Rational functions .
Foy=2O) _ g+ BX U
Q(x) Q(x)’

Asymptotic behaviour
Fx)-K(x)—»0 as x> L oo,

w2e2x+2

1 1 1
T ox(x~-D(x=-2)  x

x—1+x~2

Partial fractions

Assume that

(#) R(x), Q(x) are real polynomials, deg R<deg O,

(if) Q(x) is decomposed in real factors of degree <2, i.e.
OX)=Clr—rY"(x=5)" ... (C+2ax+bY(2+2cx+d) ..., (a*<b, <d)

Then

'
| 1
| |
| |
| |
| |
1 |
I |
| ]
T T
' !
H I
| |
| 1
| |
| |
| |
| |
| |

4

R &, R | Rm

ox)  x-r  (x—rP (x-r)"
X=5  (x-s) (x—s)"
A1x+ B Apx + Bp
(x% + 2ax + b) (x2 + 2ax + b)?
Cix+ Dy Cox+ Dy
2e2ex+d | (P+2cx+d)?

The following example illustrates how to find the constants.

1 A B + Cx+D _

(FeD+12 1 (x+12 0 5241

_ A+ DEE+ D+ BEP+ ) HCx+ DYx+ 1Y _
(x+ 1) (x2+1)

_(A+ O3+ (A+B+2C+ D)+ (A+C+2D)x +(A+ B+ D)
(x+ D2 (2+1)
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Identification of coefficients:
A+C=0, A+B+2C+D=0, A+C+2D=0, A+B+D=1
=A=B=-C=1/2, D=0. Thus
1 - 1 + 1 _ X
(P Dx+ 17 2x+1) 2(x+12 202+ 1)

5.3 Logarithmic, Exponential,
Power and Hyperbolic Functions

Logarithmic functions

1
y=Inx, Y=z (x>0)

y=log,x, y'= 1 (a>0,a#1)

xlna
Inl1=0,Ine=1, lim Inx=—9, im lnx=o0 ' 1
—0" x—yee X

log,x+log,y=log, xy

Inx+Iny=Inxy
1 1
log, 3 =-log,x In Pl

Complex case: log z=In|z|

ioga X= IOga y= Ioga 5

Inx—Iny=In z
y

Inx log,x=

+iarg z

logbx _ lnx

logya  Ina

log, x” =plog, x

Inx’=plnx

Inverses
y=lnx @ x=¢ y=log,x & x=a"=¢'"?

Exponential functions y=e""

R
Natural base e= lim (1 + }; ) ~2.71828 18285

n—»co

| y=e'=expx, y=e*
y=da*, ¥y =a"Ina(a>0)

a®=1, lim e*=0, lm e*=oo .
X—»—c0 X—>c0 s
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13.8

Construction of wavelets

Defining the product filter as P(o) = H(co)ﬁ(m) and inserting (8) into (6) gives
P(w) + P(@ + ) = 1 as a single condition for a biorthogonal MRA. In terms of the z-
transform P(z) = H(Z_I)H (z) and the biorthogonality condition becomes

(13) | P@+P2=1

The approximation properties of the scaling functions means that P(z) should have
zeros at z = —1. Daubechies’ maxfiat product filter, with 2N zeros at z = -1, is given
by

an | R (4 v

where QN(z)=aN_lzN‘1 + ... +a1_Nzl“N is the unique polynomial of least

degree such that (13) is satisfied.

The construction of biorthogonal wavelets proceeds in three steps:
1. Pind a product filter with zeros at z = -1 satisfying (13).

2. Factor P(z), in some way, into H(z) and A

3. Define the wavelets by relation (8).

Remark. The scaling function and the wavelet are compactly supported if H(z) and G(z) are
finite impulse response filters (FIR). The scaling function is symmetric whenever the zeros
of H(z) come in pairs as z; and 1/z;. An orthogonal MRA is obtained when H = H and then
P(z) = H(z")H(z). This means that the zeros of P(z) come in pairs as z; and 1/z;. So either z;
or 1/z; is a zero of H(z). Orthogonality thus prevents symmetry excepl for the simple Haar
MRA, where all zeros of P(z) are at z = — L. For non-compactly supported scaling functions
and wavelets it is possible to combine orthogonality and symmetry though.

Example. For N = 2 Daubechies’ product filter is

(T () s
ro= (5] (3 TR I AR A

Two possible factorizations of this product {ilter are:

1. Orthogonal and non-symmetric,

H(z)= H()= % ((1+ 3)+ G+ 371+ (3= 3) 72+ (1- 30273,

2. Biorthogonal and symmetric,
H(z)= él—‘(z+2+z4)

HE= %(—22+22+6+2z_l—z'2).
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14.1

14 Complex Analysis

14.1 Functions of a Complex Variable

Complex numbers, see sec, 2.3

. 4 Z-plane w-plans
Notation Z+AZ W=U+HY

w=f(2)=f0x+iy)=ulx, y) +iv(x, y)

Differentiation
f(z) is differentiable at 7 if

exists.

e — flz+Az)-f(2)
@)= hmo——

Remark. f(2)=uy+ivi=vy—iuy

Analytic functions

Definition. The function f(z) is analytic in a domain Q if f{z) is differentiable at
every point of Q. [f(z) is analytic at e if f(1/z) is analytic at 0.]

Remark. |z| and 7 are not analytic functions.

Some properties of analytic functions
Assume that f(z) is analytic in £2 with boundary C. Then in £,

1. Any order derivative of f(z) exists and is an analytic function.

2. (Cauchy—Riemann's equations:) In polar Coordinates:
du_ov  du_ ov Pu_ov dv_ du
ox dy dy ox or 96 or 0@

The converse is true if the partial derivatives are continuous in £.
Remark. f(z)=u(z, 0)+iv(z, 0); /(D)= uz(z, ) +iv{ (2, O)=

— .y ) z iz . (2 iz
=uy(z, 0)—iuy(z, 0) etc.; f(z)=2u (5, - —2—) +C=2iv (5' — 5) +C

if f(z) is analytic around zero.
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14.1

- Au=uyy +uy, =0, Av=0, i.e. u and v are (confugate) harmonic functions.
. u(x, y} = C|, v(x, ¥) = C, represent two orthogonal families of curves,

3
4
5. I’Hospital’s rule for limits is valid for a quotient of analytic functions.
6

. (Maximum — modulus principle.)
| f(2)| <M on C (C simple) = | f(2)| <M in Q (if f(z) is not constant).
[|f(z)| attains its maximum (and minimum if f(z)#0) on the boundary].
7. f/(@)#0 = w=/f{(z) has an analytic inverse function z=f"'(w) in a neighbor-
hood of a and
dz aw
—_=1/—.
dw / dz
8. (Liouville's theorem). If f(z) is analytic in the entire plane (i.e. an entire func-
tion) and bounded, then f{z) is constant,

9. (Schwarz’ lemma)
(i) f(z) analytic for |z]< 1 @) | f@D)I£L=0=
| f(2)|<|z| (equality only if f(z)=cz, |c|=1)

Elementary functions
Single-valued functions

1. 2"=(x+iy)", ninteger (z=0if n< )
2. ¥ =" =¢"(cos y +i siny). Period =21

3. coshz= %(e"%e‘z), sinhz= %(ez—e‘z)

sinhz

tanhz= ——
N coshz

1y, . _ coshz .
(z;t(k+2)m) , cothz= Sinhs (z#kmi)
4. cosz= 1 (eZ+e™), sinz= 1 (eT—e %)

2 i 2i

tanz= sz (z;t(k+l)1r), c0tz=c—?§ (z#km)
cosz 2 sinz

sinfz=isinhz sinhiz=isinz

cosiz=coshz coshiz=cosz
tanhiz=itan z

cothiz=—icotz

taniz=itanhz
cotiz=—icothz

(Formulas for real elementary functions (cf. chapt. 5) are valid also in the complex
case.)
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Multiple — valued functions

5. logz=In|g|+i argz=Inr+#6+2nm)

(infinitely-valued)

Principal branch:
Logz=Inr+if, —m<6<m

6. 72=¢"198% g non-integer

14.1

Tz—plane

branch cut | branch point

(if a= g € Q then z” is g-valued, if a& Q then z%is oo—valuecl)

2. Qif=el8H =g

Example
1. log2i=In|2i|+iarg2i=In2+i (g+2mr)

—(g+2mr)+iln2

- e—n/Z—Znn[cos(In 2)+isin(Iln 2)]

A survey of elementary functions

w=F(2) =i+ iy)=u(x, y) +iv(x, y), r=|g = 4 32+ y%, 6=argz

Function| Real part Imaginary part Zeros Isolated Inverse
(k=0,+1,%2, ...)| singularities |
w=f(z) |uix,y} v(x, ¥) m =order m=order 2=l (w)
z x y 0,m=1 oo, m=1 (pole) w
22 x2_y2 ny 0,m=2 °°,m=2(polc) w]f2
/7 x _ X oo, m=1 0, m=1(poley |Hw
r2 r
1 w2y _2xy oo, =2 0, m=2 (pole) w2
4 P
1 1
Jz + (x_+ r )i + (__-—"2"' ! )2 0, branch point | 0, s branch points{ w >
2
e* e“cos y e sin y - oo (es8. sing.) logw
coshz |coshxcosy sinh.x siny (k + l) ni, m= 1| (ess. sing.) log(w + Jwio )
2,
sinhz |sinhxcosy coshx siny ki, m=1 ca (ess. sing.) log(w+ ~w? + 1)
sinh2x sin2y ki, m=1 (k+12)m' m=1|1, (1+WJ
tanhz cosh2x + cos2y | cosh2x +cos2y ' 508\,
(peles)
oa, (es8. sing.)
logz Inr 6+2nn 1 (princ. branch),| 0, e branch &
m=1 points
cos Z cosx coshy —sinx sinhy (k + %)n, m=1 |vo(ess.sing.) —ilog(w+ fw? 1 )
sinz sinx coshy cos x sinhy kn,m=1 o (e85, 5ing.) —ilog(iw+ J1-w?)
sin2x sinh2y mom=1 (,Hl),: m=l |_i (1 +iw)
tanz cos2x+ cosh2y | cos2x+ cosh2y 2 2 BT
(poles)
oo (ess. sing.)
351



14.2

14.2 Complex Integration

Basic properties T c 7
Definition /’j
b Zi
[Fovdz= [ famzar= C z=2(0, asisp
c a
= [ (u+iv)dx+idy)
C

Properties
L | [A0xe]s [ 1@ - |del M - L. i€ | /@I <M on C, L=length of C.
C C

2. If f(2) is analytic in a domain containing C and F(z) is a primitive function of
f(2), then

[ F2)dz=F(z3) - Fizy)
C

3. (Cauchy’s theorem)
Jf(2) analytic on and inside a closed curve C = {’ fDdz=0
C
4. (Morera’s theorem, converse of Cauchy’s theorem)
(i) f(z) continuous in a region {2

(i) § J(2)dz=0, every simple closed curve C in Q
C = J(z) is analytic in Q.
5. If f{z) is analytic in a region with a finite number of
“holes” {where f(z) is not necessarily analytic), then
35 flDdz= § f(2)dz+ §f(z)dz +...
c Cy (85}
6. If f(z) is anaiytic on and inside a simple closed curve C,

and a is any point inside C, then
(1) (Cauchy’s integral formula)

_1 ¢ fin)
T 1 c i=a C

oy M Az)
A Xa)-Z_n'ig (z — ayr+] 4

.l
@ |f (")(a) |< ﬂ’;T” if Cis a circle with centre at ¢ and radius =R, [f(z)|<M on C.
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14.2

Residues
zR=e2 flZ)=c_y, ie. the coefficient of (z~a)"1 in that Laurent series expansion of

J(z) [cf. sec. 14.3] which converges in O<|z—a|<R.

The residue theorem

As_sume that £(z) is analytic on and inside C except at
finitely many points ay, &y, ..., a,. Then

1 I
L S gf(z)dz=k§] Res fiz) ]

Calculation of residues

1. Determine c_; in the Laurent series expansion,
2. Simple pole: ZR=eg f(z)= zli_r)na z—a) f(2). [I’Hospital’s rule may be used]j.
In particular, if f(z), £(2) analytic, f(a)#0, gla)=0, ¢'(a)£0, then
Res JB)_ f@)
=a 8z gla)
dym-1

, . 1
3. Pole of order m: zlgcg f(z)= zh_r)m(J (;_—l_)'( p {z-a)™f(2)).

Calculation of definite integrals
2n

1. fR(sinB, cos Odo=[r=¢'] = f R (Z;le z—til)éf
0 lzi=1 2072 Jiz

2. If f(z) is analytic in the upper half-plane Im z> 0 except for a finite number of points a,

--+» 4, above the real axis, and if]zf(z)] —~ 0 a8 z - eo, then

[ A9dx=2m 3 Res £z)
_ea k=lz=a,

3. If Cpt 2=Re', 0<0sm and if | A2)| <31 R % (M, k>0 constants), then

I F2eMmzg, 05 R — o,
Cx

_ T cosx T e
Emmpte.l__Lmdx=Re | 2o a>0. ‘

etz

Set f(z}= : Res =e 9 i g _ o, ieaTe =) R
T 2R iaf(z) e z]l{r:a . (1"Hospital's rule] =

Ccap. 1 ea -

=¢ % lim — = e—,.Funhermore, lefz)= _|z|_ei_< l2 —0asz— oo,

z—ia 27  2ia

lzz + azl B 'zz + azl
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14.3

Calculation of sum of infinite series

Assume that | f{z)| Sconstant |z| ™%, a> 1 as 7 — =

1. Z J(n)=~[sum of residues of nLf(z) cot mz at all poles of f(z)].

2. :T:ﬂ (— 1)"f(n) = - [sum of residues of g(fr—)z at all poles of f(z)].

Example. Z
“wntta

( Res meot g + ;cot iz

= Zeotnr
z=ia 2442 =g 2442) a 4

14.3 Power Series Expansions

Taylor series
If /(z) is analytic in a neighborhood of z=a, then

singular
point

@)= E ap(z-ay*, aﬁm
n=0 n!

Radius of convergence R = distance to the nearest singular point, or

7= lim supn /an l:hm?t an—hm
n—o

n— oo

A+l

if they ex1stJ

Example. Sought: Taylor series of Log(2z-§) about z=0; Log(2 3
z—i=Log[-i(1+2iz)]=
=Log(—i) + Log(1+ 2iz) =—im/2 + iz - 1/2(212) +. § )=logl- i Il

|

Table of series expansions, see sec. 8.6.

Laurent series
If f(z) is analytic in an annulus about z =, then

fi= % ecp(z—a), c,,-2m§ _fa

n=—co (Z a)n+1

Ry and R; radii of convergence: | —

1
7= lim sup JTH R, =nlgnmsupn/]c_n|

2 noee
JS(z) has singular points on the circles lz—al=R;i=1,2.

Example.
Sought: Laurent seties expansion of f(z)= 22

Solution. E—— et =2 =wl= 1 1 1
n. f{z) -1 1 [z-2=w]= - = — =

w+1l w43 W(l"’vlv) 3(1+g)
\;vlv(h&ﬁu#—...)—%(l-%"ﬁ—";m ) ="§0(_1)"(z—2)ﬁ"-1- %n};fo(-%)" (z-2)"
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1 in the annulus 1<|z-2|< 3.

14.4
14.4 Zeros and Singularities

Zeros
Assume that f(z) is analytic (and £ 0) in a neighbourhood of z=a. The point a is a
zero of order n if f(z) = (z—a)"g(z), where g(z) is analytic and g(a)#0.
Remark. ais a zero of order n <
flay=fa)=...=f" Va)=0,f"(a) %0
Singularities
z=a is a singular point of f(z) if f(z) fails to be analytic at 4. It is isolated if there is
a neighbourhood of @ in which there are no more singular points.

Classification of isolated singularities.

The point z=a is
() aremovable singularity if lim f(7) exists.
Z—a
(if) a pole of order n if f(z)=(z—a) "g(z), where g(z) is analytic, g(a)=0.
[The Laurent series expansion about 4 contains finitely many negative

power terms. |
(i) an essential singularity otherwise, in which case there are infinitely many

negative power terms in the Laurent series expansion about a.

Furthermere, branch points of multiple-valued function are examples of non-isola-
ted singular points.

1. (Picard’s theorem)
The point z=a is an essential singularity of f(z) = Every neighborhood of a con-
tains an infinite set of points z such that f(z} =w for every complex number w (with
the possible exception of a single value of w).
[Example. f(2) = £, Essential singularity at z =0, exceptional value w=0].
2. An isolated singular point z=a is a pole < lim | f(2)[=-=-.

e z-plane

The argument principle G
Assume that f(7) is analytic inside and on a simple curve C &B

except for a finite number of poles inside C, f(z)20 on C.
Let N=number of zeros, P=number of poles inside C weplane

(including multiplicity). Then
w={(z}

f(z)
N-P= 2m f(z) 2 +— Ac arg flz)

Agarg f(2)=4x
N—P=2

Rouché’s theorem
Assume (f) f(2). g (2) analytic on and inside a simple closed curve C (if) | g(2)|<| f(2)|
on C. Then £(2) and f(z) + g(z) have the same number of zeros inside C.
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14.5 14.5

14.5 Conformal Mappings Then

H{x, ¥)=h(u(x, ¥), v(x, y)) is harmonic in Q.

Assume that f(z) is analytic. The z-plane w-plane ok )y 9H
mapping w=£(z) is conformal (i.e Cs wo=Az) Remark. on =0ondQ’= - 0 on 2

preserves angles both in magnitude Z% ﬁ\ Cf. Poisson’s integral formulas, sec. 10.9.
3 4
c

and sense) at zy if f'(zy) 2 0.
0 i1.f(z9) 1 ACy) 1(02) Example. (Solving a Dirichlet's problem by conformal mapping.)

Remark. The Jacobian (“ V) = iz )l J - ’ {"roblem.' D('eteljmil!e the electric potential U_(x, 3_2) in th_e unbounded {shadowed region 2
if the potential is given on the boundary as indicated in the figure, i.e. solve the follo-
wing Dirichlet problem:

Riemann’s mapping theorem

. . . . i AU=0 in£2 (ie.Uisharmonic in £2)

Assume that Q is a simply connected region with boundary C. Then there exists a : *) U=0 onIjand I

mapping w=£(z}, analytic in Q, which maps €2 one-to-one and conformally onto U=tUyonTy

the unit disc and C onto the unit circle.
Solution. Set z=x + iy and w =u + iv. By the bilinear transformation
ezl o xtiy-l_ 2+y2—1+2iy

The bilinear (Mébius) transformation z+1l x+iy+l (x4 12452

=u+iv,

The mapping w = azt b (ad bc#0) maps £2is conformally mapped onto £2°=the first quadrant of the w-plane. Furthermore,
n—>nt<u<l,v=0 LRia>l,v=0 lRiu<0, v>0,
(_"'.) Cn'c.le - ‘cm:le 01_' stra.lght h[.le Therefore, the problem (*) is transformed to the corresponding Dirichlet problem in the
(if) straight line — circle or straight line (&, v)-plane:
Invariance of cross ratio ' AU=0 ing’
_ _ _ _ U=0 onrjury
w-—wi(wa-w3) _(z-21)(z2-23) U=Uyon Iy

[wp=wizy)]

(w-w3)(wa-w1) (z-z3)(z2—21)
Because 6=arg w = arctan E is harmonic in the first quadrant (it is the imaginary part of

Inverse points
z and z* are inverse points the analytic function log w = In|w|+ i arg w), the solution of problem (*} is
(/) with respect to a circle if 2U, 20, 2U, v 2U 2
_ _ S — e — - -= — —y
(z¥—a)Z-d)=R? U= 0= arew = arctang, = =~ arctan x+y-1

i d,0p=A>
(b -a)z*-a)=(b~a)Z -a) )z/ Special conformal mappings
a vz

(if) with respect to a line if

Invariance of inverse points Mappings onto the upper half plane

Pairs of inverse points are mapped to pairs of inverse points (with respect to cor- Mapping
responding circles or lines).

d
= E(z—a)+c

Preservation of harmonicity by conformal mappings

Agsume that WLV
. . . n Z=x+iy 2.
(i) A(x, v) is harmonic in w-plane. }\R n
(if) f(zy=u(x, y) + iv(x, y) is an analytic function map- - .
ping Q conformally into Q’, K‘) \*j\
-
2
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14.5

Mapping

W= Zm’a

14.5
Mapping
11 2 —
z—4a

Composite mappings

unit disc [z|<1.

Solution.

(i) 21=Z4
i _l+z
(if) = T

4
(ifi) 23 =2,° or directly by 8: z;= G +z4]
-

() By 11 we 270 2 Qg —i1-z4)’
y 1L 3 +i (1+ 42 . 12
) +i(1-2%)

Example, Find a conformal mapping of the circle sector O<arg z<m/4, |z|<1 onto the

Mapping
_ g £—¢@
w=e e
(@ arbitrary)
10. z ” —
Z
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Miscellaneous mappings

12. i - —
w=sin —
a

A

D E- A8 ¢

W

13. o w=sm%z




14.5

. 1+bc—J(1-b2{1-c2)

1—be—J(1-b*(1-c2)
- b-c

14.
15.
16. z
[#
DL
E.::
F
17. W, 2
(=)
L
A B DA
18. w o 1
w= i(“%)
19. w=z>

rg B’ V -

Parabola v?=—4a%(u— az)
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R
23. W
B' L4 Al Cl
- \ 1 R
we= =8
T l-az
go Lbe— J@2-D(e-1) o _be-1+ N2 -1 1)

b+c
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14.5

14.5

4. g Wi _f-a
Z+da
~ N2
a= Jbe _ob-Je
Jb+ e

25. z w= e

E ia

o

A
26. vy

v=C4
v=Cy
U=C4 U=Ca
x U
w=z2
27. z wi w=Logz
in F c’
cl fF E’ B
A D ina- inb
—n— 4
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wi w=Logz
£ in c’
. B
D inb
E —ir A’
W,
‘ w=pz+g
b
D’\ (
c’ A\
~—8 Flipss
p=a—- _a+b
2 =73
30. -
-g ]
c -
Z
w= [ 147 Y1 pplr-1g;
0
31. Wi
g A &
-tk —1 1 1k
A BC DEF G c’ o B
¢ d
w=] ! , O<k<l
0 (1 —12)(1 -k
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14 —4ﬁ—\
15.1

32.

w=2./z+1 +Log _____\.Z'Fl—l

33, . NZ+1+1

34.

I 14§
we 2 Log 52 ppopdtt [
—har 1-t” 7+a?

1 a
A BCD E F

W=COShhl (2—%%—_1) - __1_ cosh™! [(a"' 1)z—2a
a (a-1)z ]
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15 Optimization

(In this chapter all functions are assumed to be “smooth enough™.)

15.1 Calculus of Variations

The calculus of variations treats the problem of finding extrema of functionals, i.e.
real valued functions having functions as “indcpendent variables”. Below, neces-
sary conditions (the Euler-Lagrange equation (15.1), the solutions of which are
called extremals) are stated for some different kinds of variational problems. Suffi-
cient conditions can be formulated (e.g. Weierstrass’ theory on strong extrema).
However, “common sense” may often be used to establish the sufficiency.

Problem 1 (fixed end points)

Find a function y = y(x) that minimizes

b
Iy)= [Fx, y, y))dx

Way=0, Xb)=p

for a given function F(x, y,y’) .

Necessary condition for solution:
oF _ i(a_ -
oy dx\gy’

Fy—Fxy =y Fyy =y"Fy'y =0

In particular, if F=F(y, y") then (15.1) implies

(15.2) F-y' Fy, =C (C constant)

(15.1) 0 &

Remark. The equation (15.1) is an ordinary differential equation of 2" order. Com-
bined with the boundary conditions y(a) = & and y(b) = § the problem to be solved is
a boundary-value problem.

365



