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Boundary layer with cavity
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2D flow over a smooth cavity Long aspect ratio: 20

Inflow: Blasius profile Reynolds number : 325
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Investigation tools

Flow description: DNS to compute the base flow:

Chebyshev in wall normal, finite difference in streamwise.

Stability analysis by computation of 2D eigenmodes:

Chebyshev/Chebyshev and Arnoldi

From eigenmodes: Optimal growth by optimization over initial conditions :

Singular value decomposition

Control optimization by solution of two Riccati equations



The eigensolver

2D Navier-Stokes + continuity
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−iωû = −(U · ∇)û− (û · ∇)U −
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∂x
+ 1/Re∇2û

−iωv̂ = −(U · ∇)v̂ − (û · ∇)V −
∂p̂

∂y
+ 1/Re∇2v̂

0 = ∇ · u

Generalized eigenproblem:

Bωu = Au

To be rewritten

A−1Bu =
1

ω
u

Solved by Arnoldi iterations.
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Pressure constraints C



Eigenmodes
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Optimal growth from initial conditions

System x(t) = Ax, ẋ(0) = x0, with solution

x(t) = eAtx0

Find the initial condition x0 maximizing

G(t) = maxx0

< x(t), x(t) >

< x0, x0 >
, adjoint: < Ax1, x2 >=< x1, A

+x2 > ∀x1, x2

leads to

G(t) = max
< eAtx0, e

Atx0 >

< x0, x0 >
= max

< eA+teAtx0, x0 >

< x0, x0 >

→ Maximum growth at time t: eigenvalue of eA+teAt .



Optimal growth in the cavity

• Global instability

• Potentiality of strong en-

ergy growth

• Low frequency cycle
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Flow cycle

Generation of global pressure change when the wave-packet impacts on the downstream lip

Regeneration of disturbances when the pressure hits the upstream lip



Control

Seek to minimize the energy growth
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Sensing

Actuation
Disturbance

• One actuator upstream

• One sensor downstream

• Oscillating disturbance in the shear layer



Feedback control

Dynamic model:

{
ẋ = Ax + Bu

r = Cx
Optimize for the feedback u = G(r)

• The model in 2D is too big for optimization → reduced model .

• For reduction: project the dynamics on the least stable eigenmodes.

• Finally, couple the reduced controller and the flow system

Estimation: estimate flow state from sensors.

Control: Actuate from feedback of estimated flow.



Control and estimation gains

Function used to extract the actuation signal from the flow

Function used to force the estimator flow



Compensation performance
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Flow compensated flow
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Conclusion

Flow dynamics:

• Incompressible cavity can have global cycle due to pressure.

Global modes:

• Global eigenmodes can be used for analysis and model reduction.

• Convective instability well described by non-normality of global modes

Control:

• Model reduction allows optimal feedback design for large systems.

• Non-parallel effects/global instabilities can be treated.



Extra slides



Grids & resolution

The resolution are:

DNS: nx=2048 finite difference, ny=97 Chebyshev, Lx=409, Ly=80

EIG: nx=250 Chebyshev, ny= 50 Chebyshev, Lx=270. Ly=15.
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Control terminology

• Estimation: From sensor information, recover the instantaneous flow field.

• Full information control: From full knowledge of the flow state, apply control.

• Compensation: Close the loop by using the estimated flow state for control.

• Model reduction: Project the dynamics on a set of selected basis vectors.

• Control penalty: Penalisation of the actuation amplitude.

• sensor noise: Uncertainty in the measured signal.

• Disturbances: External forcing exciting the flow.

• Objective function: Function of the flow state to be minimized.



Model reduction

Galerkin projection on least stable eigenmodes:

Physical space:
{

ẋ = Ax + Bu

r = Cx

Eigenmode space:






Pẋ︸︷︷︸

k̇

= PAP−1

︸ ︷︷ ︸

AM

Px︸︷︷︸

k

+ PB︸︷︷︸

BM

u

r = CP−1

︸ ︷︷ ︸

CM

Px︸︷︷︸

k

Projection on eigenmodes → biorthogonal set of vectors:






Eigenmodes: qi,

Adjoint operator: A+/ < Ax1, x2 >=< x1, A
+x2 >, ∀x1, x2

Adjoint eigenmodes: q+
i ,

Biorthogonality: δij =< qi, q
+
j >, Projection: ki =< x, q+

i >



Starting the compensator at later times
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Compensator cannot affect the disturbance propagation

but can affect the disturbance generation



Dynamic distortion

blue :flow

Red :compensated flow
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