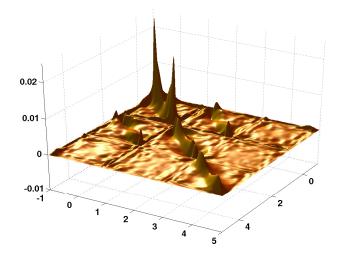
Turbulent Channel Flow Estimation

Mattias Chevalier

Jérôme Hœpffner, Thomas R. Bewley, and Dan Henningson

APS, November 23-25, 2003



Related talk was given in Session AR.008 by Jérôme Hœpffner

Aim & Motivation

KTH Mechanics

Estimation – State reconstruction from partial information

Many control strategies (such as LQR) are based on full state information, which may be estimated in the present (nonlinear) problem using an extended Kalman filter

Only partial information about the state is available – generally from wall sensors measuring skin friction and pressure

Though good progress has been made on feedback control of low *Re* turbulence using full state information (see, e.g., Högberg *et al*, Physics of Fluids 2003), much remains to be done to get better estimator performance

Present Aim

Improve estimation model by using statistical information from DNS

Estimation for a Single Wavenumber Pair

KTH Mechanics

 $q = \left(\begin{array}{c} v \\ \eta \end{array} \right)$

Plant

State

$$\begin{cases} \dot{q} = Aq + Bf, \quad q(0) = q_0, \\ \mathbf{y} = Cq + g, \end{cases}$$

Estimator

$$\begin{cases} \dot{\hat{q}} = A\hat{q} - L(\boldsymbol{y} - \hat{\boldsymbol{y}}), \quad \hat{q}(0) = \hat{q}_0, \\ \hat{\boldsymbol{y}} = C\hat{q}, \end{cases}$$

The system is subject to the stochastic quantities

External disturbance fSensor noise g

KTH Mechanics

Kalman Filter

The feedback L is optimized to minimize the estimation error, by solving an algebraic Riccati equation

$$0 = AP + PA^* + BRB^* - PC^*G^{-1}CP$$
$$L = -PC^HG^{-1}$$

To be modeled

R: Covariance of the external disturbance

Choice of Stochastic Forcing

KTH Mechanics

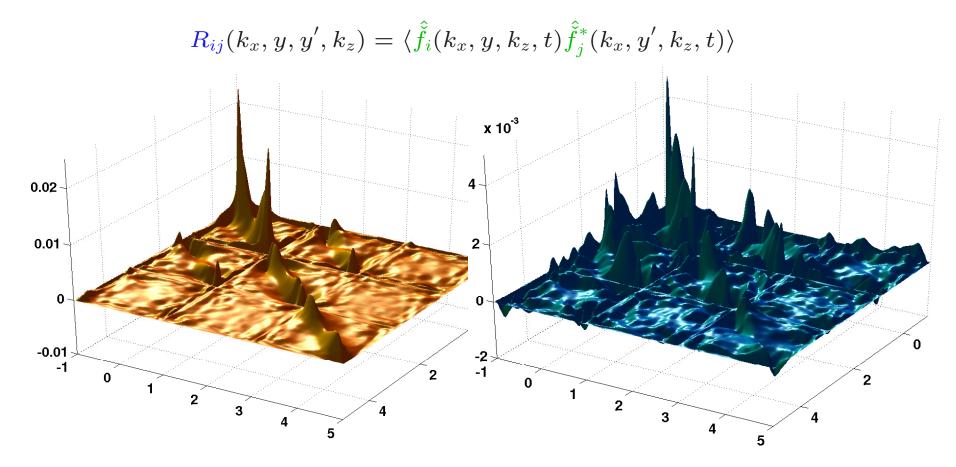
Simple choice for the covariance – the identity matrix – doesn't work very well **Main idea:** compute statistical quantities of neglected physics in the dynamical model Linearize Navier–Stokes equations and add disturbance terms f_1 , f_2 , and f_3

$$\begin{aligned} \frac{\partial \check{u}}{\partial t} + U \frac{\partial \check{u}}{\partial x} + \check{v} \frac{\partial U}{\partial y} &= -\frac{\partial \check{p}}{\partial x} + \frac{1}{Re} \Delta \check{u} - \check{u} \frac{\partial \check{u}}{\partial x} - \check{v} \frac{\partial \check{u}}{\partial y} - \check{w} \frac{\partial \check{u}}{\partial z} - \frac{\partial P}{\partial x} + \frac{1}{Re} \frac{\partial^2 U}{\partial y^2} \\ \frac{\partial \check{v}}{\partial t} + U \frac{\partial \check{v}}{\partial x} &= -\frac{\partial \check{p}}{\partial y} + \frac{1}{Re} \Delta \check{v} - \check{u} \frac{\partial \check{v}}{\partial x} - \check{v} \frac{\partial \check{v}}{\partial y} - \check{w} \frac{\partial \check{v}}{\partial z} \\ \frac{\partial \check{w}}{\partial t} + U \frac{\partial \check{w}}{\partial x} &= -\frac{\partial \check{p}}{\partial z} + \frac{1}{Re} \Delta \check{w} - \check{u} \frac{\partial \check{w}}{\partial x} - \check{v} \frac{\partial \check{w}}{\partial y} - \check{w} \frac{\partial \check{w}}{\partial z} \end{aligned}$$

Flow variables are divided into mean (U) and fluctuating $(\check{u}, \check{v}, \check{w}, \text{ and }\check{p})$ part We will model the relevant statistics (covariance R) of terms in green using DNS database

Covariance Data R

KTH Mechanics

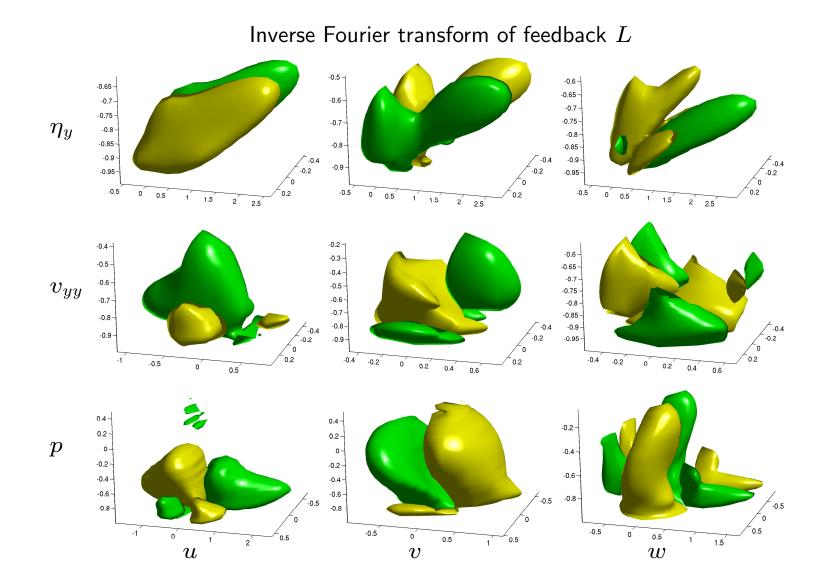


 $k_x = 0.500$ and $k_z = 3.008$

Calculated for DNS of $Re_{\tau} = 100$ turbulent channel flow.

Steady State Kernels

KTH Mechanics



Mechanics

Direct Numerical Simulations

Application of kernels based on covariance data

Two simulations run in parallel, plant and estimator Wall measurements fed back as a volume force in estimator Estimator also nonlinear equations, extended Kalman filter

DNS code

OPUS – incompressible Navier–Stokes equations solver Constant-mass flux turbulent channel flow at $Re_{\tau} = 100$ Spectral / finite-difference / spectral discretization ($42 \times 64 \times 42$)

KTH Mechanics

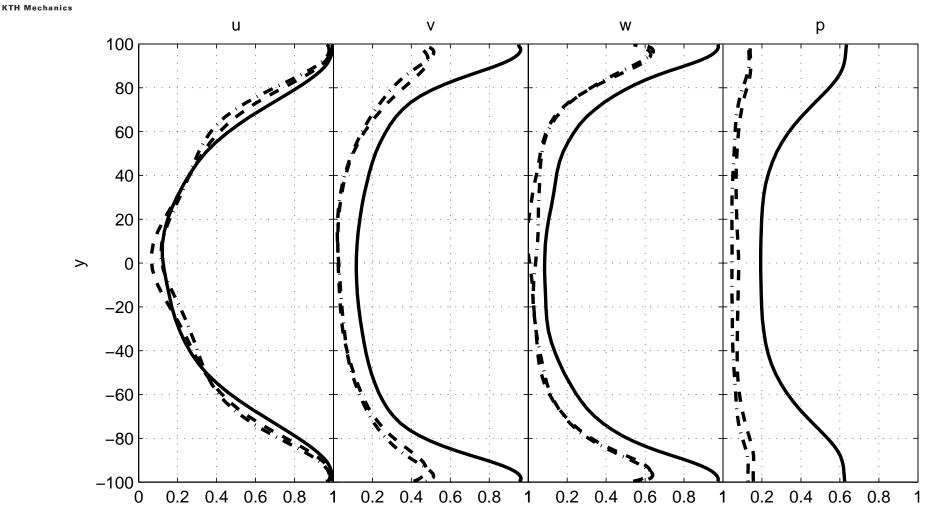
Plant / Estimator Correlation

Correlation between state (u) and estimator (\check{u}) for the streamwise velocity

$$\operatorname{corr}_{y}(u,\check{u}) = \frac{\int_{0}^{L_{x}} \int_{0}^{L_{z}} u\check{u} \, dx \, dz}{\sqrt{\int_{0}^{L_{x}} \int_{0}^{L_{z}} u^{2} \, dx \, dz} \sqrt{\int_{0}^{L_{x}} \int_{0}^{L_{z}} \check{u}^{2} \, dx \, dz}}$$

Correlation for streamwise velocity component.

Plant / Estimator Correlation



Plant / estimator correlation of velocity and pressure in wall-normal direction.

KTH Mechanics

Conclusions

Appropriate covariance data has been computed from a DNS database in order to improve reconstruction of a turbulent flow system

Estimation gains based on the covariance data has been computed

Well-behaved estimation kernels are obtained for three measurements

Extended Kalman filter for new gains gives improved estimator performance