becomes 
smooth when the population of the unit cell is sufficiently large and dis­
ordered. 

Quantitative comparisons of the linear shear modulus G for disordered 
and ideal media are quite satisfying. Weaire et al. (1986) have computed 
G for several structures with 112 values up to 2.9 and report that a reduced 
modulus G* = <a)G/2(J is relatively insensitive to disorder, decreasing 
slightly with 1l 2. Here, the characteristic cell size is given by <a) 2 = 
N- 1 !:.{': 1 Ai' where Ai is the area of the ith cell in a population of N 
cells. For a perfectly ordered system, the reduced modulus value is given 
by G* = 31/42-3/2 ;::;::; 0.465. This represents an upper bound for all of their 
simulations and leads Weaire et al. to conjecture that it is a strict upper 
bound. Princen ( 1983, 1 985) recommends correlating stress and modulus 
data with a characteristic cell size based upon the Sauter mean diameter 
d32 = (!:. nid?)/(!:. nidl), where there are ni bubbles of equivalent spherical 
diameter di• Neither <a) nor the two-dimensional counterpart of d32 is 
justified by analysis. Simulations could guide the experimentalist to an 
optimal choice of length scale. 

Weaire & Fu ( 1988) have simulated complete stress-strain curves T(e) 
for e up to about 1 .2, various 1l2' and 64 cells per repeat. To a good 
approximation, the reduced tensile stress T* = (a) T/2(J is a monotonically 
increasing function of strain, apart from fluctuations, and is fit by 
T* = Too tanh (28'), where 8' is a linear strain measure given by 
e = In (1 + 8'). The asymptotic value Too is of order unity for all simulations. 
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Kraynik & Hansen (1986) have shown that ideal structure, with (} = n/12, 
provides the simplest strain-periodic response in planar extension. The 
corresponding global average of T*(e) is a lower bound for all the cases 
that Kraynik & Hansen consider and is comparable in magnitude to Too 
computed by Weaire & Fu. 

The agreement between ideal and disordered systems for both the linear 
moduli and global stress is very encouraging. It emphasizes the intrinsic 
value of simulations and substantiates the validity of properly interpreted 
spatially periodic theories. However, these favorable comparisons should 
be viewed as preliminary and require further study. 

It is important to note that the concept of a yield stress is also supported 
by simulations of disordered foams. 

SLIP AT THE WALL 

Slip at the wall on the macroscale is a major feature of foam flow. Consider 
a conceptual model of the wall region consisting of a thin liquid film of 
uniform thickness he and viscosity p,. Assume that the slip velocity Us is 
equal to the uniform velocity of the gas-liquid interface, which is immobile 
and translates with the average velocity of bubbles adjacent to the wall. If 
the slip velocity is given by Us = he'Lw/ll, then the wall fluidity of equation 
(5) is simply I/tw '--= helP,. Effective film thicknesses calculated from typical 
data can be as large as 10 p,m but are usually smaller and vary with wall 
shear stress (Wenzel et al. 1970, Princen 1985, Thondavadl & Lemlich 
1985). Wall slip is an appropriate boundary condition when he « 2, the 
macroscopic length scale of the flow. 

A more realistic model of the wall region accounts for Plateau borders, 
as shown in Figure 1 1 .  At rest and neglecting gravity, the wall film-

Figure 11 Schematic of the wall region when the continuous liquid phase completely wets 
the wall. Plateau borders with curvature r and thin liquid films of thickness hwro are shown. 
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thickness profile is determined by wetting effects that depend upon capil­
lary pressure in the Plateau borders and disjoining pressure in the wall 
film ITw(hw), which may differ from IT(h) for films in the bulk foam. 
Mannheimer's (1972) experiments with concentrated emulsions show a 
strong influence of wall materials with different wetting characteristics on 
slip. Princen ( 1 985) measured slip velocities for well-characterized series 
of emulsions and treated the walls to ensure complete wetting by the 
continuous phase. He measured the fractional area of static thin films 
adjacent to the wall, assumed that wall shear stress on the macroscale is 
determined entirely by shear flow in thin films with immobile interfaces, 
and calculated film thicknesses less than the corresponding values of he, 
e.g. 1 7  nm vs. 45 nm. In some cases, slip could not be measured below 
finite wall shear stresses of order 1 Pa, suggesting a slip yield stress whose 
origin Princen attributed to wall roughness. Thondavadl & Lemlich (1985) 
did not observe slip in rough pipes, whereas it was prevalent in smooth 
ones. 

Wall slip on the macroscale can be related to foam structure and viscous 
flow near the wall by extending Bretherton's ( 1961)  analysis, which 
describes the motion of large bubbles in small capillaries. Consider steady 
flow near the wall o

·
f a two-dimensional, monodisperse foam with immobile 

interfaces. Assume that the bulk foam moves in plug flow, i.e. 1:w < 1:y• 
Neglecting the liquid content of thin films in the bulk foam, the Plateau 
border curvature is given by ria = 2.84¢ 1/2 (Princen 1979). The analysis 
of Teletzke and coworkers (Teletzke 1983, Teletzke et al. 1 987b) could be 
used to relate the uniform thickness of entrained film, hweo, to Plateau 
border curvature r and a capillary number based upon slip velocity, 
Cas = /lus/u. For Cas � 0, the equilibrium wall film thickness is obtained 
from ITw(hw) = a!r, given the functional form of disjoining pressure. 
Bretherton's solution, hwoo/r = 2. 1 2  Ca;f 3, which applies when hwoo » 
hwoo(Cas � 0) and Cas « I ,  provides the following relation for the slip 
velocity: 

( 15) 

where f = 1 - 3.28¢ 1/2 represents the fraction of the wall covered by thin 
film. Equation ( 15) is in qualitative agreement with Princen's (1985) sys­
tematic measurements, which indicate that wall fluidity I/Iw increases with 
increasing wall shear stress, continuous-phase volume fraction, and drop 
size. 

An interest in foam displacement in porous media motivated Hirasaki 
& Lawson (1985) to study flow in capillary tubes whose radius R is 
comparable to the equivalent spherical radius Rb of carefully generated 
uniform bubbles. To relate foam flow to structure, they proposed a quan-
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titative model in which Rbi R is permitted to be large, 0(1), or small. Plug 
flow is assumed in the bulk-foam regime. The model incorporates an ad 
hoc modification of the Bretherton analysis to represent diffusion-induced 
surface-tension gradients; the interfacial mobility of the bubbles, which 
varies from perfectly mobile to immobile, depends upon the value of a 
single parameter. The corresponding special case of the Hirasaki-Lawson 
model is similar to Equation ( 15). The model of Hirasaki & Lawson 
captures a wide range of phenomena and motivates current systematic 
studies (G. M. Ginley & C. R. Radke, E. Herbolzheimer, J. Ratulowski 
& H. C. Chang, unpublished results) of dynamic interfacial effects whose 
origin may include both diffusion of surfactants and intrinsic properties 
such as interfacial viscosity. Falls et al. ( 1987) have applied the work of 
Hirasaki & Lawson to foam displacement in porous media, a currently 
active research topic in multiphase flow (e.g. Gauglitz 1986, Ransohoff 
1986, Prieditis 1987). 

COMPLEX FLOWS OF VISCOPLASTIC FLT JIDS 

Scalar material functions for foam viscosity and wall fluidity-specific 
forms of Equations (4) and (5), respectively-are sufficient to determine 
velocity fields for the steady rectilinear flows emphasized thus far. The 
analysis of complex flows with nonrectilinear streamlines requires consti­
tutive equations of proper tensor character for the bulk fluid and, if slip 
is considered, the wall boundary condition. Since foams can be modeled 
as viscoplastic fluids if their viscoelastic character is neglected, the fol­
lowing two studies of viscoplastic fluids relate to complex flows of foam 
and illustrate the numerical simulation techniques required. 

The work of Beris et al. ( 1985) is relevant to the particle-carrying 
capacity of foam. They apply finite element methods to analyze the creep­
ing motion of a rigid sphere . through a Bingham fluid, assuming no slip. 
The sphere moves in an envelope of fluid, whose shape depends upon the 
yield stress 't"y, when 27:y1tR;IF � 0. 143, where R. is the sphere radius and 
F is the applied force. The boundaries of the envelope include an outer 
yield surface and two inner yield surfaces due to unyielded "fluid" at the 
front and back of the sphere. 

Tilton (1985) has also used finite elements to simulate steady creeping 
flow through a tube with a smooth axisymmetric constriction. Bingham 
and other visco plastic fluids that slip at the wall are analyzed. A linear slip 
boundary condition, corresponding to constant wall fluidity r/lw, is assumed 
and is given by 

Us = I/Iw(n· 'C .  t)t, ( 16) 
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where n is a unit vector normal to the wall and directed into the fluid, l' is 
the stress, and t is a unit vector tangent to the wall. The solid-like plug 
associated with fully developed flow terminates prior to entering the con­
striction and reforms following it-a plug of finite radius cannot survive 
passage through the constriction because reversible elastic deformations 
of unyielded material are not accounted for. 

CONCLUDING REMARKS 

The experimental study of foam flow has been pursued for over half a 
century; by contrast, less than a decade has passed since the initial devel" 
opment of micromechanical theories for foam rheology. The collective 
data that predate the theories reveal many curious rheological features of 
foam, such as a yield stress and slip at the wall, which stem from foam 
structure and the physical characteristics of its constituepts and interfaces. 
Current theories cannot provide definitive relationships between foam 
structure and rheology because they are restricted by two dimensionality 
in all cases and perfect order in most cases. Once the proper film-level 
mechanisms involving interfacial transport and viscous flow are incor­
porated into disordered two-dimensional models, the significant steps to 
three dimensions can be taken. Meanwhile, the current theories provide a 
rational basis for developing our intuition and reinforce the need for 
careful characterization of foam structure and systematic rheological 
measurements. 
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