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In this talk
Describe how the actuators uses the sensor information

in optimal control of Channel flow.

Framework
linear feedback control theory

transition to turbulence

Keywords
Reactive control (feedback)

Transfer function



Why using reactive control?

Act on the mean flow

And affect the stability of small per-

turbations

→ control effort of the order of mag-

nitude of the mean flow

Act on the fluctuations

And prevent them from growing and

disrupting the mean flow

→ control effort on the order of mag-

nitude of the fluctuations

In a transitionnal case, the fluctuations are of much

smaller amplitude than the mean flow.



Information and action

Sensors

Streamwise skin friction fluctuations

Spanwise skin friction fluctuations

Wall pressure fluctuations

Actuators

Blowing and suction at the walls

Only flow quantities at the wall are available.



The control problem

Stochastic disturbances f , g, q0

(External sources, sensor noise, unknown initial condition)

Actuation and sensing u, y
{

q̇ = Aq + B1f + B2u, q(0) = q0,

y = Cq + g,

Feedback control

u = G(y)

Which is the optimal mapping G ?



Solution of the control problem

Plant

{
q̇ = Aq + B1f + B2u

y = Cq + g.

Estimator

{
˙̂q = Aq̂ + B2u− v

ŷ = Cq̂.

Feedback v = Lỹ = L(y − ŷ), u = Kq̂.

Decouple into an estimation problem and a full information prob-

lem. Solve two Riccati equations to get the optimal L and K.

Transfer function:

u(t) =

∫ ∞

0

−Ke(A+BK+LC)τL
︸ ︷︷ ︸

G(τ)

y(t− τ)dτ.



Selected literature

• Hu H. H. & Bau, H.H. 1994 Feedback control to delay or advance

linear loss of stability in planar Poiseuille flow

Use of proportional controller : u(t) = Ky(t)

• Joshi, S. S., Speyer, J. L. & Kim, J. 1995 Modeling and control

of two dimensional Poiseuille flow

Introduction of the optimal feedback control method (LQG, or

H2).

• Högberg, M. & Bewley, T. 2002 Spatially localised convolution

kernels for decentralised control and estimation of plane channel

flow

Decomposition of the control into state estimation and full infor-

mation control.

Spatial localisation of the feedback law.



LQG (or H2) feedback control

LQG for

Linear

Use of a linear model for the dynamics

→ Use of linearised Navier–Stokes equations

Quadratic

A quadratic objective function

→ minimise the energy of flow fluctuations

Gaussian

Gaussian disturbances to the flow

→ Use a covariance model for the disturbances

Fondamental achievement of control theory



Physical assumptions

• Dense array of sensors and actuators

We know all the wall information

• Periodic domain in the two homogeneous direction

For Fourier transform and temporal study

• Low amplitude for the fluctuations

to use the linearised Navier–Stokes equations



Why a numerical study?

• Sensing and actuation

Dense arrays of actuators and sensors are difficult to implement

in experiment.

• Computational time

With the actual formulation we need to run an on-line simulation

of the flow.

• Understanding

There is still many issues to be addressed on disturbance mod-

eling, choice of control objective, and feedback formulation for

flow applications.



Test case

Axisymetric localised initial condition

Wall normal velocity for original flow and controlled flow, Time 0, 10, 70, 90.



Performance of the control

Turn on the controller at time 0 and time 20
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Transfer function formulation

The linear mapping can be written in the transfer function formal-

ism:

u(0, 0, t) = G(y) =

∫

x

∫

z

∫ ∞

0

G(x, z, τ)y(x, z, t− τ)dτ

Convolution of the measurement history over the wall.

τ is the time lag



Potential instability of the TF

The closed loop is stable by construction
{

q̇ = Aq + B1f + B2u, q(0) = q0,

y = Cq + g,

u = G(y)

But G is not guaranteed to be stable.

The interconnection of unstable systems can be stable.



How to continue?

Redefine of the input

(f, q0)

u y2

y1

P1, q1

P2, q2

G

y

Because the input y should

be dependent on the output

u

The control affects the mea-

surement.

Split y into y1 and y2

y = y1 + y2

q = q1 + q2

u = G∗(y1) is the optimal

control.

Now we continue with G∗



The TF in the channel

For selected time lags τ=1, 40, 80.

Streamwise skin friction measurement.
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Convected information
Integrated in streamwise direction
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Conclusions

• The transfer function is a natural formulation for control with

spatially distributed sensing and actuation

• The transfer function is potentially unstable, even though it

stabilises the flow

• This instability is due to the coupling between the input y and

the output u


