

Energy growth in the compliant channel

Jérôme Hœpffner Institut D'Alembert, UPMC, Paris. Julien Favier, Alessandro Bottaro DICAT, Università di Genova.

Compliant surfaces

Gray(30s): observation of dolphins Kramer(50s): reproduce dolphins' skin

Classical question:

Can flow/walls coupled dynamics reduce instabilities? Delay/prevent transition to turbulence

Sensitivity:

an alternative view on the problem

Wall dynamics

Coupled system: flow/walls

Flow

$$v_t + Uv_x = -p_y + \Delta v/Re,$$

 $w_t + Uw_x = -p_z + \Delta w/Re,$
 $u_x + v_y + w_z = 0.$

 $u_t + Uu_x + U_u v = -p_x + \Delta u/Re,$

Navier-Stokes linearised about base flow profile: stability analysis.

$$\text{Wall} \qquad m\eta_{tt} + \frac{d}{Re}\eta_t + \frac{B\triangle^2 - T\triangle + K}{Re^2}\eta = \pm p|_{\text{wall}},$$

The state vector: $(\hat{u}, \hat{v}, \hat{w}, \hat{p}, \hat{\gamma}_{top}, \hat{\eta}_{top}, \hat{\gamma}_{bot}, \hat{\eta}_{bot})^T$,

Stabilisation of Tollmien-Schlichting instability

Ann. Rev. Fluid Mech. 1988. 20 : 393-420 Copyright © 1988 by Annual Reviews Inc. All rights reserved

COMPLIANT COATINGS

James J. Riley

Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195

Mohamed Gad-el-Hak

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

Ralph W. Metcalfe

Department of Mechanical Engineering, University of Houston, Houston, Texas 77004¹

Lift-up

Lift-up

Looking for "special things" in flows using optimization

Three-dimensional optimal perturbations in viscous shear flow

Kathryn M. Butler and Brian F. Farrell Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (Received 28 May 1991; accepted 6 April 1992)

FIG. 2. Development of the perturbation streamfunction ψ for the best growing 2-D energy optimal in Couette flow with $R\!=\!1000$, located at $\alpha\!=\!1.21$, $\tau\!=\!8.7$. The streamfunction ψ is defined by $-\partial\psi/\partial y\!=\!u$ and $\partial\psi/\partial x\!=\!u$.

J. Fluid Mech. (2002), vol. 463, pp. 163-171. © 2002 Cambridge University Press DOI: 10.1017/S002211200200873X Printed in the United Kingdom

On the stability of a falling liquid curtain

163

By PETER J. SCHMID¹[†] AND DAN S. HENNINGSON²

¹Laboratoire d'Hydrodynamique (LadHyX), École Polytechnique, F-91128 Palaiseau, France ²Department of Mechanics, Royal Institute of Technology, S-10044 Stockholm, Sweden

Figure 5. Curtain shape versus time for $\kappa = 5 \times 10^4$ and U = 0.4 starting with the optimal initial condition, i.e. the minial condition that results in the maximum energy amplification near $i = T_{lab}$ in figure 4(a).

43

J. Fluid Mech. (2005), vol. 528, pp. 43–52. © 2005 Cambridge University Press doi:10.1017/S0022112005003307 Printed in the United Kingdom

Transient growth in two-phase mixing layers

What is the effect of wall compliance?

Optimal solutions

Sinuous

Varicose

Candidate mechanisms

Model:

We suppose a simple deformation of the base flow

Conclusions

- Computation of the optimal initial conditions in channel flow with compliant walls: growth increases with wall compliance

- Transition likely to result from a competition of algebraic and exponential amplification mechanisms

- Random initial conditions excite sinuous and varicose mechanisms

K=10¹

Flexible channel: slow oscillations Large amplitude

Wall waves

Wall waves

Sinuous:

Wall waves

Varicose:

Fluid effect: added mass

sinuous: $m_a^s = (1 - e^{-k})/k$ varicose: $m_a^v = (1 - e^{-k})/k + 1/k^2$

Optimization of the initial conditions

 $egin{array}{rcl} u_t + U_y v &=& 0, \ v_t &=& -p_y, \ w_t &=& -p_z, \end{array}$ $v_y + w_z = 0.$ Energy growth scales like the square of the oscillation period $i\omega\hat{u} + U_y\hat{v} = 0 \quad \Rightarrow \quad \|\hat{u}\| = \frac{T^2}{4\pi^2}\int_y |U_y\hat{v}|^2 \mathrm{d}y,$

FIGURE 12. a) Optimal (thick solid) and exponential (dashed) growth at time 20, compared to optimal growth of the rigid-walls system at $\alpha = 0$ (thin solid) for K = 1000, Re = 5000, d = 100. b) Optimal (thick solid) and exponential growth (dashed) in time for $\beta = 0$ and α equispaced from 0.01 to 1.

Optimization results

