

Control of instabilities in a cavity-driven separated boundary-layer flow

Jérôme Hœpffner *KTH, Sweden*

Avec Espen Åkervik, Uwe Ehrenstein, Dan Henningson

Boundary layer with cavity

Investigation tools

Flow description: **DNS** to compute the base flow:

Chebyshev in wall normal, finite difference in streamwise. **Stability analysis** by computation of 2D eigenmodes: Chebyshev/Chebyshev and Arnoldi

From eigenmodes: **Optimal growth** by optimization over initial conditions : Singular value decomposition **Control optimization** by solution of two Riccati equations

The eigensolver

2D Navier-Stokes + continuity

$$\begin{cases} -i\omega\hat{u} = -(U\cdot\nabla)\hat{u} - (\hat{\mathbf{u}}\cdot\nabla)U - \frac{\partial\hat{p}}{\partial x} + 1/Re\nabla^{2}\hat{u} \\ -i\omega\hat{v} = -(U\cdot\nabla)\hat{v} - (\hat{\mathbf{u}}\cdot\nabla)V - \frac{\partial\hat{p}}{\partial y} + 1/Re\nabla^{2}\hat{v} \\ 0 = \nabla\cdot\mathbf{u} \end{cases}$$

Generalized eigenproblem:

$$B\omega \mathbf{u} = A\mathbf{u}$$

To be rewritten

$$A^{-1}B\mathbf{u} = \frac{1}{\omega}\mathbf{u}$$

Solved by Arnoldi iterations.

Matrix formulation:

$$\begin{pmatrix} -i\omega\hat{u} \\ -i\omega\hat{v} \\ 0 \end{pmatrix} = \begin{pmatrix} \dots & \dots & -\frac{\partial}{\partial x} \\ \dots & \dots & -\frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & C \end{pmatrix} \begin{pmatrix} \hat{u} \\ \hat{v} \\ p \end{pmatrix}$$

Pressure constraints C

Eigenmodes

Optimal growth from initial conditions

System x(t) = Ax, $\dot{x}(0) = x_0$, with solution $x(t) = e^{At} x_0$

Find the initial condition x_0 maximizing

 $G(t) = \max_{x_0} \frac{\langle x(t), x(t) \rangle}{\langle x_0, x_0 \rangle}, \quad \text{adjoint:} \langle Ax_1, x_2 \rangle = \langle x_1, A^+ x_2 \rangle \forall x_1, x_2$

leads to

$$G(t) = max \frac{\langle e^{At}x_0, e^{At}x_0 \rangle}{\langle x_0, x_0 \rangle} = max \frac{\langle e^{A^+t}e^{At}x_0, x_0 \rangle}{\langle x_0, x_0 \rangle}$$

 \rightarrow Maximum growth at time t: eigenvalue of $e^{A^+t}e^{At}$

Optimal growth in the cavity

- Global instability
- Potentiality of strong energy growth
- Low frequency cycle

Forcing/initial condition

Flow cycle

Generation of **global pressure change** when the wave-packet impacts on the downstream lip **Regeneration of disturbances** when the pressure hits the upstream lip

Control

Seek to minimize the energy growth

- One actuator upstream
- One sensor downstream
- Oscillating disturbance in the shear layer

Feedback control

Dynamic model:
$$\begin{cases} \dot{x} = Ax + Bu \\ r = Cx \end{cases}$$
 Optimize for the feedback $u = \mathcal{G}(r)$

- \bullet The model in 2D is too big for optimization $\rightarrow~$ reduced model ~ .
- For reduction: project the dynamics on the least stable eigenmodes.
- Finally, couple the reduced controller and the flow system

Estimation: estimate flow state from sensors. **Control:** Actuate from feedback of estimated flow.

Control and estimation gains

Function used to extract the actuation signal from the flow

Function used to force the estimator flow

Compensation performance

Flow, compensated flow

Flow

compensated flow

Conclusion

Flow dynamics:

• Incompressible cavity can have global cycle due to pressure.

Global modes:

- Global eigenmodes can be used for analysis and model reduction.
- Convective instability well described by non-normality of global modes

Control:

- Model reduction allows optimal feedback design for large systems.
- Non-parallel effects/global instabilities can be treated.

KTH Mechanics

Extra slides

Grids & resolution

The resolution are:

DNS: nx=2048 finite difference, ny=97 Chebyshev, Lx=409, Ly=80

EIG: nx=250 Chebyshev, ny=50 Chebyshev, Lx=270. Ly=15.

Control terminology

- Estimation: From sensor information, recover the instantaneous flow field.
- Full information control: From full knowledge of the flow state, apply control.
- **Compensation:** Close the loop by using the estimated flow state for control.
- Model reduction: Project the dynamics on a set of selected basis vectors.
- **Control penalty:** Penalisation of the actuation amplitude.
- **sensor noise:** Uncertainty in the measured signal.
- **Disturbances:** External forcing exciting the flow.
- **Objective function:** Function of the flow state to be minimized.

Model reduction

Galerkin projection on least stable eigenmodes:

Physical space:

Eigenmode space:

Projection on eigenmodes \rightarrow **biorthogonal** set of vectors:

 $\begin{cases} \mathsf{Eigenmodes:} \ q_i, \\ \mathsf{Adjoint operator:} \ A^+/ < Ax_1, x_2 > = < x_1, A^+x_2 >, \forall x_1, x_2 \\ \mathsf{Adjoint eigenmodes:} \ q_i^+, \\ \mathsf{Biorthogonality:} \ \delta_{ij} = < q_i, q_j^+ >, \quad \mathsf{Projection:} \quad k_i = < x, q_i^+ > \end{cases}$

Starting the compensator at later times

Dynamic distortion

blue :flow

Red :compensated flow

Spectra with and without compensation

