Control of shear flows subject to stochastic excitations

Jérôme Hœpffner

KTH, Sweden

Stochastic disturbances

Flow systems of engineering interest are often exposed to disturbances that are erratic, unpredictable, and thus conveniently described by their statistics.

- wall roughness
- Free-stream turbulence
- Acoustic waves

Navier-Stokes equations

Fourier transform in homogeneous direction. State space formulation:

$$
\dot{q}=A q
$$

Statistics

Covariance matrix:

$$
W \triangleq E w w^{H}=\left(\begin{array}{cccc}
E\left|w_{1}\right|^{2} & E w_{1} \overline{w_{2}} & \ldots & E w_{1} \overline{w_{N}} \\
E w_{2} \overline{w_{1}} & E\left|w_{2}\right|^{2} & & \vdots \\
\vdots & & \ddots & \vdots \\
E w_{N} \overline{w_{1}} & \ldots & \ldots & E\left|w_{N}\right|^{2}
\end{array}\right)
$$

Diagonal elements: variance
Off-diagonal elements: covariance

Estimation in laminar channel flow

Estimation in turbulent channel flow

Estimation/Control of swept boundary layer

Control convolution kernels

Estimation convolution kernels

Controlled cavity flow
Wall normal velocity: no control / control

Pressure: no control / control

1) Stochastic flow systems

$$
\begin{gathered}
\dot{q}=A q+w, \quad \operatorname{cov}(w)=W \\
\text { stochastic excitation } \rightarrow \text { stochastic state }
\end{gathered}
$$

q should now be described by its covariance matrix P.

How to get P from A and W ?

Lyapunov equation

Explicit state solution:

$$
\dot{q}=A q+w \quad \Rightarrow \quad q(t)=\int_{\tau=0}^{\infty} e^{A(t-\tau)} w(\tau) \mathrm{d} \tau+e^{A t} q_{0}
$$

State covariance:

$$
\begin{aligned}
\underbrace{E q(t) q(t)^{H}}_{P(t, t)} & =\int_{0}^{\infty} \int_{0}^{\infty} e^{A(t-\tau)} \overbrace{E w(\tau) w\left(\tau^{\prime}\right)^{H}}^{E} e^{A^{H}\left(t-\tau^{\prime}\right)} \mathbf{d} \tau \mathbf{d} \tau^{\prime} \\
& =\int_{0}^{\infty} e^{A(t-\tau)} W e^{A^{H}(t-\tau)} \mathbf{d} \tau
\end{aligned}
$$

Differentiating this convolution integral:

$$
\dot{P}=A P+P A^{H}+W
$$

Numerical solution of the Lyapunov equation

Solve: $A X+X A^{H}+W=0$

1. Schur decomposition $A=U A^{\prime} U^{H}, \rightarrow A^{\prime}$ upper diagonal, U orthogonal.
2. Resulting equation

3. Use Kronecker product \otimes

$$
A \otimes B \triangleq\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 m} B \\
a_{21} B & a_{22} B & \ldots & a_{2 m} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} B & a_{n 2} B & \ldots & a_{n m} B
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{vec}\left(A^{\prime} X^{\prime}+X^{\prime} A^{\prime H}+W^{\prime}\right)=0 \\
& =\underbrace{\left(I \otimes A^{\prime}+\bar{A}^{\prime} \otimes I\right)}_{\mathcal{F}} \operatorname{vec}\left(X^{\prime}\right)+\operatorname{vec}\left(W^{\prime}\right)
\end{aligned}
$$

4. Solve by backward substitution

1D example: Ginzburg-Landau

$$
\dot{q}+U q_{x}=\gamma q_{x x}+\mu(x) q
$$

Excitations: $w(x, t)=f(x) \lambda(t)$,
$\lambda \in \mathbb{R}$ is white noise, $E|w|^{2}=1$.
Convectively unstable region:

Forcing and State rms:

1D example: Ginzburg-Landau

One point/Two times covariance:

Two points correlation (normalized to unit rms):

$$
\operatorname{corr}\left(q_{i}, q_{j}\right)=E \frac{q_{i} \overline{q_{j}}}{\left|q_{i}\right|\left|q_{j}\right|}=\tilde{P}_{i j}
$$

$$
\begin{aligned}
& \operatorname{cov}\left(q(t), q\left(t^{\prime}\right)\right)=P\left(t, t^{\prime}\right)=\mathrm{e}^{A\left(t^{\prime}-t\right)} P(t, t) \\
& 0=A P+P A^{+}+W
\end{aligned}
$$

2) Control of stochastic flow systems

Control to reduce flow rms
\rightarrow Actuators, sensors, feedback law

Minimize for stochastic properties

Actuators and sensors

Actuators to act on the flow state: • Blowing and suction at the wall

- Wall deformation

Sensors to measure the flow state: - Skin friction

- Pressure
- ...

ктн Engineering Sciences

Feedback

Estimation

Sensor information

$$
+\quad \rightarrow \text { estimate full 3D flow state }
$$

Dynamic model

Case 1:

No disturbances,
Known initial condition
\rightarrow Need good model

Flow: $\left\{\begin{array}{l}\dot{q}=A q \\ y=C q\end{array}, \quad q(0)=q_{0}\right.$
Estimator: $\left\{\begin{array}{l}\dot{\hat{q}}=A \hat{q} \\ \hat{y}=C \hat{q}\end{array}, \quad \hat{q}(0)=q_{0}\right.$

Case 2:
Disturbances,
Unknown initial condition
\rightarrow Need feedback

Flow: $\left\{\begin{array}{l}\dot{q}=A q+w \\ y=C q+g\end{array}, \quad q(0)=q_{0}\right.$
Estimator: $\left\{\begin{array}{l}\dot{\hat{q}}=A \hat{q}-L(y-\hat{y}) \\ \hat{y}=C \hat{q}\end{array}, \quad \hat{q}(0)=0\right.$

Control and estimation

$$
\text { system }\left\{\begin{array} { l }
{ \dot { q } = A q + w + B u , } \\
{ y = C q + g }
\end{array} , \quad \text { estimator } \left\{\begin{array}{l}
\dot{\hat{q}}=A \hat{q}-L(y-\hat{y}), \\
\hat{y}=C \hat{q}
\end{array}\right.\right.
$$

```
Full information control:
Feedback: }u=K
Closed loop: }\dot{q}=\mp@subsup{\underbrace}{\mp@subsup{A}{c}{}}{(A+BK)}q+
Ac}=A+BK\mathrm{ is stable?
```

Output feedback control: $u=K \hat{q}$.

Lyapunov equations for control and estimation systems

$$
\begin{gathered}
\text { Mean energy }=\text { integral of } r m s \\
E_{K}=\operatorname{Tr}(P)
\end{gathered}
$$

System is sensitive or unstable \rightarrow large energetic response to external disturbances

Full information Control:
$\dot{q}=\underbrace{(A+B K)}_{A_{c}}+w$
Lyapunov:
$(\underbrace{A+B K}_{A_{c}^{+}})^{+} P+P(\underbrace{A+B K}_{A_{c}})+W=0$

Now: find optimal feedback K and L

Optimization

Constrained minimisation \rightarrow Lagrange multiplier Λ
Minimax problem for Lagrangians \mathscr{L}_{c} and \mathscr{L}_{e}.

Control:
minimize
$E(\|q\|^{2}+\ell^{2} \underbrace{\|u\|^{2}}_{\|K q\|^{2}})=\operatorname{Tr}\left(P Q+\ell^{2} K P K^{+}\right)$

$$
\left.\begin{array}{rl}
\mathscr{L}_{c}= & \overbrace{\operatorname{Tr}\left(P Q+K P K^{+}\right)}^{\text {Objective }}+\operatorname{Tr}[\Lambda(\overbrace{(A+B K) P+P(A+B K)^{+}+W}) \\
& \nabla_{\Lambda} \mathscr{L}_{c}=0 \\
\nabla_{P} \mathscr{L}_{c}=0 \\
\nabla_{K} \mathscr{L}_{c}=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
0=A^{+} \Lambda+\Lambda A-\Lambda B B^{+} \Lambda / \ell^{2}+Q, \\
K=B^{+} \Lambda / \ell^{2} .
\end{array}\right.
$$

Estimation:
minimize

$$
E(\underbrace{\|q-\hat{q}\|^{2}}_{\|\tilde{q}\|^{2}})=\operatorname{Tr}(\tilde{P})
$$

$$
\left.\begin{array}{rl}
\mathscr{L}_{e}= & \overbrace{\operatorname{Tr}(\tilde{P})}^{\text {Objective }}+\operatorname{Tr}[\Lambda(\overbrace{(A+L C) \tilde{P}+\tilde{P}(A+L C)^{+}+\alpha^{2} L L^{+}+W}) \\
\nabla_{\Lambda} \mathscr{L}_{e}=0 \\
\nabla_{\tilde{P}} \mathscr{L}_{e}=0 \\
\nabla_{L} \mathscr{L}_{e}=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
0=A \tilde{P}+\tilde{P} A^{+}-\tilde{P} C^{+} C \tilde{P} / \alpha^{2}+W \\
L=-\tilde{P} C^{+} / \alpha^{2}
\end{array}\right.
$$

Same structure for control and estimation \rightarrow two Riccati equations

Numerical solution of Riccati equation

$$
\text { Solve: } A^{H} X+X A+X B B^{H} X+Q=0
$$

1. Build Hamiltonian: $\mathscr{H}=\left(\begin{array}{cc}A & B B^{H} \\ -Q & -A^{H}\end{array}\right)$
2. Schur decomposition $\mathscr{H}=U S U^{H}, \rightarrow S$ upper triangular, U orthogonal
3. Order Schur decomposition to decompose stable/unstable subspaces:

$$
S=\left(\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right), U=\left(\begin{array}{cc}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)
$$

4. Solve $X=U_{21} U_{11}^{-1}$

1D example: Controlled Ginzburg-Landau

$$
\left\{\begin{array}{l}
\dot{q}+U q_{x}=\gamma q_{x x}+\mu(x) q+b(x) u(t) \\
y(t)=\int_{x} c(x) q(x) \mathrm{d} x
\end{array}\right.
$$

Sensors and actuators

Forcing and controlled state rms:

Summary

- Stochastic disturbances, stochastic systems
- Covariance matrices
- Lyapunov equation
- Sensors/Actuators/Feedback
- Optimization on the Lyapunov equation

