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At the interface between two fluids of different density and in the presence of gravity,
there are well known periodic surface waves which can propagate for long distances
with little attenuation, as it is for instance the case at the surface of the sea. If wind is
present, these waves progressively accumulate energy as they propagate and grow to
large sizes—this is the Kelvin–Helmholtz instability. On the other hand, we show in
this paper that for a given wind strength, there is potential for the growth of a localized
nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop
from top to bottom equals the stagnation pressure of the wind. This process for the
disruption of the flat interface is localized and nonlinear. We study the properties
of this wave using numerical simulations of the Navier–Stokes equations. C© 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4767512]

I. INTRODUCTION

A. Shear layers and self-similar solutions

An interface between two fluids of different velocity is subject to the Kelvin–Helmholtz insta-
bility. The first paper was that of Helmholtz.1 He found that the origin of sound in the pipe organ
was the instability and subsequent oscillation of a shear layer. He described this instability as the
evolution of a localized irregularity on an infinitely thin shear layer: this localized irregularity would
progressively roll-up into a spiral. A few years later, Kelvin2 gave a description of this instability
using the powerful mathematical framework of the low-amplitude sinusoidal perturbations. This
description was successful in that he could predict explicitly the exponential growth rate of each
wavelength. We should note here that the two approaches of Helmholtz and Kelvin are critically op-
posed: the one considers the nonlinear evolution of a localized perturbation, and the other considers
the linear evolution of a periodic wave.

This critical opposition was the central topic of a recent article.3 In this paper, we performed
numerical simulations of a shear layer and studied the differences between a weak sinusoidal initial
condition (Kelvin) and a strong localized initial condition (Helmholtz). We have shown that in
the case of a localized initial condition of amplitude sufficient to create immediately a nonlinear
wave, we could observe a self-similar growth of the wave. The localized and nonlinear wave grows
algebraically in time without changing its shape. This self-similar growth can be understood from
the fact that the Euler equations have no intrinsic length scale, thus the only length scale is inertial
L = Ut, with U the velocity jump across the shear layer and t the time. The wave grows self-similarly
according to the growth of this inertial length scale. For the study of this localized wave in a different
configuration, see Ref. 4. In the case of a sinusoidal initial condition on the other hand, such as the
classical case of Kelvin’s analysis, the self-similar growth cannot be observed since the periodic
initial condition pollutes the dynamics with the scale of its wavelength: the dynamical structures
appearing during the natural evolution of the instability (rolled-up vortices, also known as Kelvin–
Helmholtz billows) are locked at this externally imposed wavelength. In the preface of his book
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on scaling,5 Barenblatt explains why finding a self-similar solution is useful: “The statement that
a certain phenomenon is steady, i.e., time independent, is obviously very significant: there is then
no need to trace its evolution in time. Of similar significance is the statement that the phenomenon
is self-similar.” We read also in Chap. II that “this behavior should be discovered, if it exists, and
its absence should also be recognized.” In Ref. 3, we show that for two fluids of equal density, the
self-similar solution consists in the winding of the shear layer into a couple of corotating vortices
aligned at an angle of about 20◦ with the shear layer. When the density of the upper fluid is lowered,
the self-similar solution loses its central symmetry and the vortex in the upper fluid gains in intensity
whereas the vortex which was located in the lower fluid transforms into an elongated circulation
bubble. The tip of the wave becomes unstable, oscillates like a flapping flag and sheds drops. For
an even lower density of the upper fluid, the upper vortex detaches periodically in a typical vortex
shedding sequence.

There are a few known self-similar solutions in relation with the behavior of mixing layers;
these were studied mainly in the context of vortex sheets, that is, the limit in which the thickness of
the layer tends to zero. Consider for instance the layer of vorticity in the wake of an airplane. At the
tip of the wing, this layer tends to roll-up to form a large wing-tip vortex. The roll-up of this sheet
can be described as a self-similar solution, known as the Kaden roll-up.6 Prandtl has shown also that
a vortex sheet can conform in the shape of an infinite self-similar spiral, see Ref. 7. Prandtl’s solution
was extended to multibranched spirals by Ref. 8, and these results were translated into the integro-
differential formulation of the Birkhoff-Rott equation by Ref. 9. More recently, Ref. 10 developed a
technique to solve numerically the self-similar equations: the equations describing the self-similar
solutions of vortex sheet roll-up into spirals. This technique was applied to the computation of the
Kaden roll-up. Evidence is shown in Ref. 11 of a family of self-similar roll-up with two vortices
similar to the solution studied in Ref. 3 for the case with two fluids of equal density. Also, an early
simulation of the evolution of the vortex sheet under a localized perturbation was performed in
Ref. 12. A spiral roll-up is initiated locally upon an infinite shear layer. The aim was to describe the
mechanism by which a localized vortex may feed from rolling up the sheet, possibly in a self-similar
manner. Unfortunately, Ref. 11 shows that this single-vortex self-similar solution exists only for a
sheet of spatially decreasing intensity. For a review, see Ref. 13.

The aim of the present paper is to pursue the analysis of the self-similar solution first observed
in Ref. 11 with vortex sheets and later in Ref. 3 with direct numerical simulations. The self-similar
solution is possible when there is no intrinsic length scale in the problem. If we chose to consider the
effect of viscosity and surface tension, we add a viscous length scale and a capillary length scale. We
can consider these scales as small length scales. When the instability is initiated locally, the wave
may grow quickly beyond these two small length scales toward its self-similar regime: the bigger
the wave, the lesser the impact of viscosity and capillarity; these two effects will play their role
during the initial transient from the initial condition. In the case of a shear layer between two fluids
of different densities and in the presence of gravity, there is yet another length scale, which is a large
length scale: the bigger the wave the larger the impact of its weight. Our goal is to describe how the
evolution of the wave is affected when it reaches a size where weight prevents its further growth.

B. Literature on Kelvin–Helmholtz instability

The literature on the shear layer instability is vast, and we would like to give a rapid overview
of a sequence of papers relevant to our research.

Experimental measurements were made in Ref. 14 for the shear layer between miscible fluids
and Ref. 15 for immiscible fluids; the shear layer is produced by tilting a container filled with
two fluids of slightly different densities. The model for the growth of periodic waves was made
assuming a constant amplitude of the wave in space: the temporal stability analysis. Another
classical configuration for the shear layer is the flow downstream of a splitting plate. This plate
separates two streams of different velocity, see Ref. 16.

The two articles17, 18 have performed nonlinear analysis to show the first effects of nonlinearity,
using expansions in the amplitude of the wave. It was shown that nonlinearities could be both
stabilizing (saturation effect) or destabilizing. This destabilizing effect of nonlinearity may lead to a
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subcritical instability behavior: the shear layer is stable to infinitesimal perturbations but unstable to
finite size perturbations. The roll-up of the shear layer was also studied in the limit of an infinitely
thin layer: the vortex sheet. It was shown by Ref. 19 that this roll-up leads to the creation of a
curvature singularity in finite time. The location of this curvature jump is the birthplace of the vortex
roll-up. The shear layer rolls into a spiral, which by means of viscosity diffuses into the rotating
core of a vortex. The process of creation of these Kelvin–Helmholtz billows is described using
numerical simulations in Ref. 20. Once a row of individual vortices are created from a periodic
initial perturbation, they will themselves continue to evolve under the effect of mutual induction; we
then observe the pairing of neighboring vortices, see Ref. 21.

The works described above consider periodic waves. On the other hand, excitation of the linear
instability using a localized perturbation of low amplitude leads to the growth of a wave packet. This
type of analysis retains the useful properties of the linearization while adding more information: we
can see how the wave packet spreads in space. An early paper describing wave packets on shear
layers is Ref. 22. This type of analysis became increasingly popular together with the notions of
absolute and convective instability, see Refs. 23 and 24. With such tools, one can tell whether a
packet of the unstable waves will grow while being advected away by the mean flow, or whether it
will spread upstream and downstream to invade the shear layer.

The framework of wave packet analysis can be extended to look as well at the impact of
nonlinearities. When a wave packet of initially low amplitude grows under the effect of the instability,
it will reach amplitudes where nonlinear effects become important. There may thus be a nonlinear
front progressing between the invading wave packet and the yet untouched shear-layer, see Ref. 25
for a theoretical article using the Ginzburg–Landau equation as an illustration, and Ref. 26 for an
application of these ideas to wake flows.

In the present paper, we extend the study of the self-similar wave to the case where the gravity
is present. This case is relevant to applications with density stratification. We find many realizations
of such flow in geophysics: thermally stratified oceans for instance or in the atmosphere. This is also
the case at the surface of the sea: the wind is blowing and waves may propagate and grow. The shear
layer instability at a density jump will play an important role for mixing, see for instance Ref. 27
for an experimental paper. The case of the instability at the surface of the sea—very large density
jump—was studied by Refs. 28 and 29. See as well Refs. 30 and 31 for theoretical analyses of the
stability when the two fluids have different densities.

In this paper, we report our numerical experiments of a shear layer initially perturbed at a given
location. A weak initial forcing would yield a wave packet growing and spreading and then becoming
nonlinear. Instead, the initial force is large enough such as to create a wave immediately nonlinear.
After a short initial transient, the wave tends to its self-similar regime of algebraic growth. Once
the wave becomes large, the volume force of its weight starts to play its role against instability and
against self-similarity as shown in Figure 1.

II. MODEL

Essentially, the wave is an obstacle to the gas stream such that the flow above its head is
accelerated. This acceleration induces a pressure drop which is the driving force for the vertical
growth of the wave. The intensity of this pressure drop does not depend on the size of the wave:
this is the main ingredient for self-similarity. Since the wave grows, it will eventually reach a size at
which volume forces such as gravity become comparable to the aerodynamic surface forces.

When does the wave stop growing? Once the hydrostatic pressure drop in the liquid body of
the wave equals the aerodynamic pressure drop, there is no longer a driving power and the wave has
reached its maximum size. Figure 1 displays the archetypal configuration: in gray the evolution of
the weightless wave: growing in size without changing shape, in black the wave with gravity reach
a stationary height after an initial transient. These simulations correspond precisely to the case and
parameters of Ref. 3, except that a vertical acceleration is included to model gravity.

The main parameters are U the velocity difference between the gas and liquid, g the acceleration
of gravity, ρgas and ρ liq the densities of the gas and liquid (respectively, above and below the shear
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FIG. 1. (a) Evolution in time of the wave interface for a gas (fluid over the shear layer) ten times lighter than the liquid
(the fluid below the shear layer) for a weightless wave g = 0 (light gray interface) and for g = 0.007 (black interface). (b)
Evolution in time of the size of the wave while varying the intensity of the gravity.

layer). Dimensional analysis tells that the wave should reach its maximum size Lapex ∝ U2/g in a
time Tapex ∝ U/g.

Once time and space are made nondimensional using these relevant scales, the remaining
parameters are the Reynolds and the Weber numbers (quantifying, respectively, the effect of viscosity
and surface tension), the ratio of the shear layer thickness and wave height δ/Lapex and the density
ratio r = ρgas/ρ liq. We may consider the ideal limit in which Reynolds and Weber numbers are large,
and where the mixing layer is thin. The only remaining parameter is then the density ratio r.

We may now inspect the wave growth using a simple analysis based on the Bernoulli equation.
See Figure 2 for a sketch of the wave configuration. The aerodynamic pressure drop due to the
narrowing of the streamlines above the liquid obstacle is #pgas ∝ ρgasU2. In parallel, the pressure
drop in the liquid due to the acceleration of the liquid sucked from its bottom at speed v and the
gravity is #pliq ∝ ρliq (v2 + gL). Since in the region of the wave head, the pressure is the same in
the liquid and the gas, these two terms are equal yielding the suction velocity at the bottom of the
wave

v2 ∝ rU 2 − CgL (1)

with C a geometrical constant. This expression is characteristic of the counteracting effects of inertia
and weight: the second term is growing with wave size L. Now, the law describing the evolution of
the wave size can be simply obtained: considering that the wave area grows in time proportionally

FIG. 2. Schematic representation of the growing wave. (a) Illustration of the streamline and pressure relevant to the dynamic
model of the wave (1), and (b) wave structure used to define the height of the wave from consideration of its gravity potential
energy in (4).
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to the amount of the liquid sucked at speed v from the bottom section of the wave of length L, we
get L̇ ∝ v, which yields upon integration

Weightless law︷ ︸︸ ︷
L = a

√
rUt −bgt2, t < Tapex

L = Lapex , t ≥ Tapex .

(2)

We recognize the weightless algebraic growth for short times, with the constant a, which is counter-
acted with a gravity term growing like the square of time, until t = Tapex where it forbids any more
growth, after this threshold time, our simple analysis predicts that the wave keeps its maximum size
Lapex

Lapex = αr
U 2

g
, Tapex = β

√
r

U
g

(3)

with α = a2/4b, β = a/4b.
This law of growth and saturation of the wave under the combined action of wind and weight is

compared to computed data in Figure 1(b)). We show the evolution in time of the wave size while
varying g from 0 (the self-similar evolution) up to g = 0.02. Superimposed to the numerical data
we have drawn (2) with constant a adjusted on the weightless algebraic law, and b such as to fit best
the data for all shown values of g. We can see indeed that all curves start with the same slope as the
weightless case, and saturate at a height compatible with the scaling on U2/g from (3).

The integration in (3) predicts an evolution of the wave in two sequences, first a growth where
the algebraic law of the weightless wave is progressively compensated with a gravity term growing
like the square of time, followed by a state with a wave of constant size. The behavior of this
model could indicate the sequence of birth of a dissipative soliton, producing a steady wave as the
equilibrium of a destabilizing aerodynamic force and a stabilizing weight.

A. How to measure the height of the wave

As can be seen in Figure 1, the weightless wave has globally a self-similar growth, but it is
constantly disturbed by local instabilities and instationarities most obvious as the flapping of its
tongue. On the other hand, our quantitative model is crude in the sense that it only describes the
global behavior of the liquid structure. We thus need to choose an observable which is witness of this
global behavior of the structure and overlooks the small scale details. In the paper without gravity,3

we chose to extract a measure of the wave size from the area A of liquid which has crossed through
the initial position of the interface y = 0. This is an integrated quantity whose square root can be
considered an adequate measure of the wave size.

This choice of an observable was appropriate in the case of the self-similar wave since its aspect
ratio does not change in time. The algebraic law for

√
A was thus a suitable way to test the theory.

In the case of the wave with gravity on the other hand, a strong anisotropy is introduced which
prevents the wave from growing in the vertical direction; we thus need a new observable to measure
the height of the wave. We could choose to record the evolution in time of the highest liquid particle,
but this measure will wildly fluctuate with the flapping and shedding of drops: it is preferable once
again to consider an integrated quantity.

Since the wave is growing against the action of gravity, we may devise a measure inspired from
considerations of the gravity potential energy of the liquid system. The gravity potential energy of a
fluid element at altitude y is dE p = ρgydS. Thus the variation of total gravity potential energy from
initial time to time t is

#E p = g
∫

xy
[ρ(x, y, t) − ρ(x, y, 0)]ydS.

The density ρ in this equation can be either that of the liquid or that of the gas. Considering an
arbitrary point x, y in space, the contribution of this point to the integral is zero if the fluid has not
changed from time 0 to time t. We may thus define two zones who contribute to this variation of
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energy: zone 1 where gas has replaced the liquid, and zone 2 where liquid has replaced the gas, see
Figure 2. The change of potential energy is thus

#E p = g
∫

1
(ρgas − ρliq )ydS + g

∫

2
(ρliq − ρgas)ydS,

which we can rewrite

#E p = g(ρliq − ρgas)(
∫

2
ydS

︸ ︷︷ ︸
Ah2

−
∫

1
ydS

︸ ︷︷ ︸
Ah1

) = g(ρliq − ρgas)Ah, (4)

where A is the surface of the zones (the two surfaces are equal due to conservation of volume) and
h1 and h2 are the altitudes of the center of mass of zones 1 and 2. This last expression shows that
h = h2 − h1 is a measure of the wave height relevant in terms of the potential energy related to
gravity. This is the measure that we will use to test our theory for the plateau induced by gravity.

B. Numerical experiments

We saw in Figure 1 that the behavior of the wave is compatible with the scaling on Froude
number for r = 0.1, that is, for a gas ten times lighter than the liquid. We would like now to complete
the study and validate the scaling law in density ratio.

In the theoretical analysis of Sec. II, we have considered the ideal limit where Reynolds and
Weber numbers are large, and the limit where the thickness δ of the mixing layer is small. As usual,
asymptotic limits are relevant for the understanding of physical processes only if the conclusion that
can be drawn in this ideal setting remain approximately valid for finite values of the nondimensional
numbers. This is what we would like to test here. Our tool of experimentation is numerical simulations
of the Navier–Stokes equations for a system of two interacting fluids. Memory and computation time
limitations impose moderate values of the Reynolds, Weber, and δ. So it will be convenient to adopt
a different dimensionalization than in Ref. 3 for our simulations. We have chosen U2/g and U/g as
reference length and time, and vary the density ratio r while keeping the Reynolds and Weber fixed.
Also, the initial mixing layer thickness is given its value in proportion of the predicted maximum
wave size.

We use the open source software Gerris Flow Solver.32 Sizes are made nondimensional using
the reference size U2/g and times with U/g, equivalent to taking U = g = 1 in our simulations. In
preliminary computations we found that the top of the liquid wave reaches approximately the height
Lapex = 0.7rU2/g in time Tapex = 5

√
rU/g, so we set the parameters in proportion to these references.

The box height is 8Lapex to avoid confinement from the boundary conditions, while retaining the
resolution of the wave when it reaches its plateau. The box is four time longer than high. The initial
shear layer thickness δ is set to Lapex/20. The viscous law of diffusion of the error function velocity
profile is erf(y/2ν(t − t0)) with ν the kinematic viscosity of each fluid. The viscosity is set in each
fluid such that the mixing layer thickness is multiplied by 3 by viscous growth at time Tapex

ν = 4δ2/Tapex .

This choice of viscosity gives a Reynolds based on δ of ≈ 36/
√

r , thus ≈110 for r = 0.1 and ≈360
for r = 0.01. The Reynolds based on Lapex is 20 times these values: 2200 and 7200. Surface tension
σ is chosen such that the Weber number We = ρgasσU 2/Lapex is 500.

The software affords adaptive grid refinement based on vorticity and interface curvature. Here
the smallest mesh size is 2−10 times the box height, amounting to 128 mesh cells in the wave height
Lapex. We have performed extensive grid resolution studies in our previous work,3 and we found
that this mesh spacing was sufficient to ensure convergence of the measurements extracted from the
wave: its size and height evolving in time.



112106-7 A. Orazzo and J. Hoepffner Phys. Fluids 24, 112106 (2012)

The initial condition is a parallel mixing layer satisfying the continuity of velocity and shear
strain at the interface location y = 0

u(y) =
{ 1

1+r (erf(y/δ) + r ), y > 0

r
1+r (erf(y/δ) + 1), y < 0.

This velocity field is initially disturbed by a local vertical acceleration

f (x, y, t) = κφ(t) exp(−(x/*)2 − (y/*)2)

with its amplitude quickly fading

φ(t) =
{

cos(π t/2tstop) t < tstop

0, t > tstop.

We took * = δ a forcing patch of the size of the mixing layer, and tstop = Tapex/100. The amplitude
of the forcing is κ = 0.1/tstop.

For the present study we have chosen to consider a 2D simulation of the wave growth. This
choice may be questionable at first sight since the creation of the droplets of a spray must ultimately
be a three-dimensional process. This is indeed shown in Ref. 33: atomization starts with the creation
of liquid films which destabilize into liquid ligaments, and which in turn are finally segmented
into droplet by the Rayleigh–Plateau instability. In the present work, we focus at the scale of the
creation of the liquid film; this is clear from the choice of a large Weber number of 500. The Kelvin–
Helmholtz instability acts such as to build the localized wave, with its tip and flapping tongue. This
tongue is fragile, since it is only weakly maintained by surface tension. It is stretched with the air
flow, away from the body of the wave and shaken by the vortices that are shed periodically from
the liquid obstacle. Segmentation in our 2D simulations happens artificially when the two interfaces
of the liquid film meet into a single computational cell, that is, at a size 128 times smaller than the
wave itself. In terms of the global scaling we wish to demonstrate here, whether the liquid carried
up is finally observed as a liquid film or as droplet has little impact. At this stage indeed, the wind
has already played its part against the attraction of gravity.

What could be the 3D effects acting at the scale of the wave? Wave breaking under gravity is
mostly a 2D process; the lateral localization we can observe at sea is mainly a consequence of several
oblique wave trains interacting by addition and cancellation. Another candidate for a 3D effect is
the lateral destabilization of the Kelvin–Helmholtz billows, as discussed in Ref. 20. This secondary
instability can be observed when the mixing layer has already rolled into vortices: when the Kelvin–
Helmholtz is no longer active and strong. This effect is much weaker than the Kelvin–Helmholtz
instability itself.

C. Impact of the density ratio

We show the evolution of the wave interface in Figure 3 for four successive times. The first
one is Tapex/10 where we can see the start of the wave as the result of the initial localized impulse.
The wave has not taken yet its own distinctive shape. This is a time of the initial transient, where
the cause of the wave is not yet forgotten. The second interface corresponds to Tapex/2, half way
on the growth of the wave to reaching its peak height. Already at this time, we can observe the
flapping of the wave’s tongue and shedding of a liquid film. At t = Tapex, the wave has reached its
maximum height, with a value corresponding approximately to Lapex = 0.7rU2/g, materialized on
the four graphs as a horizontal dashed line. At this time of largest size, we see that there has already
been a strong activity of shedding liquid films and drops, some of which have free-fallen down to
the original interface height. The last displayed interface position corresponds to t = 1.5Tapex. We
mentioned in Sec. II that the theoretical analysis left the possibility for a behavior of this wave as
a dissipative soliton. We can see here that this is in fact not the case: after reaching its maximum
size, the wave collapses progressively, losing its impetus into an intricate organization of vortices
and drops.
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FIG. 3. Position of the interface from numerical simulations at four instants of time and for four values of the density ratio.
Relative sizes are scaled such as to emphasize the theoretical prediction. The positions of the center of mass of zones 1 and
2 at time Tapex are drawn as dots (red online).

The graphs for the four values of the density ratio r are displayed scaled such as to emphasize
the theoretical scaling law. We can observe that the shape and behavior does not change significantly
once properly scaled, at least for the values of r which we were able to simulate. The most significant
difference comes from the behavior of shed drops downstream of the wave. Indeed, the present choice
of the Weber number based on the gas speed U does not account for the fact that the wave has a
slower speed as r is lowered, see Ref. 3 for a discussion. Thus the shearing power of the free-stream
upon the tensed interface is larger for the lower gas densities. The second reason for difference in the
drop behavior comes from the fact that once the drops have left the liquid wave, they are advected
at the free-stream velocity while free-falling with little or no influence from the density ratio.

The effect of the density ratio on the wave height is displayed in Figure 4. The size of the
wave is quantified using the measure inspired from the variation of the gravity potential energy h as
described in Sec. II A. We can observe the initial growth of the wave height. Here we would have
expected initially different slopes for the growth of the wave, in agreement with the algebraic law
for the self-similar growth as shown on Figure 1. This is not observed here since with the present
choice of parameters due to mesh size limitations, the wave unfortunately does not have time to

FIG. 4. Effect of the density ratio on the evolution of the height of the wave. Inset: height and time are scaled with their
theoretical values for the plateau.
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realize its self-similar regime before reaching the size at which volume forces start to act. After
this initial growth, the height shows a peak and subsequent decay as expected from the progressive
collapse seen in Figure 3 after the apex. The simulation performed for the smallest value of the
density ratio r = 0.01, a gas hundred times lighter than the liquid could not complete to time Tapex

and does not show the peak. The computation is being made increasingly difficult as the fluids have
strongly different physical properties.

The test of the model for the wave growth is shown in the inset of Figure 4; the scaling of the
time as

t ′ = t√
rU/g

and height as h′ = h
rU 2/g

yields a gathering of the time evolution of the wave height for the five values of the density ratio,
showing a coordinated behavior of the physical system as the density of the gas is progressively
lowered. The plateau value for h′ is about 0.45, and the peak is observed at a time t′ of about 5.

III. DISCUSSION

We have extended the theory for a self-similar behavior of the Kelvin–Helmholtz instability, and
elaborated a model for a nonlinear wave of gravity and wind. The wave initially grows until reaching
a size at which gravity can counterbalance the destabilizing effect of the aerodynamic pressure drop.

It would have been fortunate if this wave had been the dissipative soliton of wind and gravity
which the idealized model (2) had left us to hope for. Indeed, once the hydrostatic pressure drop
balances the aerodynamic pressure drop, there is potentiality for a steady wave. On the other hand,
the dynamic processes at play are not structurally stable in the connection of the liquid body and
the deflected air stream, such that a progressive collapse follows the apex of the growth. The model
nevertheless provides insight into the growth process itself since the data for varying density ratio
are reasonably gathered by the scaling of time as the square root of the density ratio and height
as the density ratio in Figure 4. Could we have proposed a more accurate quantitative law? The
simulations of this two-phase flow are demanding; violent drop impacts and shedding are prone to
cause numerical instabilities for low density ratio. Figure 3 is eloquent of the complexity of the
system, and we must be content in this first study with the predictive ability of such a trimmed
quantitative account as (2).

To conclude, we may say that there is one kind of wave which is well known, a periodic
deformation of the interface. We know that this kind of wave—for instance at the surface of the
sea—may travel on very long distances, and that it can grow to a large size under the effect of a
strong wind. This description of such waves is essentially linear or weakly nonlinear. When a given
wavelength is led to grow in amplitude, the aspect ratio of the wave may grow to such an extent that
the crest of the wave starts to break, leading to dissipation of energy in a process of saturation. This
breaking creates foam and spray at the crest, see Ref. 34.

We may on the other hand think of what happen at the surface of the sea from an alternative
point of view. At a given wind velocity, there is a potential for a pressure drop αρgasU2 with α a
geometric factor originating in the pattern of streamlines. This pressure can be responsible of an
elevation of the liquid surface to a height h corresponding to the hydrostatic pressure drop ρ liqhg.
The question what would such a wave look like? is just what we have tried to answer in this paper.
To allow for analysis, we have considered the simplified setting of a flat interface and a localized
initial impulse. This wave shall look like Figure 3, it ejects much of its liquid body into airborne
drops, and we found that the numeric factor α is of order one. In order to emphasize the difference
with surface waves which slowly accumulate energy, we may call such a wave a spontaneous storm
wave.
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