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Summary

The aim of this paper is to build a reduced model for control design based
on the eigenmodes of the 2D cavity flow. The flow dynamics is dominated by
the shear layer instability, and the pressure is found to play a coupling role
between separation and re-attachment, potentially leading to global insta-
bility. The large dimensionality of the discretized flow system is a challenge
for control design. A reduced dynamic model is constructed by projection on
a basis of eigenmodes, and a controller is computed based on this reduced
model.

1 Introduction

Active flow control has received increasing attention in the last decade, where
knowledge from fluid mechanics is combined with control theory to affect the
properties of flow systems. A common goal is to stabilize a flow subject
to linear instability, like for instances the Tollmien-Schlichting waves on an
aeroplane wing (see e.g. Högberg & Henningson (2002)), or force the flow
back to a laminar regime, like for instance in a turbulent channel flow (see
e.g. Högberg et al. (2003a); Kim (2003)).

These systems are described by partial differential equations. These can be
discretized in time and space and typically lead to large systems of ordinary
differential equations. This represents a challenge for control design based
on optimization methods like the linear quadratic Gaussian (LQG) method,
or more recently the H2 andH∞ control synthesis. On the other hand, many
flow cases exhibit low dimensionality. For instance, only one eigenmode might
be unstable, so that one can hope to describe properly the flow’s dynamics
with a simpler dynamical system. It is thus preferable to first build a reduced
order model for the flow system. This is typically a heavy computational task,
but once this model is obtained, one has the possibility to experiment with
many control strategies and set of control parameters to obtain the desired
flow behaviour. The final test is to apply the controller thus designed on the
original flow system. As a first step, in the present analysis the controller built
for a drastically reduced system is applied to the high-dimensional dynamical
system.
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Several techniques are available for model order reduction, the most widely
used of which are the balanced truncation or the optimal Hankel norm mini-
mization (see e.g. Obinata & Anderson (2001)). But these are computation-
ally intensive and cannot readily be implemented in large scale systems. One
the other hand, thanks to increasing computational power and the use of
Arnoldi method (see Edwards et al. (1994)), it has now become possible to
solve large eigenvalue problems, i.e. including the eigenanalysis of a complete
two dimensional flow. These eigenmodes can in turn be used as a reduced ba-
sis for the Galerkin projection of the flow dynamics. Hopefully, a small family
of the eigenmode can represent correctly the target flow dynamics. For a re-
view of eigenmodes analysis with several dimensions in fluid mechanics, see
e.g. Theofilis (2003).

In this paper, we aim at controlling the instability in an open cavity in
a boundary layer. This flow presents similarities to the separated boundary
layer where the recirculation is induced by an adverse pressure gradient. In
the case of the cavity, the recirculation bubble is due to the wall curvature.
This flow present as well some similarities to the rectangular cavity exten-
sively studied for the generation of strong acoustic noise (see e.g. Rowley et al.

(2002)). The central element of this recirculated flows is the shear layer, i.e.
the region of large shear that isolates the recirculating zone from the free-
stream. It is subject to large growth due to Kelvin–Helmholtz instability (see
Huerre (2000)).

2 Description of the geometry

A cavity with smooth edges, or lips, and a large aspect ratio, as seen in
figure 1 is considered. The presence of the cavity induces a separated region,
isolated from the free-stream by a shear layer. At the end of the cavity, the
downstream cavity lip, the flow re-attaches, and slowly relaxes downstream
to a flat plate boundary layer again. The Reynolds number based on the
displacement thickness at inflow and the free-stream velocity, was chosen
such that the boundary layers upstream and downstream of the cavity are
stable to Tollmien-Schlichting waves, so that the flow is dominated by the
effect of the cavity.

3 Numerical tools

The base flow is obtained by means of direct numerical simulation (DNS)
of the nonlinear Navier-Stokes system. The base flow thus obtained is inter-
polated on a spectral grid for computation of the eigenmodes. We choose a
spectral spatial discretization, which is optimal in terms of accuracy, for the
eigenmode computation in order to reduce the memory requirement. Once
the eigenmodes computed, we can use them as a reduced order model for
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Figure 1 Sketch of the geometry, with Blasius boundary layers upstream and
downstream of the domain, with recirculation inside the cavity. The recirculating
region is isolated from the free-stream by a shear layer.

the system. We will use this model to analyse the possible energy growth
mechanisms, and then for control design optimization.

The numerical solution procedure to solve the Navier–Stokes system in
this highly non parallel geometry has previously been considered for bump-
like geometries triggering boundary-layer separation (Marquillie & Ehren-
stein (2003)). We use a coordinate transformation to account for the wall cur-
vature. Fourth-order finite differences are used in the streamwise x-direction,
whereas the wall-normal y-direction is discretized using Chebyshev-collocation.
Second-order backward Euler differencing is used in time: the Cartesian part
of the diffusion term is taken implicitly whereas the nonlinear and metric
terms are evaluated using an explicit second-order Adams-Bashforth scheme.
In order to ensure a divergence-free velocity field a fractional time-step pro-
cedure has been adapted to the present formulation of the Navier–Stokes
system with coordinate transformation.

A streamwise length L = 400 has been considered, the cavity geometry
being confined between x ≈ 30 and x ≈ 150. The distance between the
cavity and the end of the computational domain is large enough for the flow
dynamics in the vicinity of the cavity to be independent of possible reflections
at outflow. Up to 3000 grid points in x have been considered with up to 129
collocation points in the wall-normal direction.

To compute the base flow, we initiate the computational domain with zero
velocity, and enforce the boundary conditions, that is uniform free-stream
flow at infinity, the Blasius profile at inflow and no-slip at the wall. The
flow is then marched in time until a stationary state is obtained. In cases of
a globally unstable base flow, a time domain filtering technique is used to
reach the unstable steady state.

Once a steady state U(x, y) = (U(x, y), V (x, y)) is obtained, the Navier-
Stokes system is linearized considering a disturbance in the flow field and
pressure as used in Ehrenstein & Gallaire (2005) for the computation of
global modes for the weakly non-parallel flat-plate boundary layer flow.
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The eigenvalue problem obtained after discretization may be written for-
mally as

−iωB q = A q (1)

the vector q containing the discretized disturbance flow velocity and pressure,
−iω being the generalized eigenvalue. In the forthcoming analysis up to 250
collocation points in x and 65 collocation points in y have been considered
and hence more than 48 000 complex equations. Such a system is too large
to be solved by standard QZ algorithms and Krylov subspace projections
provide the possibility to recover part of the spectrum using the “shift and
invert” strategy. Details of the method are given for instance in Nayar &
Ortega (1993). The complexity reduces to the computation of the Krylov
subspace together with the Arnoldi algorithm: Introducing a shift parameter
λ, the Krylov subspace may be computed by a successive resolution of linear
systems with matrix (A−λB), using a LU decomposition, which is achievable
even for a very large matrix (cf Ehrenstein & Gallaire (2005)). A large part
of the spectrum can be recovered when considering a large Krylov subspace.
Here, we considered reduced systems, the eigenvalues being determined using
a QZ-algorithm, with up to m = 800 equations. The operator is shifted in
order to provide the spectrum in a neighbourhood of the shift parameter λ.
In most of the computations we set λ = 0. Given the large Krylov subspace
we considered, the part of the spectrum relevant for our analysis could be
recovered in one computation. Projection on the global modes are achieved
using the bi-orthogonality condition involving the adjoint modes.

3.1 Computation of the optimal initial condition

To exhibit the rich behaviour of the cavity flow, we compute the initial flow
condition that leads to the largest energy growth. The possibility of initial
transient energy growth is related to to the non-normality of the governing
operator, i.e. to the non-normality of its eigenvectors. This transient energy
amplification is also refereed to as non-modal since it is not due to the be-
haviour of a single eigenmode, but is caused by the superposition of several
of them. For precise description of the procedure, see Schmid & Henningson
(2001).

4 Base flow and Eigenmodes of the cavity flow

4.1 Description of the base flow

The obtained steady flow is depicted in figure 2. It is a steady solution of
the Navier–Stokes equation for the cavity geometry at Reynolds number 350.
We can observe the Blasius boundary layers upstream and downstream of
the cavity. The main effect of the cavity is the generation of the recirculation
zone and the shear layer. It can be seen on this figure that the shear layer
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slowly diffuses and extends in the y direction. We can observe the inflection
points of the shear layer. This is the origin of the shear layer instability that
plays a strong role in the cavity dynamics.

50 100 150 200 250

−4

−2

0

2

4

6

x

y

Figure 2 Streamwise base flow profile used for stability analysis and eigenmodes
computation. One sees clearly the recirculation zone inside the cavity

4.2 Spectra and eigenvectors of the cavity flow

The least stable eigenvalues are shown in figure 3 where only eigenvalues with
positive real part are represented. One sees two unstable eigenmodes (with
positive imaginary part), with real part of about 0.15. These two modes be-
long to a branch, composed by the least stable eigenmodes (including modes
labelled (m1), (m2) and in the sub-branch, (m3). The eigenvectors corre-
sponding to this branch present common features, and are related to the
flow around the cavity zone. Slightly more damped, we see another branch of
modes with common features corresponding to modes beginning in the cavity
and extending further downstream.
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Figure 3 Eigenvalues of the cavity flow. One sees two unstable modes with imag-
inary part about 0.15.

The least stable eigenmode is depicted in figure 4. The streamwise and
normal velocity (a) and the pressure (b) are presented. This mode mainly
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consist of vortices travelling downstream the shear layer. Further analysis
shows that its amplitude is growing exponentially along the shear layer, with
a growth rate similar to a Kelvin-Helmholtz wave with same wave length.
The velocity components for the adjoint eigenvector is presented in figure 4
(c). Regions of large amplitude of the adjoint mode indicate spatial locations
where the mode is sensitive to excitations. In this case, we observe high
sensitivity at the upstream lip, close to the wall. This is natural, since a
forcing at this location will directly excite the shear layer instability.

Figure 4 Least stable eigenmode, corresponding to the eigenvalue labelled m1

in figure 3. a) streamwise and normal velocity, b) pressure, c) velocity components
of corresponding adjoint eigenmode

4.3 Transient energy growth

The computation of the worst case initial condition is based on the reduced
model composed of the computed eigenmodes. To see how the eigenmodes
contribute to this growth, we perform the analysis with one eigenmode, then
two, progressively increasing the number of included eigenmodes, beginning
with the least stable ones. The obtained envelopes are depicted in figure 5.
The curve with lowest energy correspond to one mode, then two modes, and
up to the most energetic one with all (300) modes included. Using one mode
we observe as expected an exponential growth. Using two modes, we see on
top of the exponential growth, a cycle of growth and decay of period ap-
proximatively 300 time units. Increasing the number of modes, we observe
the same cycle with higher energy. Finally, the envelope consist of an expo-
nential growth much faster that the one due to the unstable modes, then the
cycle, and still we can observe the effect of an exponential growth of the order
of the one of the unstable modes. We will next analyse the reasons for this
behaviour by inspecting the evolution of the flow field.

For each time of the envelope, there is a potentially different worst case

initial condition. In this case, we found that all the initial conditions were re-
sembling a wave packet in the upstream region of the shear layer, as depicted
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Energy envelopes, number of modes from 1 to 260

Figure 5 Envelope of maximum energy growth from initial conditions. The dif-
ferent lines correspond to increasing number of eigenmodes included in the opti-
mization, 1 to 300 from bottom to top.

in figure 6. It is a common feature of convectively unstable flows that the
initial condition leading to the largest energy growth is a wave packet in the
upstream region of the unstable zone, see Ehrenstein & Gallaire (2005) for
the worst case initial condition in the 2D Blasius boundary layer, or Cossu
& Chomaz (1997); Chomaz (2005) for the Ginzburg–Landau equation.

Figure 6 The worst case initial condition for energy growth when including 200
modes in the optimization. It corresponds to time 200 of the most energetic envelope
of figure 5. The initial condition is a wave packet in the upstream region of the shear
layer. The wave packet is represented at time 20 of its evolution, so that its features
are more easily recognizable.

We can analyse the flow evolution due to the worst case initial condition
by an x/t diagram as shown in figure 7 a) for the velocity components and
b) for the pressure. One sees the convection of the initial wave packet passed
the shear layer and the downstream cavity lip, and the re-apparition of the
wave packet at the upstream cavity lip. When the wave packet, having grown
along the shear layer, reaches the downstream cavity lip, there is a global
pressure change, visible in the form of a vertical ray, regenerating a wave
packet by a receptivity mechanism at the upstream cavity lip. The location
of the cavity lips and wave packet propagation are underlined by black lines
to put in evidence the locations of reflection and receptivity.
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Figure 7 streamwise/time diagram of a) the normal velocity and b) the pressure
in the free-stream, at y = 4 for the worst case initial condition. The propagation of
the wave packet with group velocity approximatively 0.3 can be seen by the oblique
rays in a) and b) , and the global changes of pressure are seen by the vertical rays
in pressure b).

5 Feedback control using a reduced model

5.1 Control and estimation

The general setting for control is the following: the signal r is measured in the
flow, in our case we chose to measure the wall shear stress at the downstream
cavity lip, and an actuator is implemented with signal u. When control is
active, the actuation signal is a function of the measured variable. The flow
is disturbed by the external sources of excitation w, for instance acoustic
waves, incoming eddies... The control objective consists in minimizing the
variance of the flow state q.

In the following we will aim at minimizing the flow energy, while main-
taining a small control effort. This can be expressed by the control objective
function

J =

∫
∞

0

(qHQq + `2u2)dt (2)

where the flow kinetic energy 〈q, q〉 = qHQq is accounted for, along with the
control effort penalized by a control penalty `.

The system is exposed to external sources of disturbance, the input w.
We will represent these inputs by stochastic variables with given covariance.
The stochastic input variable will be assumed uncorrelated in time, i.e. white
noise.
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The flow system that we aim at controlling can be described in the state
space form

q̇ = Aq + B1w + B2u

r = Cq + g

}

(3)

with dynamic matrix A from the linearized Navier–Stokes equation in the
2D domain with cavity, w are stochastic external disturbances, representing
for instance acoustic waves, incoming eddies or free-stream turbulence. The
operator B1 describes how these disturbances enter the dynamic equation,
for instance their spatial location in the flow domain. The control input u
comes as a forcing to the dynamic equation, and B2 describes the actua-
tors, for instance blowing and suction as a boundary condition, and spatial
location of the actuator. A measurement r can be extracted from the flow
state, as described by operator C. It can for instance extract the wall-shear
stress at a given wall location. The measurement is disturbed by a stochastic
measurement noise g with given variance.

One of the most widely used controller based on optimization is the linear
quadratic Gaussian (LQG) controller. It can be decomposed in the compu-
tation of an optimal estimator, that builds an estimate of the instantaneous
flow field using the available measurements, and the optimal controller for
which it is assumed that the state is known exactly. The estimation and con-
trol feedback gains L and K can be computed by the solution of two Riccati
equations. For description of this methodology, see e.g. Skogestad & Postleth-
waite (2005), and for applications of this methodology to fluid mechanics ,
see e.g. Högberg et al. (2003b).
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Figure 8 Sketch of the control setting. One actuator applying blowing and suc-
tion is located at the upstream lip of the cavity, and one sensor measuring wall
shear stress uy is located at the downstream lip of the cavity. The flow is excited
by a random forcing in the upstream region of the shear layer.

5.2 Galerkin projection for system order reduction

The eigenmodes of the system can be used as a model for the flow dynamics.
We compute about 300 pairs of leading eigenmodes. This number is still
rather large for control design, and especially would be too large for a real
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application, where the controller has to be run in parallel to the real flow.
We have the freedom to pick out of these computed modes a set on which to
project the dynamic system (3).

For projection of the dynamic system on the chosen set of eigenvectors,
we can use the bi-orthogonality property of the adjoint eigenmodes. It is an
easy task to project the dynamic matrix A since in the basis of eigenmodes,
the dynamic operator is the diagonal matrix of the eigenvalues. Projection
of the input and output operators requires more care. The relation between
the physical flow state q and its expansion coefficient representation k is

q =
∑

i

qik, kj =
〈
q, q+

j

〉
. (4)

where qi is a single eigenmode. Applying the inner product on both sides of
(3) we obtain

k̇j =
〈
q̇, q+

j

〉
=

〈

A
∑

h

qhkh, q+

j

〉

+
〈
B1u, q+

j

〉
+

〈
B2w, q+

j

〉

= ωjkj +
〈
B1, q

+

j

〉

︸ ︷︷ ︸

B1jM

u +
〈
B2, q

+

j

〉

︸ ︷︷ ︸

B2jM

w.
(5)

For the measurement we have

r = C
∑

h

Cqkkh =
∑

h

Cqk
︸︷︷︸

CM

k

kh. (6)

The final system model is thus

k̇ = AMk + BM
1 u + BM

2 w

r = CMk + g.

}

(7)

The projection of the objective function is obtained by similar steps

J M =

∫
∞

0

(kHQMk + `2u2)dt, with QM
i,j = qH

i Qqj . (8)

If the leading eigenmodes correctly represent the system’s dynamics, this
reduced system will be a good model for the effect of actuation and measure-
ment, and the reduced energy measure QM , will be a good measure of the
flow kinetic energy, and thus of the control performance.

6 Results

For the control results presented in this section we have chosen the following
design parameters. The actuation signal penalty ` was chosen 108. This high
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value is to be compared to the flow energy term in the objective function (2).
Since the energy is high and the actuation penalization is a relative term, we
need a high penalty `. The sensor noise term was chosen as 8 × 103. Once
again, this high term should be compared to the large flow mean energy
achieved to the external source of excitation w.

6.1 Control and estimation gains

The estimation gain computed with the chosen parameters are represented
in figure 9(a). Its support is located in the region of the shear layer, with an
amplitude growth comparable to that of the cavity eigenmodes. The control
gain can be seen in figure 9(b). Its support is located upstream of the cavity,
close to the wall. the actuator signal is computed as the inner product of the
control gain with the estimated flow state u(t) = 〈K, q̂(t)〉.

Figure 9 The control gain K (a) and estimation gain L (b), represented by
their streamwise and normal components. For control, the actuator signal u(t) is
obtained by evaluation of the inner product u(t) = 〈K, q̂(t)〉 where q̂(t) is the
estimated flow state. For estimation, the estimated flow state is forced with forcing
function L(r(t)−r̂(t)) where the term r(t)−r̂(t) denotes the measurement mismatch
between the flow and the estimated flow

The state space representation of the controller system has several states,
but have a single input and single output (SISO). In this context, it is in-
teresting to represent the transfer function of the controller by its impulse
response i.e. the actuation signal that would result from an impulse at the
measurement. This impulse response is represented in figure 10. This impulse
response can also be interpreted as a convolution kernel for the measurement
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signal history to obtain the actuation:

u(t) =

∫
∞

0

G(τ)r(t − τ)dτ (9)

One can see from figure 10 that the measurement history up to 300 time
units in the past is necessary for control. This time corresponds well with the
cycle period found in previous sections.
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Figure 10 Actuation signal at the output of the controller for an impulse at
the measurement. Can as well be interpreted as a convolution kernel to obtain the
actuation signal from past measurements.

6.2 Controlled flow

To test the control performance, we implement an oscillating volume force
in the upstream region of the shear layer in the DNS simulation. Its spatial
structure is chosen as the worst case initial condition found in §4.3. We then
compare the energy evolution for the controlled and uncontrolled flow as
represented in figure 11.

One can recognize in figure 11 the energy cycles similar to the response
to the worst case initial condition in §4.3. In fact the oscillating force have a
very similar effect on the flow dynamics, since it most affects the flow when
it is turned on. For the controlled flow, one observes the same energy growth
for its first peak, and after the first decay, no energy growth is observed.

While the wave packet is convected along the shear layer, there is no
control authority, since the actuator is located upstream, but at the time the
perturbation reaches the downstream cavity lip, it can be sensed, and the
actuator can play its role, counteracting the receptivity to pressure and thus
the regeneration of the wave packet.

This mechanism can be observed in more details in figure 12 where x/t
diagram similar as to §4.3 represent the flow and controlled flow evolution at
y = 4 for the normal velocity and the pressure. When control is applied, one
naturally still observes the vertical rays of the global pressure changes, but
the wave packet does not reappear.
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Figure 11 Flow energy when excited with oscillating volume force in the up-
stream region of the shear layer with (dashed) and without control (solid) . One
sees the energy cycles for the uncontrolled flow. For the controlled flow, only the
first growth cycle is still present: the controller has prevented the regeneration of
the wave packet.

Figure 12 x/t diagrams for the flow normal velocity and pressure in the case a)
without control, and b) with control. The vertical rays of the pressure variation is
still visible, but the wave packet regeneration is prevented.
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7 Conclusion

In this paper, we have applied feedback control on a two dimensional flow
using the flow’s eigenmodes to build a reduced order model. The control
methodology was the LQG (Linear Quadratic Gaussian), the eigenmodes of
the large system was computed by means of a Krylov/Arnoldi method. The
flow composed of a recirculating cavity was found to be unstable due to
a pressure feedback mechanism between the re-attachment and detachment
points of the cavity flow. The controller based on the 20 least stable eigen-
modes of the system was found to perform well on a Galerkin model of the
cavity flow constructed using all the computed eigenmodes (300 pairs). We
found that the self-sustaining process due to the pressure was removed by
the controller. The next step is to apply the controller computed using the
least stable eigenmodes to the full direct numerical simulation of the flow.
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