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Stochastic disturbances

Flow systems of engineering interest are often exposed to disturbances

that are erratic, unpredictable, and thus conveniently described by

their statistics.

• wall roughness

• Free-stream turbulence

• Acoustic waves



Navier–Stokes equations
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∂tu+ u∂xu + v∂yu + w∂zu = −∂xp + ∆u/Re,

∂tv + u∂xv + v∂yv + w∂zv = −∂yp + ∆v/Re,

∂tw+u∂xw+v∂yw+ w∂zw = −∂zp +∆w/Re,

∂xu + ∂yv + ∂zw = 0

+ BC

Fourier transform in homogeneous direction. State space formulation:

q̇ = Aq



Statistics

Random vector w =











w1(t)

w2(t)
...

wN(t)











, White noise if: Ewi(t)wj(t′) = Wijδ(t − t′)

Covariance matrix:

W , EwwH =











E|w1|
2 Ew1w2 . . . Ew1wN

Ew2w1 E|w2|
2 ...

... . . . ...

EwNw1 . . . . . . E|wN |
2











Diagonal elements: variance

Off-diagonal elements: covariance



salut



1) Stochastic flow systems

q̇ = Aq+w, cov(w) = W

stochastic excitation→ stochastic state

q should now be described by its covariance matrix P .

How to get P from A and W ?



Lyapunov equation

Explicit state solution:

q̇ = Aq + w ⇒ q(t) =

∫ ∞

τ=0

eA(t−τ)w(τ)dτ + eAtq0

State covariance:

Eq(t)q(t)H

︸ ︷︷ ︸

P (t,t)

=

∫ ∞

0

∫ ∞

0

eA(t−τ)

Wδ(τ−τ ′)
︷ ︸︸ ︷

Ew(τ)w(τ ′)HeAH(t−τ ′)dτdτ ′

=

∫ ∞

0

eA(t−τ)WeAH(t−τ)dτ

Differentiating this convolution integral:

Ṗ = AP + PAH+W



Numerical solution of the Lyapunov equation

Solve: AX + XAH + W = 0

1. Schur decomposition A = UA′UH , → A′ upper diagonal, U orthogonal.

2. Resulting equation A′

X′

︷ ︸︸ ︷

UHXU +

X′

︷ ︸︸ ︷

UHXU A′H +

W ′

︷ ︸︸ ︷

UHWU = 0

3. Use Kronecker product ⊗

A ⊗ B ,











a11B a12B . . . a1mB

a21B a22B . . . a2mB
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.
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an1B an2B . . . anmB











vec(A′X ′ + X ′A′H + W ′) = 0

= (I ⊗ A′ + A
′
⊗ I)

︸ ︷︷ ︸

F

vec(X ′) + vec(W ′)

F has upper diagonal structure

4. Solve by backward substitution



1D example: Ginzburg-Landau

q̇ + Uqx = γqxx + µ(x)q

Excitations: w(x, t) = f(x)λ(t),

λ ∈ R is white noise, E|w|2 = 1.

Convectively unstable region:
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1D example: Ginzburg-Landau

Two points correlation

(normalized to unit rms):

corr(qi, qj) = E
qiqj

|qi||qj|
= P̃ij

One point/Two times covariance:

cov(q(t), q(t′)) = P (t, t′) = eA(t′−t)P (t, t),

0 = AP + PA+ + W.



2) Control of stochastic flow systems

Control to reduce flow rms

→ Actuators, sensors, feedback law

Minimize for stochastic properties



Actuators and sensors

Actuator

Disturbances Output

Sensor
Flow

Actuators to act on the flow state: • Blowing and suction at the wall

• Wall deformation

• . . .

Sensors to measure the flow state: • Skin friction

• Pressure

• . . .
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Feedback

Disturbances Output

Flow
SensorActuator

?

Use optimization for the feedback law



Estimation

Sensor information

+ → estimate full 3D flow state

Dynamic model

Case 1:

No disturbances,

Known initial condition

→ Need good model

Flow:

{
q̇ = Aq

y = Cq
, q(0) = q0

Estimator:

{
˙̂q = Aq̂

ŷ = Cq̂
, q̂(0) = q0

Case 2:

Disturbances,

Unknown initial condition

→ Need feedback

Flow:

{
q̇ = Aq+w

y = Cq+g
, q(0) = q0

Estimator:

{
˙̂q = Aq̂−L(y − ŷ)

ŷ = Cq̂
, q̂(0) = 0



Control and estimation

system

{
q̇ = Aq+w+Bu,

y = Cq+g
, estimator

{
˙̂q = Aq̂−L(y − ŷ),

ŷ = Cq̂

Full information control:

Feedback: u = Kq

Closed loop: q̇ = (A+BK)
︸ ︷︷ ︸

Ac

q+w

Ac = A + BK is stable?

Estimation:

Estimation error q̃ = q − q̂:
˙̃q = (A+LC)

︸ ︷︷ ︸

Ae

q̃+w − Lg

Ae = A + LC is stable?

Output feedback control: u = Kq̂.



Lyapunov equations

for control and estimation systems

Mean energy= integral of rms

EK = Tr(P )

System is sensitive or unstable → large energetic response to external disturbances

Full information Control:

q̇ = (A + BK)
︸ ︷︷ ︸

Ac

+w

Lyapunov:

(A + BK
︸ ︷︷ ︸

A+
c

)+P + P (A + BK
︸ ︷︷ ︸

Ac

)+W = 0

Estimation:
˙̃q = (A + LC)

︸ ︷︷ ︸

Ae

q̃ + w − Lg

Lyapunov:

(A + LC
︸ ︷︷ ︸

Ae

)P̃ + P̃ (A + LC
︸ ︷︷ ︸

A+
e

)++W + α2LL+ =

0

Now: find optimal feedback K and L



Optimization

Constrained minimisation → Lagrange multiplier Λ

Minimax problem for Lagrangians Lc and Le.

Control:

minimize

E(‖q‖2+`2 ‖u‖2

︸︷︷︸

‖Kq‖2

)=Tr(PQ+`2KPK+)

Lc =

Objective
︷ ︸︸ ︷

Tr(PQ + KPK+) +Tr[Λ(

Constraint
︷ ︸︸ ︷

(A + BK)P + P (A + BK)+ + W )]

∇ΛLc = 0

∇P Lc = 0

∇KLc = 0







⇒

{
0 = A+Λ + ΛA − ΛBB+Λ/`2 + Q,

K = B+Λ/`2.

Estimation:

minimize

E(‖q − q̂‖2

︸ ︷︷ ︸

‖q̃‖2

) = Tr(P̃ )

Le =

Objective
︷ ︸︸ ︷

Tr(P̃ ) +Tr[Λ(

Constraint
︷ ︸︸ ︷

(A + LC)P̃ + P̃ (A + LC)+ + α2LL+ + W )]

∇ΛLe = 0

∇P̃ Le = 0

∇LLe = 0







⇒

{
0 = AP̃ + P̃A+ − P̃C+CP̃/α2 + W

L = −P̃C+/α2.

Same structure for control and estimation → two Riccati equations



Numerical solution of Riccati equation

Solve: AHX + XA + XBBHX + Q = 0

1. Build Hamiltonian: H =




A BBH

−Q −AH





2. Schur decomposition H = USUH , → S upper triangular, U orthogonal

3. Order Schur decomposition to decompose stable/unstable subspaces:

S =




S11 S12

0 S22



, U =




U11 U12

U21 U22





4. Solve X = U21U
−1
11



1D example: Controlled Ginzburg-Landau






q̇ + Uqx = γqxx + µ(x)q + b(x)u(t)

y(t) =

∫

x

c(x)q(x)dx

Sensors and actuators
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Summary

• Stochastic disturbances, stochastic systems

• Covariance matrices

• Lyapunov equation

• Sensors/Actuators/Feedback

• Optimization on the Lyapunov equation


