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Boundary layer with cavity
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2D flow over a smooth cavity

Inflow: Blasius profile

Reynolds number : 500



Aim of the project

Design of a feedback controller → need of a dynamic model.

Preventing transition to nonlinear oscillating regime in the cavity,

or turbulence downstream of the cavity.



Investigation tools

DNS to compute the base flow:

Chebyshev in wall normal, finite difference in streamwise.

Stability analysis by computation of 2D eigenmodes:

Chebyshev/Chebyshev and Arnoldi

Control optimization by solution of two Riccati equations:

Using the reduced order model



The eigensolver

2D Navier-Stokes + continuity






−iωû = −(U · ∇)û− (û · ∇)U −
∂p̂

∂x
+ 1/Re∇2û

−iωv̂ = −(U · ∇)v̂ − (û · ∇)V −
∂p̂

∂y
+ 1/Re∇2v̂

0 = ∇ · u

Generalized eigenproblem:

Bωu = Au

To be rewritten

A−1Bu =
1

ω
u

Solved by Arnoldi iterations.

Matrix formulation:
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Additional constraints C



The base flow

Streamwise velocity profiles u:
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Flow is composed of :

• Boundary layers (before and after the cavity)

• Shear-layer over the cavity

• Recirculating zone inside the cavity



Spectra: shear layer modes
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Spectra: cavity modes
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Spectra: outflow modes
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Shear layer modes and adjoints

Integrated in y:
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Where are the modes localised and where are they sensitive ?



Feedback control

Using a dynamic model of the system:
{

ẋ = Ax + Bu

r = Cx

One can optimize for the feedback

u = G(r)

• The model in 2D is too big for optimization → reduced model .

• For reduction: project the dynamics on the least stable eigenmodes.

• Finally, couple the reduced controller and the flow system



Model reduction

Galerkin projection on least stable eigenmodes:

Physical space:
{

ẋ = Ax + Bu

r = Cx

Eigenmode space:






Pẋ︸︷︷︸

k̇

= PAP−1

︸ ︷︷ ︸

AM

Px︸︷︷︸

k

+ PB︸︷︷︸

BM

u

r = CP−1

︸ ︷︷ ︸

CM

Px︸︷︷︸

k

Projection on eigenmodes → biorthogonal set of vectors:






Eigenmodes: qi,

Adjoint operator: A+/ < Ax1, x2 >=< x1, A
+x2 >, ∀x1, x2

Adjoint eigenmodes: q+
i ,

Biorthogonality: δij =< qi, q
+
j >, Projection: ki =< x, q+

i >



Control terminology

• Estimation: From sensor information, recover the instantaneous flow field.

• Full information control: From full knowledge of the flow state, apply control.

• Compensation: Close the loop by using the estimated flow state for control.

• Model reduction: Project the dynamics on a set of selected basis vectors.

• Control penalty: Penalisation of the actuation amplitude.

• sensor noise: Uncertainty in the measured signal.

• Disturbances: External forcing exciting the flow.

• Objective function: Function of the flow state to be minimized.



Central elements of the design

1) From the sensors, estimate the flow state:

• Sensor location

• Sensor noise

• Disturbance model (here perturbations at the inflow)

2) Using the flow state information, apply control :

• Actuator location

• Control penalty

• Objective function

Optimization is done by solving two Riccati equations



Sensors, actuators, disturbances
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1 oscillating disturbance

5 actuators

2 sensors

Disturbances at the inflow

Actuators upstream of the cavity: where sensitivity is high

Sensors downstream of the cavity: where energy is high



Testing procedure

1. Decide penalties, sensor noise, locations

2. Reduce the model by projection

3. Optimize for the feedback

4. Couple flow system and controller

The reduced controller (75 states) is applied on the full system (20,000 states)

5. Compute energy of controlled flow



Flow animation

Normal velocity v:

Energy evolution in time:
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Estimation and control performances

Mean energy, integrated in y:
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Dynamic distorsion

The compensated flow obeys new dynamics:
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Blue: flow , red: Compensated system



Energy evolution

Estimation or control can be the limiting factors:
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Actuator signals
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Penalties and performance
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Conclusion

• Global eigenmodes can be used for model reduction.

• Model reduction allows optimal feedback design for large systems.

• Non-parallel effects/global instabilities can be treated.

• There is a balance to find between controller performance and forcing amplitude.

Future and ongoing work:

• Improve outflow boundary condition.

• Find parameter case with global instability.

• Apply the method to boundary layer subjected to free stream turbulence.



Extra slides



Base flow:

Normal velocity: 20 40 60 80 100 120 140

−5

0

5

10

15

Quiver:

30 40 50 60 70 80 90
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Re500/Blasius:

0 50 100 150 200
−5

−4

−3

−2

−1

0

1

2

3

4

5



Re 300/Re 500: 20 40 60 80 100 120 140 160
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Outflow modes

Re 300 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

and re 500: 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

fringe 20

20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

low resolution: 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

long and strong

fringe: 20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

no fringe 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6


