
Matlab course: hands-on workshop

Jérôme Hoepffner

April 2011

2

Contents

1 Lecture notes 5
1.1 Introduction . 5
1.2 Basic Matlab . 6

1.2.1 Graphs . 8
1.2.2 Scripts . 8
1.2.3 Current directory . 9
1.2.4 Loops and tests . 9
1.2.5 Simple functions of Matlab 11
1.2.6 Create your own functions 11
1.2.7 Matlab Help . 12
1.2.8 Special characters . 14

1.3 Arrays . 14
1.3.1 Build arrays by concatenation 15
1.3.2 Access to subarrays 16
1.3.3 Array operations . 18
1.3.4 Special array functions 20

1.4 Vectorization . 22
1.4.1 More advanced vectorization 25
1.4.2 Even more advanced 27

1.5 Computing faster . 30
1.6 Graphs . 32

1.6.1 Lines . 33
1.6.2 surfaces . 36
1.6.3 Isovalues . 39
1.6.4 Vector fields . 40
1.6.5 The current graph . 41
1.6.6 Saving figures . 41

1.7 Set and get . 43
1.8 Your report . 44

3

4 CONTENTS

Chapter 1

Lecture notes

1.1 Introduction

The computer is a tool at the heart of science: writing articles, analyzing and
visualizing data, but also creating data by simulating accurate models of our
physical systems. Creating data is typically done by intensive computations,
by solving partial differential equations with a large number of degrees of
freedom. This is done using compiled languages: the restriction is simulation
time, these codes are large, complex, of long development time and hopefully
long lifetime. Modern experimental measurement techniques as well produce
large fields of data: Particle Image Velocimetry for full velocity fields, the
large number of pixels of high speed cameras...

The data obtained this way is heavy and complex, and stored in the
memory of computers. It is clear that special programming skills are needed
to manipulate this data; on one hand to visualize it (data must be seen), and
on the other hand to extract the relevant information: statistics, automatic
identification of special events...

This use of the computer goes beyond post-processing: to understand our
physical systems we need to compare them to simple models, often ordinary
differential equations; light systems of equations which must be themselves
solved or simulated.

The goal of this course is to set-up a standard of programing using
Matlab to give you the tool you need for all that. These codes are typically
simple, of rapid development time and often of short lifetime: the qualities
of interactivity.

Organisation: Four consecutive mornings, each one structured as: pre-
sentation of the general ideas, examples coded ”live” and discussed, hands-on

5

6 CHAPTER 1. LECTURE NOTES

where you apply the techniques on various types of physical systems, put
your results (graphics) together in a report. We keep the physics in mind
at all times.

1) Compiled versus interpreted languages. Basic syntax: loops, tests,
arrays, logicals, graphics. Using the documentation. Manipulation of arrays.

2) Graphics: overview of the possibilities. Set/get commands to affect
all properties of the graphics through programing. Animations.

3) Making complex operation with short commands: manipulation of
arrays, vectorization, use of arrays of logicals. Avoiding the mistakes which
make a slow code, learning the basic ideas towards concision.

4) Linking heavy/efficient code to light/quick analyses: inputs and out-
puts, interfaces. Computations in parallel. Simulating systems and models.

1.2 Basic Matlab

Matlab offers an interface through which one can enter commands, this is
the ”prompt” , the line which starts with >>. You can write command lines
to do all your needed operations: creation of arrays, arithmetic evaluations,
draw graphs. Once the command is written, you strike ”enter” and the
computer evaluates this command, check that everything is correct. If there
is a problem: calling a variable which does not exist... Matlab gives you
an error message. It is important to read the error message and try to
understand.

Matlab comes with a graphical interface with a text editor, the command
window with the prompt. You can chose the configuration of the window
from the ”window” menu. I advise you to chose the following configuration,
which allows you to see at the same time your script, the command window
to see the error messages and to test simple things, as well as your graphic
window.

1.2. BASIC MATLAB 7

If you create an array, for instance

>> A=[0.1,5,-2];

this is a line array (one line and three columns), then this array is now
accessible in your ”workspace” , which is the memory space of Matlab. You
can use from now on this array by calling its name, for instance here we
create a new array B in which we put twice the value of elements of the
array A:

>> B=2*A;

>> B=2*A
0.2 10 -4

Which is indeed what we expected
I can ask Matlab to tell me the names of all existing variables with the

function who

>> who
A ...
B ...

8 CHAPTER 1. LECTURE NOTES

These are the two arrays that I have created. If I want to remove an array
from the workspace, I use the function clear by calling the array by its
name. This operation of memory management is useful to free memory
space and it is especially important to think about that because in matlab
it is very easy to create new variables.

>> clear A

To remove all variables, use clear.
Note that Matlab is a case sensitive language: A is thus a different vari-

able from a.

1.2.1 Graphs

With the command line, you can draw graphs which represent (visualize)
arrays. For instance with the function ”plot” for a line graph:

>> a=[2, 5, 6];
>> b=[3.2, 3.5, 5];
>> plot(a,b)

Here I create two arrays called a and b, and I draw the values of b as ordinate
and the values of a as abscissa. This graph appears in a new window. You
can use functions which add details to these graphs:

>> xlabel(’a’); ylabel(’b’); xlim([0,8]); ylim([0,6])

Try these commands for yourself to see what they do.

1.2.2 Scripts

If you want to keep a series of commands, instead of writing them every
time at the prompt, you can write them in a text file. This is a ”script”.
You can use your favorite text editor to edit your scripts, but the matlab
interface offers an editor which has some useful functionalities for syntax
highlighting and execution. I use Xemacs, for which there is a matlab mode
with equivalent functionalities. Matlab scripts have the extension .m.

If I type at the prompt the name of my text file (without the extension)
then Matlab will look in its current directory a text file with this name, and
execute (interpret) one often the other the commands which are written in
this script, just as if I had written them at the prompt. Here is a very simple
script:

1.2. BASIC MATLAB 9

% voici mon script

a=[2, 5, 6];
b=[3.2, 3.5, 5];

plot(a,b) % je trace le graphique

The characters which follow % are not interpreted, this is a comment.
These comments are useful to remember what a script or block of commands
were thought to do, or to help a user which has not coded the script himself.

1.2.3 Current directory

To be able to execute the script, it must be in your current directory, just as
in the linux/Unix shell. The commands associated to the notion of current
directory are just as in linux:

• pwd: ”Print Working Directory” print on screen the address of the
current directory.

• ls: ”List Directory” prints on screen the list of files and directories in
your current directory.

• cd: ”Change Directory” to change the current directory.

If you use the matlab editor and your script is not in the current directory,
then a dialog window will offer you to change the current directory.

1.2.4 Loops and tests

To realize repetitive actions, use the for loop. For instance:

a=7
for ind=1:10
a*ind

end

I create an array called a, and for the index ind going from 1 to 10 with
steps of 1, I print on screen the value of a times ind. We will see later that
the syntax 1:10 is in fact a shortcut to declare linearly space arrays. The
previous list of command is equivalent to

10 CHAPTER 1. LECTURE NOTES

a=7
vec=1:10
for ind=vec

a*ind
end

I can use the test structure if to execute a block of commands only if a
certain condition is true:

a=2; b=3;
if a>b

disp(’a is larger than b’)
else

disp(’a is smaller than b’)
end

You must realize that a>b is a binary value: true or false. in matlab, true
is 1 and false is 0. here disp is a function which prints to screen the value
of its argument. Its argument can be a numeric variable, or as here a string
of characters, denoted with the special quote character ’ ’. Just as for the
loop above, the value of the logical on which the test is made can be stored
in a variable:

a=2; b=3;
test=a>b
if test
disp(’a is larger than b’)

else
disp(’a is smaller b’)

end

Here the variable ”test” is a scalar, that is a one line one column array
whose value is 1 or 0. Note that the expression if test means ”if test is
true” and is a shortcut for the more precise expression if test==1. The
operator== is the equality test, just as > is the ”large then” test and < is
the ”smaller than” test. Please do not mix up the equality test == with the
assignment operator = which assigns a value to a variable. The test ”is not
equal is written ~=, since ~ is the negation operator: if a is true, then ~a is
false.

To kill a process: It happens that a command takes much time to process
because you made a mistake in the coding, or you might change your mind
before completion of the computation to change a parameter. To stop the

1.2. BASIC MATLAB 11

execution and get the prompt back, strike CTRL-c, just as for the Linux
shell.

1.2.5 Simple functions of Matlab

There are many functions in Matlab to which you give ”input arguments”
and which give back to us ”output arguments”. What happens inside the
function we are not much interested in and can be extremely complicated,
but we are just interested in the function output. We have the basic math-
ematical functions:

cos: cosinus
tan: tangente
exp: exponentielle
sqrt: racine carrée
log: logarithme
abs: valeur absolue
sinh: sinus hyperbolique
cosh: cosinus hyperbolique
tanh: tangente hyperbolique
erf: fonction erreur
...

and so on, for the time being we have given scalar input arguments and got
back scalar output arguments, but we will see later that if you give array
input arguments, then matlab will apply the function to each of the element
of the array and give you back an array of same size. These sounds trivial at
first sight, but this in fact is a key to opening the door to bright perspectives
of possibilities of quick and efficient coding.

You have other kinds of functions, as for instance

a=num2str(2.3)

which transform the numerical value of the input argument into a string of
character, which will be useful to build screen outputs of your liking. You
can easily imagine what the function str2num will do for you.

1.2.6 Create your own functions

You can create your own functions, for this you create a text file with the de-
sired function name, with a ”.m” extension as for a script, and with a special
header. here is an example of text file to create the fonction ”testfunction”

12 CHAPTER 1. LECTURE NOTES

function [s1,s2]=testfunction(a,b,c)
s1=a+b;
s2=s1+c;

This function has three input arguments a, b, and c, and gives back two
output arguments s1 and s2. The type and number of argument is arbitrary.
they can be arrays or whatever else. No need to worry for this as in fortran
for instance. Here is an example of the use of your new function

toto=1
pilou=3
[p,r]=testfunction(toto,pilou,10);
disp(p)
disp(r)

1.2.7 Matlab Help

If you have forgotten the details of the use of an operator, use the ”help”
function, for instance
>> help for
FOR Repeat statements a specific number of times.

The general form of a FOR statement is:

FOR variable = expr, statement, ..., statement END

The columns of the expression are stored one at a time in
the variable and then the following statements, up to the
END, are executed. The expression is often of the form X:Y,
in which case its columns are simply scalars. Some examples
(assume N has already been assigned a value).

for R = 1:N
for C = 1:N

A(R,C) = 1/(R+C-1);
end

end

Step S with increments of -0.1
for S = 1.0: -0.1: 0.0, do_some_task(S), end

Set E to the unit N-vectors
for E = eye(N), do_some_task(E), end

Long loops are more memory efficient when the colon expression appears
in the FOR statement since the index vector is never created.

The BREAK statement can be used to terminate the loop prematurely.

See also if, while, switch, break, continue, end, colon.

Reference page in Help browser
doc for

One of the most useful aspect of this help, is that it offers in ”see also” at the
bottom of its output, a list of other functions of Matlab which are related
to the help that you have asked for. This is the way you will learn the
very large possibilities offered by the Matlab library. This large library and

1.2. BASIC MATLAB 13

the efficient help which leads you through, together with the easy syntax is
really what makes Matlab something special and useful.

If you wonder how a special operator works, for instance verb!:! (”colon”),
type

>> help colon
help colon
: Colon.

J:K is the same as [J, J+1, ..., K].
J:K is empty if J > K.
J:D:K is the same as [J, J+D, ..., J+m*D] where m = fix((K-J)/D).
J:D:K is empty if D == 0, if D > 0 and J > K, or if D < 0 and J < K.

COLON(J,K) is the same as J:K and COLON(J,D,K) is the same as J:D:K.

The colon notation can be used to pick out selected rows, columns
and elements of vectors, matrices, and arrays. A(:) is all the
elements of A, regarded as a single column. On the left side of an
assignment statement, A(:) fills A, preserving its shape from before.
A(:,J) is the J-th column of A. A(J:K) is [A(J),A(J+1),...,A(K)].
A(:,J:K) is [A(:,J),A(:,J+1),...,A(:,K)] and so on.

The colon notation can be used with a cell array to produce a comma-
separated list. C{:} is the same as C{1},C{2},...,C{end}. The comma
separated list syntax is valid inside () for function calls, [] for
concatenation and function return arguments, and inside {} to produce
a cell array. Expressions such as S(:).name produce the comma separated
list S(1).name,S(2).name,...,S(end).name for the structure S.

For the use of the colon in the FOR statement, See FOR.
For the use of the colon in a comma separated list, See VARARGIN.

Overloaded functions or methods (ones with the same name in other directories)
help sym/colon.m

Reference page in Help browser
doc colon

If instead of help, what you need is ”documentation”, use the command doc
which open a separate window.

There are many things in Matlab; it is when you will master its help that
you will master it really, and truly use it as a ”high level programming
language”.

14 CHAPTER 1. LECTURE NOTES

1.2.8 Special characters

These are the characters which play a special role in the syntax, here is a
short list:

• [] the square brackets to concatenate arrays.

• ; semicolon, to put at the end of a command whose result you don’t
want printed on screen. Also for the array concatenation: going to the
next line.

• : ”colon”, to define a equispaced array (geometric progression): 3:10
is the same array as the line array [3,4,5,6,7,8,9,10] similarly,
0:0.1:1 is the same array as
[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

• , The comma, to put at the end of a command if you have several com-
mands on one line of your text file, if you want the result to be printed
on screen. Also for array concatenation: to separate the elements of
the concatenation without going to the next line.

• == logical operator of equality.

• = to be pronounced ”receive” and not ”equal”, to assign a value to a
variable.

• ’ ’ Single quotes to define a string a characters.

• * Matrix multiplication.

• .* Array multiplication: element by element, and not matrix multi-
plication.

• ./ Array division, element by element.

• / Matrix division: A/B for two square matrices A and B is equivalent
to A*inv(B).

1.3 Arrays

In this section, we will see that we can do many things with arrays, with very
short commands. These will be useful in the following when manipulation
interesting data: analyze and graphs.

1.3. ARRAYS 15

1.3.1 Build arrays by concatenation

The simplest array has one line and one column, it is a ”scalar”

a=-3.7;
b=2;

I have now two variables, a and b which have the same size and both contain
a real number. I can concatenate these two arrays to get a larger array

c=[a,b];

the brackets [] are the concatenation symbols. This command puts in
c an array by putting a and b ”side by side”, this being specified by the
character. If I want to put a et b ”one above the other”, I use the brackets
with a semi-colon

d=[a;b];

I can build an array by directly concatenating numbers

v=[2, 3, 4; 3, -2, 6];

I thus have in v an array with two lines and one column. I can do many
other manipulations of that sort, you just have to think of the blocks you
can put next to each others, either side by side or one above the other. The
only constraint is that the blocks must be rectangles. see the commands
below and the graphical representation of what is going on.

t1=[v,v]
t2=[v;v]
t3=[d,v]
t4=[v; 2, 2, 2]
t5=[v,[1;1]]

16 CHAPTER 1. LECTURE NOTES

1.3.2 Access to subarrays

I the previous section, we have seen how to create arrays by concatenating
smaller arrays, here we will create smaller arrays by selecting subarrays, or
directly change the values that are memorized in the subarrays of existing
arrays of your workspace.

Suppose we have the array

A=[1, 2, 3; 8, 9, 10; -2, -3, 0; 1, 1, 1];

which is an array with 4 lines and 3 columns. The simplest sub-array is a
scalar element, you can access it by its line and column index, for instance
A(2,3) is an array of one line and one column which contains the value 10.
here the first index is the index for the line, and the second index is the
index for the column:

1.3. ARRAYS 17

I can do:

b=A(2,3)+A(1,1)

here I store in a new variable ”b” the sum of the (2,3) and (1,1) elements of
A.

You can just the same way access subarrays of A, by putting now arrays
of indices:

c=A([1,2],[2,3])

now c is an array with two lines and one column:

I can as well put the array of indices in a variable instead than explicitly if
it fits my needs:

vl=[1,2];
vc=[2,3];
c=A(vl,vc);

18 CHAPTER 1. LECTURE NOTES

is an equivalent sequence to the previous one. it will prove sometime very
useful, for instance when the selection of the indices is subtile, or when
extracting the same sub-array of many arrays.

One interesting thing is that you can directly change the values of sub-
arrays. First here for just one element:

A(2,3)=2;

Here we change only the element of the second line third row, but you can
change directly a larger sub-array

A([1,2],[2,3])=[5, 5; 5, 5]

for this to work, the array on the right must be the same size than the array
on the left.

1.3.3 Array operations

All the arithmetic operations that we routinely apply to scalars can be ex-
tended to arrays just by thinking that these are applied ”element by ele-
ment”. We will just have to be careful with operation which naturally have
a ”matrix” meaning, as for instance array multiplication (element by ele-
ment) is different from matrix multiplication which is not an element by
element operation, but something more complex..

Suppose we have two arrays

A=[1, 2; 4, -1];
B=[0, -5; 2, -2];

1.3. ARRAYS 19

then

C=A+B

consist in storing in the C(i,j) element, the sum of the elementsA(i,j)
and B(i,j). For instance now C(2,2) stores -3.

The two following operations

D=2*A
E=2+A

consist in storing in D the elements of A multiplied by two, and to store in E
the elements of A to which we add 2 (to all of them).

The array multiplication is also an operation element by element and it
is written .* and not *.The command

C=A.*B

stores A(i,j)*B(i,j) into C(i,j). It is equivalent to the following:

C=[0, 0; 0, 0];
for i=[1,2]
for j=[1,2]
C(i,j)=A(i,j)*B(i,j)

end
end

Which should not be mixed-up with the matrix multiplication, *:

C=A*B

which considers A and B as element of the matrix algebra. this instruction
is equivalent to

20 CHAPTER 1. LECTURE NOTES

C=[0, 0; 0, 0];

for i=1:2
for j=1:2
for k=1:2
C(i,j)=C(i,j)+A(i,k)*B(k,j);

end
end

end

We will see that Matlab is very useful to manipulate matrices, to solve
linear equations, calculate eigenmodes... after all, matlab means ”MATrix
LABoratory”...

You can as well apply mathematical functions to arrays

C=sin(A)
D=exp(B)
E=cos(A)+tanh(B)

Which is a large gain of coding effort, since one single command applies
the operation to all the elements. For instance the third command above is
equivalent to

E=[0, 0; 0, 0];

for i=[1,2]
for j=[1,2]
E(i,j)=cos(A(i,j))+tanh(B(i,j))

end
end

Without this possibility, we have seen in the previous examples that you
would need to use several nested for loops to go through all indices, which
would make your coding considerably heavier.

1.3.4 Special array functions

After having seen functions which apply element by element, and which thus
affect arrays just as if they were scalars, we will now see functions which are
used to create and manipulate arrays.

1.3. ARRAYS 21

Creating arrays

to create an array filled with zeros, use the function zeros

A=zeros(4,5)

here, A becomes an array with four lines and five columns, filled with zeros.
You will easily guess what the function ones does. We also have the eye
function

I=eye(6)

which builds an identity matrix: filled with zeros except for the diagonal
elements which are ones. ”Eye” for ”eye-dentity”.

here is a function which will be useful to vary the physical parameters in a
model, the linspace function, which creates line arrays

v=linspace(0,1,65)

here , v is a line array of 65 equidistant elements from 0 to 1. This command
is equivalent to

v=0:1/64:1

which is still an equivalent of the explicit assignment

v=zeros(1,65);
for i=1:65
v(i)=(i-1)/64

end

The function ”zeros” will be useful to create new variable with the desired
size: fill it with zeros and you will later one use it for your own purpose.

22 CHAPTER 1. LECTURE NOTES

Extracting information from arrays

For an array A, the max function gives as output a line array which stores
the largest element of each column of A

>> A=[2, 3, 4; 1, 4, 4]
>> v=max(A)
v= 2 4 4

to have the largest element of A, just do:

m=max(max(A))

you can as well get the index of this largest element, for this look i the matlab
help for the output arguments of ”max”. The min function is similar. We
find this often in matlab: special array function work column-wise.

You can compute the sum and the product of the elements of an array

v=sum(A)
r=prod(A)

here too, the dimension of the output argument is equal to the the dimension
of the input argument minus one because the function acts column-wise.
Thus for the sum of all the elements of the array, just do sum(sum(A)).

1.4 Vectorization

Vectorization—in fact here we should rather sayarray-ization—is a philos-
ophy of programming which consist in avoiding loops and scalar manipula-
tions. In this section, we will see a few directions and examples, you will
soon realize that we have already used many vectorized formulations, which
are very natural in Matlab.

here a series of example. Creation of an array of zeros, scalarwise:

x=[];
for i=1:20
x=[x, 0];

end

vectorized:

x=zeros(1,20);

1.4. VECTORIZATION 23

by using a predefined function zeros. Construction of an array of element
linearly spaced between 0 and 2π, scalarwise

for i=1:20
x(i)=2*pi*(i-1)*1/19;

end

vectorized:

x=linspace(0,2*pi,20);

by using a predefined function linspace. Computation of the sinus of these
values, scalarwise:

for i=1:20
f(i)=sin(x(i));

end

vectorized:

f=sin(x)

graph of these array x, scalarwise:

for i=1:19
line([x(i),x(i+1)],[f(i),f(i+1)]);
hold on

end
hold off

where we have drawn one by one all the segments to link the points of
consecutive coordinates. Vectorized:

plot(x,f)

by using the predefined function plot. Computation of the largest value in
the array f, and checking where this largest value is stored, scalarwise:

maxval=-inf;
indloc=0;
for i=1:20
if f(i)>maxval;

maxval=f(i);
indloc=i;

end
end

24 CHAPTER 1. LECTURE NOTES

here, inf is the infinite value, larger than any other. Vectorized:

[maxval,indloc]=max(f);

using the predefined function max. We could go on with this list for a long
while. For instance, think how you could code by yourself what the sort
function does.

Until now, to vectorize, we have had to know many matlab functions.
Matlab is a ”high level” programming language, not because you need to be
very intelligent to use it, but because it allows to skip elementary manipula-
tions, said as ”low level” operations. Why, because these low level operation
are already coded for you in the most efficient manner in a very large library
of functions. We will discuss in a later section how we can improve as well
the computation speed by using predefined functions. Now a few examples
which do not involve necessarily predefined functions.

We seek to count the number of element which are equal to π in a given
array v. Scalarwise:

n=0;
for i=1:length(v)

if v(i)==pi;
n=n+1;

end
end

in this example, n is a variable which we use to count. Vectorized:

n=sum(v==pi);

here, v==pi is a logical array with zeros in the elements for which v is not
equal to π and ones for the elements where v is equal to π. The sum of the
elements of this array, ones and zeros with sum is just nothing else than the
count of elements which are equal to π. Now a little more subtle, we would
like to know the indices of the elements which are equal to π. Scalarwise:

indlist=[]
for i=1:length(v)
if v(i)==pi;

indlist=[indlist, i];
end

end

vectorized:

1.4. VECTORIZATION 25

k=1:length(v);
indlist=k(v==pi);

in this example, we started by building an auxiliary array k which is the
array of all the indices (1, 2, 3, ...), and we have selected in this array only the
elements corresponding to the value π in v. If we take down this command
in successive small steps, we get this:

>> v=[0,2,4,pi,0,pi]
v =

0 2.0000 4.0000 3.1416 0 3.1416
>> v==pi
ans =

0 0 0 1 0 1
>> v(v==pi)
ans =

3.1416 3.1416
>> k=1:length(v)
k =

1 2 3 4 5 6
>> k(v==pi)
ans =

4 6

I first built my array v, and storing π in position four and six. I check
at the prompt what the v==pi array looks like, this is a binary array with
zeros everywhere except at position four and six... I test v(v==pi), that is,
I check which elements of v are egual to π, the result is good. I then build
my auxiliary array k, and I check which elements of k are are corresponding
to the elements of v which are equal to π, and I find what I expected.

in fact, for all these, we could have used the predefined find function,
which gives directly the indices of nonzero values of the input argument
v==p.

>> find(v==pi)
ans =

4 6

1.4.1 More advanced vectorization

Here is an other example for computing the velocity of a point whose suc-
cessive positions are stored in an array, say x, with one line and n columns.
We use centered finite difference, and the time step value is dt. Scalarwise

26 CHAPTER 1. LECTURE NOTES

v=zeros(1,n);
for ind=2:n-1

v(ind)=(x(ind+1)-x(ind-1))/(2*dt);
end

where we go through a loop for every value of the index; and vectorized:

v=(x(3:end)-x(1:end-2))/(2*dt);

where we have subtracted two shifted subarrays of x. We note that if we
had wanted to have the velocity for the first and last indices, we would have
had to use uncentered finite differences.

An other related example, here to compute the integral of a function
whose values are stored in the array f with one line and n columns, with
linearly spaced grid points with spacing dx. We use the trapezoid rule.
Scalarwise:

s=0;
for ind=1:n-1
s=s+dx*(f(ind)+f(ind+1))/2;

end

and vectorized:

s=dx*sum(f(1:end-1)+f(2:end))/2;

where we use again the shifting of subarrays and the sum function. This we
may code in a subtly different manner, trough building a new array which
shall do the weighting of the different values of the array f. Indeed the
integral is

s = (f1 + 2f2 + 2f3 + · · · + 2fn−1 + fn)dx/2,

which can be computed as

S=[1,2*ones(1,n-2),1]*dx/2;
s=S*f;

where S is a line array and we suppose f is a column array, thus the summing
of the integration coefficients times each of the element of f is done through
the matrix multiplication, s is thus a scalar. In this example we have built an
auxiliary array S. The same way we can build an auxiliary array to compute
the derivative of a function:

1.4. VECTORIZATION 27

D=zeros(n,n);
D(1,1:3)=[-3/2, 2, -1/2]/dx;
for ind=2:n-1

D(ind,ind-1:ind+1)=[-1/2, 0, 1/2]/dx;
end
D(end,end-2:end)=[1/2, -2, 3/2]/dx;

now it is straightforward to compute an approximation of the derivative of
f by a matrix-vector multiplication fx=D*f. In this example we have use
decentered finite differences at the two end grid points. Note that we have
used a for loop to build our differentiation matrix D, where we could have
used the toeplitz function of matlab, which builds matrices by setting
values to its diagonals, see this example for instance (or see the help for
more details)

>> toeplitz([1 2 0 0 0],[1,-2,0,0,0])
ans =

1 -2 0 0 0
2 1 -2 0 0
0 2 1 -2 0
0 0 2 1 -2
0 0 0 2 1

Thus our differentiation matrix built without a loop is

col=[0,-1/2,zeros(1,n-2)]/dx;
lin=[0,1/2,zeros(1,n-2)]/dx;
D=toeplitz(col,lin);
D(1,1:3)=[-3/2, 2, -1/2]/dx;
D(end,end-2:end)=[1/2, -2, 3/2]/dx;

This code is not much shorter, especially since we need to take care of the
special decentered finite difference on the first and last line, but it shall be
faster if the matrices are big (many grid points).

1.4.2 Even more advanced

Here is a graphical example which makes use of the very nice function kron.
This function is the top of the hill for mastering vectorization, it will do all
the things you have no other idea how to do without loops. How it works is
simple:

28 CHAPTER 1. LECTURE NOTES

>> help kron
KRON Kronecker tensor product.

KRON(X,Y) is the Kronecker tensor product of X and Y.
The result is a large matrix formed by taking all possible
products between the elements of X and those of Y. For
example, if X is 2 by 3, then KRON(X,Y) is

[X(1,1)*Y X(1,2)*Y X(1,3)*Y
X(2,1)*Y X(2,2)*Y X(2,3)*Y]

for instance:

>> kron([1,2],[1,1;1,1])
ans =

1 1 2 2
1 1 2 2

Our problem is the following, you want to draw many circles with varying
radius and varying center position. We will use this in one of our courses
when looking at the flow of sand grains down an incline. Here 1000 circles
with random position and radius

n=1000;
x=rand(n,1);
y=rand(n,1);
r=0.01*randn(n,1).^2;

we can code it simply with a loop:

theta=linspace(0,2*pi,20)’;
xc=cos(theta);
yc=sin(theta);
for ind=1:n;
plot(xc*r(ind)+x(ind),yc*r(ind)+y(ind));
hold on

end

we first have built the coordinates along a circle of radius 1 and centered at
(0, 0), then at each iteration scaled the circle and translated it, and plotting.
Now we will use the plot command once for all, but at first building the x
and y coordinates for all the circles:

1.4. VECTORIZATION 29

X=[];
Y=[];
for ind=1:n
X=[X;xc*r(ind)+x(ind);NaN];
Y=[Y;yc*r(ind)+y(ind);NaN];

end
plot(X,Y);

Here we have initiated X and Y with empty arrays [], and added at each
iteration new elements (reshaping the arrays). Note in passing that this is
not a good idea for speed, see in dedicated section. Also we have used a
nice trick, by inserting NaN in the coordinates after each circle. The idea
behind is that the plot function links with straight segments the successive
points in the coordinate arrays, except if the coordinate is an NaN (”Not a
Number”). Thus these NaNs can be very useful sometimes!

Now we do the same thing with kron instead of a loop:

X=kron(r,[xc;NaN])+kron(x,[ones(20,1);NaN]);
Y=kron(r,[yc;NaN])+kron(y,[ones(20,1);NaN]);
plot(X,Y);

The first kron takes care of multiplying the coordinates of each circle with
its radius, the second kron takes care of the translation. Take ten minutes
for yourself, and draw the arrays on a piece of paper to understand that
these lines do precisely the same thing as the previous block of command
(but much faster on computer time). Once you are done with this, you have
made a definitive step forward.

30 CHAPTER 1. LECTURE NOTES

Vectorization is good for several reasons:

• Avoiding for loops. This helps to skip command lines. This is an
economy of time and space, this is an economy of potential coding
errors and mistakes.

• in Matlab, which is an interpreted language, it is much faster in com-
puting time. See the related section.

1.5 Computing faster

Matlab is an interpreted language. Interpretation is time consuming. But:
most commands in matlab are compiled functions written in c. For instance
the linear algebra functions are those from BLAS and LAPACK, highly
optimized to take advantage of your machine architecture and using all
possible speed enhancement tricks. So all the computing time spent inside
these functions is well spent, in a way as well as possible. This is why it is
a bad idea to code in Matlab a linear equation solver (bad idea for speed,
not necessarily for learning...). Here is an example, multiplication of two
matrices of size 1000:

n=1000;
A=randn(n,n);
B=randn(n,n);

1.5. COMPUTING FASTER 31

disp(’Using compiled function:’)
tic
C=A*B;
toc

disp(’Using your own nested loops:’)
tic
D=zeros(n,n);
for i=1:n

for j=1:n
for k=1:n

D(i,j)=C(i,j)+A(i,k)*B(k,j);
end

end
end
toc

and the output is:

Using compiled function:
Elapsed time is 0.119633 seconds.
Using your own nested loops:
Elapsed time is 18.722617 seconds.

the result is clear.
An other time consuming task in Matlab consist in creating a new vari-

able: Matlab will look for a consecutive memory space, create this consecu-
tive space it by manipulating the memory if necessary (big arrays). Every
variable is an array in Matlab, this is a complex variable type, so there is
much overhead information: size type and so on coming with it. So having
many scalar arrays (one line and one column) is a bad use of memory space.

An other bad idea consist in changing the size of an existing array. here
is a simple example, both ways with a loop, but we allocate first the memory
for the second method:

disp(’reshaping’)
n=10000;
tic
f=[];

32 CHAPTER 1. LECTURE NOTES

for ind=1:n;
f=[f, ind];

end
toc

disp(’allocating’)
tic
f=zeros(n,1);
for ind=1:n

f(ind)=ind;
end
toc

and the output is

reshaping
Elapsed time is 0.491824 seconds.
allocating
Elapsed time is 0.000159 seconds.

An other time consuming thing is to write numbers on the screen, and
draw plots in the figure windows.

To conclude: use as much as possible precompiled functions. Build arrays
first and do all the treatment at once then. For all this, the previous section
on vectorization is useful. Allocate your arrays at proper size first. Restrict
graphical/text output to minimum. Also, when manipulating large arrays,
think to clear memory space for unused variables, using the function clear.

1.6 Graphs

Data must be seen. A good programming skill in graphics is key to accessing
much more information than otherwise. This is how you can learn new
knowledge from your data. Also a good graphic skill is key to transmission
of the information. The main functions are plot for line plots, and mesh
mesh for surfaces. We will see then other functions related to contour plots,
vector plots and so on. Also, animation is a good way to see how things
behave, we will see how to use the function drawnow to see your data moving.

1.6. GRAPHS 33

1.6.1 Lines

We will visualize the mathematical formula

f(x) = sin(x)e
−x2

10

It is composed of an undulating sinus, multiplied by a gaussian envelope
e−x2 .

Let us first define the array of the abscissa in x, and compute the value
of the function at these abscissa. We will avoid loops by using vectorized
expressions.

n=200
x=linspace(-10,10,n);
f=sin(x).*exp(-x.^2/10);

with n the number of points in this graph. When I type

plot(f)

I did not specify the values of the abscissa, I only gave the ordinates. In this
case, matlab supposes that the array of the abscissa is simply (1, 2, 3, 4...),
until n. To get the proper representation of the formula, you should type:

plot(x,f)

I can chose the color and the line style

plot(x,f,’r*--’)

here I ask for a line in red (r), with star symbols (*), and a dashed line (--).

A few colors: ”b” for blue, ”k” for black, ”m” for magenta, ”c” for cyan...
and for line styles ”-” for continuous line, ”–” for dash, ”-.” for dash-dot...
For more information, call for help help plot.

I can as well superimpose several curves, for instance by putting several
triple abcissa/ordinate/line specification

34 CHAPTER 1. LECTURE NOTES

f1=sin(x).*exp(-x.^2/10);
f2=sin(x+2*pi/3).*exp(-x.^2/10);
f3=sin(x+4*pi/3).*exp(-x.^2/10);
plot(x,f1,’r*-’,x,f2,’bo--’,x,f3,’k+-.’)

here I put three formulas by having a phase shift of 2π/3 and 4π/3 on the
sinus. now you stat to see what the ”enveloppe” means.

We can use an alternative way to superimpose lines, with the function
hold on and hold off with the following sequence

plot(x,f1,’r*-’);
hold on
plot(x,f2,’bo--’);
plot(x,f3,’k+-.’);
hold off

which is equivalent to the former one. This will be particularly useful when
we draw graphs in loops for. The ”hold on” means that the graphic com-
mands following will not erase the previous graphs.

if you want to see several curves at the same time but not on the same
graph, you can divide the graphic figure into sub graphics using the func-
tionsubplot

subplot(3,1,1); plot(x,f1,’r*-’);
subplot(3,1,2); plot(x,f2,’bo--’);
subplot(3,1,3); plot(x,f3,’k+-.’);

1.6. GRAPHS 35

subplot(nl,nc,n) divides the graphical window into nl lines and nc columns
and draw the commands into the subgraph number n, counting from left to
right and from top to bottom. in the above example there are three lines
and one column.

If you want to see your data in the form of an animation, it is convenient
to use a for loop

for t=linspace(0,20,300)
plot(x,sin(x+t).*exp(-x.^2/10),’r*-’)
ylim([-1,1])
drawnow

end

We have used the command drawnow, which as its name indicates, force
Matlab to draw at the time when it reads the command and not after
the complete execution of the script. By default the graphic treatment
isasynchronous, that is, matlab takes care of the graphs once all the rest is
done. For an animation this is off course not the good choice.

In this example we give a continuous variation of the phase shift by
adding t to x. This gives the feeling of a wave moving to the left. The
enveloppe is fixed, but the undulations are moving. We can as well have the
enveloppe moving, for instance to the right, by adding a t dependency in
the formula for the enveloppe:

36 CHAPTER 1. LECTURE NOTES

for t=linspace(0,20,300)
plot(x,sin(x+t).*exp(-(x-t).^2/10),’r*-’)
ylim([-1,1])
drawnow

end

in fact, you may change whatever you like in the course of the loop, for
instance in the following example, I have the line color changing from white
to black, by using the ’color’ property. The color code by default is ”rgb”,
that is, ”red-green-blue”: [1,0,0] is pure red, [0,1,0] is pure green, and
[0,0,1] is pure blue. Also, [1,1,1] is black and [0,0,0] is white. I can
also have the line width varying with the property ’linewidth’, here from
0 to 20:

for t=linspace(0,20,300)
plot(x,sin(x+t).*exp(-(x).^2/10),’color’,1-[1,1,1]*t/20, ...

’linewidth’,20*t/20+1)
ylim([-1,1])
drawnow

end

I have used here a usual functionality of the input arguments in matlab,
by inserting ”property-value” couples , where the name of the property is
a string, here ’color’ for the line color and ’linewidth’ for the width of
the line.

1.6.2 surfaces

We shall now draw surfaces. Let us consider the formula sin(x)e−y2 which
behaves like a sinus along x and like a gaussian bell in y. We saw in the
previous section that before to draw a formula, we must ”build it”, that is,
create arrays of coordinates.

To calculate the value of a mathematical formula in two dimensions, we
first create the arrays of the x and y points.

n=20;
x=linspace(-5,5,n);
y=linspace(-4,4,n);

And now we could calculate the value of the formula for every couple
x(i), y(j) by implementing two for loops

1.6. GRAPHS 37

f=zeros(n,n);
for i=1:n
for j=1:n
f(i,j)=sin(x(i))*exp(-y(j)^2);

end
end

in fact, we should better use a practical trick to vectorize this operation by
using the function meshgrid

[X,Y]=meshgrid(x,y);
f=sin(X).*exp(-Y.^2);

To understand what it does, meditate on the following example:

>> [X,Y]=meshgrid([1,2,3],[4,5,6])
X =

1 2 3
1 2 3
1 2 3

Y =
4 4 4
5 5 5
6 6 6

Thus, sin(X) is an array of the same size as X, with as values the values
of the sinus of the array X. Similarly, Y.^2 is an array of same size as Y
with for values the square of the values of Y, and again in a similar way,
exp(-Y.^2) is the array which has as elements the exponential of the square
of the elements of Y. This way, sin(X).*exp(-Y.^2) is actually what we
are trying to build. The use of mesgrid is typical of vectorization: instead
of having loops, we manage to build convenient arrays. Now you maybe
start to have a feel for the real subtlety of vectorization: having the ideas
of the auxiliary arrays that you will need for your own purpose needs good
understanding, skill and creativity. It is a good investment to take the time
to understand properly what meshgrid does and visualize for yourself the
arrays that are created.

Once this made, we can draw our graph f

mesh(X,Y,f);
xlabel(’x’); ylabel(’y’); zlabel(’z’);
title(’sin(x)exp(-y^2)’);

38 CHAPTER 1. LECTURE NOTES

We have used the mesh function. if you wish to change the limits of the
axes, you can use the xlim, ylim, zlim commands as before.

We will now generate a little animation, by as previously adding in our
code a loop and a time dependency parameter

for t=linspace(0,2*pi,30)
f=sin(X+t).*exp(-Y.^2);
mesh(X,Y,f)
drawnow

end

We can change whatever we like during this animation, for instance here we
have the camera orbiting

for t=linspace(0,2*pi,30)
mesh(X,Y,sin(X+t).*exp(-Y.^2));
camorbit(380*t/(2*pi),0);
drawnow

end

The camorbit function makes the camera (the point of view) turn of a given
angle. here it makes a full turn (from 0 to 380 degrees) while t goes from 0
to 2π.

If you like a continuous surface rather than a mesh, use surf

1.6. GRAPHS 39

surf(X,Y,sin(X+t).*exp(-Y.^2));
shading interp;
colormap(jet(400))

I used the function shading interp, which interpolate the colors between
the surface vertices, and I changed the colors with colormap, by using the
”jet” colormap and using 400 shades of color instead of the default 64 (I
have 100 grid points in x and y).

1.6.3 Isovalues

It is sometimes useful to draw isovalues. For instance the isovalues of the
streamfunction in fluid mechanics corresponds to streamlines. We continue
with the same 2D function as above

n=200;
x=linspace(-5,5,n);
y=linspace(-3,3,n);
[X,Y]=meshgrid(x,y);
f=sin(2*X).*exp(-Y.^2).*exp(-X.^2/8);

subplot(1,2,1)
contour(X,Y,f,30)
xlabel(’x’); ylabel(’y’)

40 CHAPTER 1. LECTURE NOTES

subplot(1,2,2)
surf(X,Y,f); shading interp
xlabel(’x’); ylabel(’y’)

Here we have in the left subplot 30 linearly (by default) spaced contours of
the function f between the largest value and the smallest value of f . And
on the right subplot, the graph of f with surf.

1.6.4 Vector fields

The quiver function take as input arguments the arrays of (x, y) coordinates
of the start of the vector arrow and the coordinates in (u, v) in x and y of
the vectors. Let us take as example a random vector field

n=20;
x=linspace(-5,5,n);
y=linspace(-3,3,n);
[X,Y]=meshgrid(x,y);
u=randn(n,n);
v=randn(n,n);
quiver(X,Y,u,v);

Here, the randn function builds as output argument an array of size (n, n),
whose elements are chosen randomly such that the mean is zero and the
variance is unity, with a Gaussian probability density function.

1.6. GRAPHS 41

We can make a simple animation

for t=linspace(0,10,30)
quiver(X,Y,u+t,v);
drawnow

end

here at each time step, we add t at the horizontal component of the vec-
tor field and we draw: order appears in chaos... The quiver function by
default normalizes the length of the arrow such that they do not overlap.
To avoid this normalization and have the true size of the arrows, write
quiver(X,Y,u+t,v,0).

1.6.5 The current graph

When you have several graphic windows and/or several subgraphs, the
graphic command are by default directed to the ”current axes”: This is
the axis in which you have drawn the last graph, or the axis in which you
have clicked last with the mouse, or the axis which was last made active by
the figure of subplot command.

1.6.6 Saving figures

You can save your figure in two ways: you can store it in the format ”matlab
figure”, with file extension .fig, or you can save them in an image format.
With the fig format, you can open these figures again later on and get them
just as you had them when they were created, so you can continue to add
graphics and edit them. The image format is the one you need to use the
figures in articles/presentation.

42 CHAPTER 1. LECTURE NOTES

To save a figure, in the ”file” menu, chose ”save” or ”save as...” and
chose your format. You can also save figures from commands. Here is a
little function which I use to save my figures in several formats: .fig .eps and
.jpg at the same time. t s very useful to have the .fig figure somewhere if
you wish at the last minute to change the font size or any other detail of
the figure.

function ppp(filename)

% if the last charater of the filename is *
% open the figure from disc instead of saving it
if filename(end)==’*’; filename=filename(1:end-1);

open([filename ’.fig’])

else

% check if the fig allready exists
if exist([filename ’.fig’])==2;

resp=input(’replace file? (n?) >>’,’s’);
if isequal(resp,’n’);return;end

end

% so that the figure aspect ratio on screen will be respected
set(gcf,’paperpositionmode’,’auto’);

disp([’saving ’ filename]);
saveas(gcf,[filename ’.fig’]);
print(’-depsc’,[filename ’.eps’]);
print(’-djpeg’,[filename ’.jpg’]);

end

There is a little more functionality here. If I call this function and I put a
star at the end of the file name, then the function will open the figure from
the disc instead of saving to the disc my active figure. Also I check wether
there is already a figure with that filename, and ask wether the user wants
to overwrite it.

1.7. SET AND GET 43

1.7 Set and get

The objects in Matlab have properties which sets how they behave and how
they look like. This is the case for instance for all graphical objects: points,
lines, surfaces and so on. All these objects are identified by their handle.
For instance most graphical commands which create new objects accept an
output argument which is this handle:

x=linspace(0,1); h=plot(x,x.^2,)

h is now the handle of the line on the graph. You can get to know all the
properties of this line object through the get function:
>> get(h)

Color: [0 0 1]
EraseMode: ’normal’
LineStyle: ’-’
LineWidth: 0.5000

Marker: ’none’
MarkerSize: 6

MarkerEdgeColor: ’auto’
MarkerFaceColor: ’none’

XData: [1x100 double]
YData: [1x100 double]
ZData: [1x0 double]

BeingDeleted: ’off’
ButtonDownFcn: []

Children: [0x1 double]
Clipping: ’on’

CreateFcn: []
DeleteFcn: []

BusyAction: ’queue’
HandleVisibility: ’on’

HitTest: ’on’
Interruptible: ’on’

Selected: ’off’
SelectionHighlight: ’on’

Tag: ’’
Type: ’line’

UIContextMenu: []
UserData: []
Visible: ’on’
Parent: 158.0016

DisplayName: ’’
XDataMode: ’manual’

XDataSource: ’’
YDataSource: ’’
ZDataSource: ’’

you can alter afterward any of these properties through the set function.
here I change the linewidth to a thicker line:

set(h,’linewidth’,3)

Most of the properties are intuitive. here I give an example with the prop-
erty buttondownfcn which allows you to specify in a string of characters a
command which shall be executed every time you click with the mouse on
this graphical object. For instance, I draw in a loop a large number of points
with random position, and when I click on the point, I want its coordinates
to be set as the title of the graphical figure:

44 CHAPTER 1. LECTURE NOTES

n=5;
x=rand(n,1);
y=rand(n,1);
for ind=1:n

h=plot(x(ind),y(ind),’k.’); hold on
st=[’title(’’ x=’ num2str(x(ind)) ’, y=’ num2str(y(ind)) ’ ’’);’]
set(h,’buttondownfcn’,st);

end

at each iteration of the loop, I build a new string with the coordinates of the
current point, which uses the title function of matlab. To make a string
out of the x and y coordinates, I use the num2str function. Note that it is
slightly tricky here since I build a string (the command to be executed when
clicking), which itself contains a string (the title of the figure). Think about
it for a few minutes. In the code, I did not put semicolons at the end of the
command which builds the string, so we can see it on screen:

st =
title(’ x=0.29228, y=0.82265 ’);
st =
title(’ x=0.29168, y=0.80619 ’);
st =
title(’ x=0.2455, y=0.25377 ’);
st =
title(’ x=0.70435, y=0.8005 ’);
st =
title(’ x=0.77461, y=0.62971 ’);

This functionality can be extremely useful. you are only limited by your
imagination. The commands to be executed can be as complex as you wish.
you can also call scripts and functions.

1.8 Your report

it is a good practice to develop your presentation skills at the same time
as you develop your programming skills. Especially since the figures that
you generate as the result of your coding will later on be inserted in slide
presentations in conferences and articles, it is natural to edit your figures at
the same time as you generate them. Also, gathering your scripts and figure
and comments in a single documents provides you with a device to take time

1.8. YOUR REPORT 45

to think about your results, sheltered from the technicalities which led you
to obtaining them.

Also, those of you who take this course as a part of their doctoral edu-
cation will need to give me the reports made during the course. Below in
these lecture notes, I include a few of the practical sessions of coding which
I teach in the second year program of my university with typical reports.
you can get inspiration from them.

Index

,, 15
[, 15
min, 22

animation, 35
array multiplication, 19
array of indices, 17
Arrays, 14
asynchronous, 35

camorbit, 38
cd, 9
clear, 8
color, 33, 36
colormap, 39
column, 16
column-wise, 22
concatenation, 15
contour, 39
current directory, 9

dashed line, 33
drawnow, 35

element by element, 18
enveloppe, 33
eye, 21

for, 9
function, 11

high level, 13, 24
hold off, 34
hold on, 34

if, 10
index, 16
inf, 24
iso-lines, 39
isovalues, 39

kron, 27

line, 16
line style, 33
linewidth, 36
linspace, 21
Low level, 24
ls, 9

Matlab functions, 11
matrix, 18
matrix multiplication, 19
max, 22
meshgrid, 37

NaN, 28
num2str, 11

ones, 21

prod, 22
prompt, 6
property-value, 36
pwd, 9

quiver, 40

randn, 40

46

INDEX 47

random, 40

script, 8
shading interp, 39
sub-graphics, 34
subarrays, 16
subplot, 34
sum, 22
surf, 38

title, 37

vector fields, 40
vectorization, 22

who, 7
workspace, 7

xlabel, 8
xlim, 8

ylabel, 8
ylim, 8

zeros, 21

We draw the vector field u=sin(x)cos(y), v=-cos(x)sin(y) with quiver, and we do as well the
animation of the time evolution of this field (see script).

0) Manipulations

% manipulations:

x=linspace(0,2*pi,20);

y=linspace(0,2*pi,20);

[X,Y]=meshgrid(x,y);

n=100;

tvec=linspace(0,4*pi,n);

for ind=1:n

 t=tvec(ind);

 u=sin(X).*cos(Y-t);

 v=-cos(X).*sin(Y-t);

 quiver(X,Y,u,v,'b');

 xlabel('x');

ylabel('y');

 title('champ de

vitesse')

 drawnow

end

Script

Matlab: a hands-on course
Vortex dynamics

The velocity field induced by two vortices is
the sum of the field induced by each of them.
The sign of the intensity of the vortex
(gamma) inicates the direction of the roation.

1) Velocity field induced by two vortices

Script
 % 2D grid

 x=linspace(-3,3,20);

 y=linspace(-3,3,25);

 [X,Y]=meshgrid(x,y);

 % vortex positions

 x1=1; y1=2; g1=1;

 x2=-1; y2=0; g2=-2;

 % the velocity field for each vortex

 u1=-g1*(Y-y1)./(2*pi*((X-x1).^2+(Y-y1).^2+0.05));

 v1=g1*(X-x1)./(2*pi*((X-x1).^2+(Y-y1).^2+0.05));

 u2=-g2*(Y-y2)./(2*pi*((X-x2).^2+(Y-y2).^2+0.05));

 v2=g2*(X-x2)./(2*pi*((X-x2).^2+(Y-y2).^2+0.05));

 % sum of the velocity fields

 u=u1+u2;

 v=v1+v2;

 % graph

 quiver(X,Y,u,v,2); hold on

 plot(x1,y1,'r.',x2,y2,'b.','markersize',20)

 hold off

 xlabel('x'); ylabel('y');

 title('Deux tourbillons');

Each vortex induces a velocity field which
advects the other vortices

2) Motion of the vortices
Script

 % initial position

 xpos=[1,0];

 ypos=[0,1];

 tmax=18;

 % contrarotating vortices

 subplot(1,3,1)

 gamma=[1,-1];

 [xt,yt,t]=tourbitraj(xpos,ypos,gamma,tmax);

 plot(xt(:,1),yt(:,1),'b',xt(:,2),yt(:,2),'r'); hold on;

 plot(xpos(1),ypos(1),'bo',xpos(2),ypos(2),'ro'); hold off

 xlabel('x'); ylabel('y');

 title('gamma=[1,-1]');

 axis equal; axis([-2,2,-2,2])

 % corotating vortices

 subplot(1,3,2)

 gamma=[1,1];

 [xt,yt,t]=tourbitraj(xpos,ypos,gamma,tmax);

 plot(xt(:,1),yt(:,1),'b',xt(:,2),yt(:,2),'r'); hold on;

 plot(xpos(1),ypos(1),'bo',xpos(2),ypos(2),'ro'); hold off

 xlabel('x'); ylabel('y');

 title('gamma=[1,1]');

 axis equal; axis([-2,2,-2,2])

For two contrarotating vortices
(turning in the same direction)
the trajectory of the vortices are
two parrallel lines

For two corotating vortices:
same intensity and same sign
of the intensity, the trajectories
are concentric circles.The initial position

of the vortices are
indicated by the
symbols

D
ép

lac
em

en
t

Animation of the trajectories and also of the
velocity fields. here we have made the
animation for three vortices instead of two.

3) Vortex motion Script

The central vortex is the most
intense (blus trajectory). We see
clearly its induces velocity field,
which moves arrounds the two
smaller vortices.

Complex trajectory of the two small
«orbiting» vortices. The trajectory of
three interacting vortices is pseudo-
periodic: it repeats itslef in time but
does not come back to the initial
position.

% initial position

xpos=[0,0,0];

ypos=[0,1,1.2];

gamma=[0.5,0.1,-0.2];

tmax=150;

% trajectories

[xt,yt,t]=tourbitraj(xpos,ypos,gamma,tmax);

% mesh for the velocity field

x=linspace(-3,3,30);

y=linspace(-3,3,30);

[X,Y]=meshgrid(x,y);

% animation

for ind=1:length(t)

 % trajectories

 sel=1:ind;

 plot(xt(sel,1),yt(sel,1),'b',xt(sel,2),yt(sel,2),'r',xt(sel,

3),yt(sel,3),'m','linewidth',2)

 hold on;

 plot(xt(ind,1),yt(ind,1),'bo',xt(ind,2),yt(ind,2),'ro',xt(ind,

3),yt(ind,3),'mo')

 % velocity field

 u=0*X; v=0*X;

 for gre=1:3

 x0=xt(ind,gre); y0=yt(ind,gre);

 uu=-gamma(gre)*(Y-y0)./(2*pi*((X-x0).^2+(Y-y0).^2+0.05));

 vv=gamma(gre)*(X-x0)./(2*pi*((X-x0).^2+(Y-y0).^2+0.05));

 u=u+uu; v=v+vv;

 end

 quiver(X,Y,u,v,2,'k');

 xlabel('x'); ylabel('y');

 title('trois tourbillons');

 axis equal; axis([-3,3,-3,3])

 hold off; drawnow;

end

A model for the behavior of the flow around
an airplane wing: a sheet of vorticity, modeled
here by a great number of point vortices
initially aligned along a straight line.

4) Vortex sheet Script

The sheet rolled up into two large
wing-tip vortices. We can clearly see
the velocity field resulting from these
two large contrarotating vortices, and
we also see that they are advecting
eachother downwards. In airports the
landing and take off frequency is
reduced to avoid this large vortical
wake.

Initial configuration of the vorticity
sheet

n=200; % number of vortices

x=linspace(-1,1,n); % positions in x

y=zeros(1,n); % positions in y

gamma=8*x.^3/n; % the vortical intensities

% marching in time

[xt,yt,t]=tourbitraj(x,y,gamma,20);

% mes for the velocity field

x=linspace(-3,3,20);

y=linspace(-4,0.5,20);

[X,Y]=meshgrid(x,y);

for ind=1:length(t);

 % initial position in red

 plot(xt(1,:),yt(1,:),'r.-','markersize',10); hold on

 % present position in blue

 plot(xt(ind,:),yt(ind,:),'b.-','markersize',10);

 % vorticity field

 u=0*X; v=0*X;

 for gre=1:n

 x0=xt(ind,gre); y0=yt(ind,gre);

 uu=-gamma(gre)*(Y-y0)./(2*pi*((X-x0).^2+(Y-y0).^2+0.05));

 vv=gamma(gre)*(X-x0)./(2*pi*((X-x0).^2+(Y-y0).^2+0.05));

 u=u+uu; v=v+vv;

 end

 quiver(X,Y,u,v,2,'k'); hold on

 hold off; axis equal; axis([-3,3,-4,0.5]);

 xlabel('x'); ylabel('y'); title('nappe');grid on

 drawnow

end

We compare the rollup of the sheet with the
evolution of two contrarotating vortices initially
located at the tips of the wing. With intensity -1 on
the left ad +1 on the right.

On the graph, we draw the evolution of the y
position of all the vortices: how they move down in
time.

5) Two wing-tip vortices
Script

En gris, les évolutions
de tous les autres
tourbillons de la
nappe

En rouge, l’évolution des
deux tourbillons de bout
d’aile, intensités -1 et 1

% comparison with two vortices

n=200; % number of vortices

x=linspace(-1,1,n); % x positions

y=zeros(1,n); % y positions

gamma=8*x.^3/n; % circulations

tmax=20; % final time

% march in time

[xt,yt,t]=tourbitraj(x,y,gamma,tmax);

% the two wing-tip vortices

[xtt,ytt,tt]=tourbitraj([-1,1],[0,0],[-1,1],tmax);

% y position of all vortices of the sheet

plot(t,yt,'k'); hold on

% just for the first and last vortces of the sheet

plot(t,yt(:,[1,end]),'m','linewidth',2);

% the two large vortices

plot(tt,ytt,'r','linewidth',4);

xlabel('t'); ylabel('y');

title('Comparaison nappe/tourbillons d''aile')

En magenta, l’évolution
des tourbillons en bout
de nappe

The total intensity of the sheet is equal to the sum
of the intensity of each of its vortex. The integral of
the intensity on each side of the wing is equal to -1
for the left and +1 for the right (intégrale of !=4x!
betwen -1 et 0 then between 0 et 1).

Thus when all the vortices on each side have rolled
up, we have an equivalent with two large vortices.

6) The tourbitraj function

Function

This function computes the trajectories of a family
of vortices with given initial position and intensity.
it uses the Matlab function ode45 to perform the
time marching.

Here the velocity field induced by each vortex is
described in this subfunction.

function [xtraj,ytraj,tvec]=tourbitraj(x,y,g,tmax);

% calcule la trajectoire de pleins de tourbillons en interaction

global gamma; gamma=g(:);

% utilise ode45 pour la marche en temps

% avec la fonction tourbiv

[tvec,sol]=ode45(@tourbiv,[0,tmax],[x(:);y(:)]);

% extraction du resultat sous le bon format

n=length(x);

xtraj=sol(:,1:n);

ytraj=sol(:,n+1:2*n);

%%

function speed=tourbiv(t,pos)

% cette fonction donne la vitesse induite aux points x,y

% par des tourbillons de circulation gamma en ces positions

global gamma

delta=0.05; % paramètre de régularisation

n=length(pos)/2;

x=pos(1:n); y=pos(n+1:2*n);

% allocation des tableaux pour les vitesses

u=zeros(n,1);

v=zeros(n,1);

% boucle sur les tourbillons

for ind=1:n

 sel=1:n; sel(ind)=[];

 % le denominateur (régularisé)

 d=2*pi*((x(ind)-x(sel)).^2+(y(ind)-y(sel)).^2+delta);

 % vitesses selon x et y

 u(ind)=sum(-gamma(sel).*(y(ind)-y(sel))./d);

 v(ind)=sum(gamma(sel).*(x(ind)-x(sel))./d);

end

speed=[u;v];

Matlab: a hands-on course
The throw of the stick

The image shows the successive positions of a stick (you
can see on the left the hand which trew it). Draw several
graphs which study the movement of this object. The
length of the stick is 20 centimeters, and the time
interval between the images is 0.023 seconds

You can ask yourself: what is the trajectory of this stick?
How does the rotation speed vary? What are the
physical laws at play? What are the more abstract
quantities I can measure from this image (energy...)

This is the original image. The
poins are in the reference
frame of the pixels: the origo is
in the top left corner.

We calculate the speed and the accelleration of the center
of mass. The speed is constant along the horizontal
direction, and the speed along the vertical direction
decreases linearly due to gravity. The signal has much more
noise for the accelleration, but we still can see that the
vertical accelleration is about -10.

We have measured using the ginput function the
positions (x1,y1) and (x2,y2) of the two ends of the stick
for each time. From this we get the coordinates of the
center of mass of the stick. The rotating motion happens
arround this center of mass. We have visualized the stick
at each time, and drawn the trajectory of the center with
a dash line, and in red and blue the trajectory of each
extremity of the stick.

We have used the length of
the stick as a reference for
the pixel size. We check here
that the size of the stick does
not change during the
motion.

Along with Newton’s law, the
trajectory of the center of mass
should be a parabola. We compare
here the measured trajectory with
a theoretical trajectory which has
for initial position and speed that of
the measured stick.

For a solid, the rotation speed is
constant if there is no external
moment applied. This is what we
observe here. We can see that the
angle of the stick with the
horizontal inscreases linearly with
time.

1

2

3

4

ax=zeros(n,1);

ay=zeros(n,1);

ax(1)=(vx(2)-vx(1))/dt;

ay(1)=(vy(2)-vy(1))/dt;

for ind=2:n-1;

 ax(ind)=(vx(ind+1)-vx(ind-1))/(2*dt);

 ay(ind)=(vy(ind+1)-vy(ind-1))/(2*dt);

end

ax(n)=(vx(n)-vx(n-1))/dt;

ay(n)=(vy(n)-vy(n-1))/dt;

subplot(2,3,4);

plot(tvec,vx,'b',tvec,vy,'r',tvec,ax,'b--',tvec,ay,'r--')

title('cinematique du centre'); xlabel('temps');

ylabel('v et a');

legend('vx','vy','ax','ay')

% measure the angle with the horizontal

an=zeros(n,1);

g=-10;

add=0;

for ind=1:n

 c=g;

 g=atan((y2(ind)-y1(ind))/(x2(ind)-x1(ind)));

 if g<c; add=add+pi; end

 an(ind)=g+add;

end

subplot(2,3,5);

plot(tvec,an,'bo-');

title('rotation'); xlabel('temps'); ylabel('angle en

radiants');

% compare the center of mass trajectory with a parabola.

loc=2; g=9.8;

tmax=(-vy(loc)-sqrt(vy(loc)^2+4*y(loc)*g/2))/(-g);

t=linspace(0,tmax,100);

xx=x(loc)+vx(loc)*t;

yy=y(loc)+vy(loc)*t-g*t.^2/2;

subplot(2,3,6);

plot(x,y,'k.',xx,yy,'r--')

title('parabole'); xlabel('x'); ylabel('y');

legend('mesures','theorique')

% testing the ideas for the flyinf

stick

clear all; clf

a=imread('baton.jpg');

subplot(2,3,1);

image(a);

title('image'); xlabel('X en

pixels'); ylabel('Y en pixels');

d=[

 69.5698 164.9133

 58.8653 100.1702

 99.1347 144.4681

 57.8458 92.2193

 122.0731 115.5041

 63.4529 93.3552

 138.3847 84.8363

 76.7062 99.0344

 145.0114 59.2799

 95.5666 102.4419

 145.5211 37.6989

 123.0925 103.5777

 142.9724 33.7234

 152.6575 98.4664

 142.4627 35.9951

 183.2419 87.6759

 144.5016 48.4894

 208.7289 70.0704

 158.7744 63.2553

 223.0016 51.3290

 180.1834 80.2930

 231.1575 36.5630

 208.7289 93.9231

 231.1575 30.3159

 240.3328 99.0344

 229.1185 34.8592

 271.9367 97.8985

 227.5893 47.9214

 296.4042 91.6514

 232.1769 68.9345

 313.2256 83.7005

 245.9399 98.4664

 319.8523 81.9967

 268.3685 126.8625

 320.3620 82.5646

 298.9529 151.2831

 316.2841 100.7381

 328.5179 168.8887

 315.7744 126.8625

 360.1218 180.2471

 320.8718 163.7774

 384.5893 184.7905

 334.6347 202.3961

 400.3912 188.7660

 355.0244 244.4223

 405.9984 197.8527

 384.5893 277.9296

 405.9984 214.3224

 414.1542 306.8936

 403.4497 239.8789

 446.7776 331.3142

 402.4302 278.4975];

x1=d(1:2:end,1); x2=d(2:2:end,1);

y1=d(1:2:end,2); y2=d(2:2:end,2);

% set the physical origo

y1=-(y1-347); y2=-(y2-347);

% insert the pysical scale in meters

nl=sqrt((x1(1)-x2(1))^2+(y1(1)-y2(1))^2);

pix=0.2/nl;

x1=x1*pix; x2=x2*pix;

y1=y1*pix; y2=y2*pix;

% the center of the stick

x=(x1+x2)/2;

y=(y1+y2)/2;

% the time array

n=length(x1);

dt=1/(300/7);

tvec=(0:1:n-1)*dt;

% We draw all the positions of the stick

subplot(2,3,2);

plot(x,y,'k.-','markersize',15); hold on

plot(x1,y1,'b',x2,y2,'r');

for ind=1:n

 plot([x1(ind) x2(ind)],[y1(ind) y2(ind)],'k','linewidth',

2);

end

title('trajectoire'); xlabel('x en metres'); ylabel('y en

metres');

% measure and draw the length of the stick for each time

lon=zeros(n,1);

for ind=1:n

 lon(ind)=sqrt((x1(ind)-x2(ind))^2+(y1(ind)-y2(ind))^2);

end

subplot(2,3,3); plot(lon,'b*-'); ylim([0,0.3])

title('longueur du baton'); xlabel('temps'); ylabel('longueur

en metres');

% speed and accelleration of the center of mass

vx=zeros(n,1);

vy=zeros(n,1);

vx(1)=(x(2)-x(1))/dt;

vy(1)=(y(2)-y(1))/dt;

for ind=2:n-1;

 vx(ind)=(x(ind+1)-x(ind-1))/(2*dt);

 vy(ind)=(y(ind+1)-y(ind-1))/(2*dt);

end

vx(n)=(x(n)-x(n-1))/dt;

vy(n)=(y(n)-y(n-1))/dt;

1 2 3

