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Motivations

We can observe the flow fluctuations, but what are the sources of disturbances?

Nominal base flow

State fluctuations 

Disturbances

Wall roughness, Accoustic waves, Free-stream turbulence, ...

Lead to a great variety of state fluctuations

Hope for a quantitative, statistical description of sources of disturbances



Inspiration

1) Modeling flow statistics using the linearized Navier–Stokes

equations,

Jovanovic̀ & Bamieh, CDC 2001

→ Presentation and justification of the modeling problem in fluid

mechanics. Model the covariance of disturbances.

2) A unified algebraic approach to linear control design,

Skelton, Iwasaki & Grigoriadis, Taylor & Francis 1998

→ LMI problem formulation, solution by alternating projection.

Our aim:

Add an optimal flavour to 1) ,

show the limitations of the modeling,

use methods from 2)



Idea: Lyapunov equation

Assume a dynamic model A is available: linear, stable.

Stochastic description of system’s state and external disturbances

ẋ = Ax+ w

{
P = ExxH

M = EwwH

At steady state, Lyapunov equation:







AP + PAH +M = 0

A : Dynamic operator

P : State covariance

M : Disturbance covariance

Knowing the state covariance and with a dynamic model,

→ recover covariance of disturbances



The Lyapunov cone

P and M are covariance matrices

P ≥ 0, M ≥ 0,⇒ AP + PAH ≤ 0

The operator A generates a convex cone.

Lyapunov theorem:

∀M ≥ 0, ∃!P ≥ 0/AP + PAH +M = 0

but ∃P ≥ 0/AP + PAH is indefinite

Problem: P might be out of the cone of our model A ...



Find the closest one

→ Minimization problem

P* (projected)

Cone S (model)

P (experimental)

Consider the cone :

S =
{
P ≥ 0/AP + PAH ≤ 0

}

Find P ∗ ∈ S closest to our experimental P

P ∗ is the orthogonal projection of P on S



Solution by alternating projection

Convex minimization problem, large dimension: P,M,A, have n(n− 1)/2 elements

Too big for central path method. Can we use alternating projection?

P2

P

P1

P3

P*

T

J

S

We can decompose S into the intersection of two simpler sets J
⋂
T :

→ Derive simple analytical projection formula on sets J and T



Intersection of the sets J and T

S = J
⋂

T ,

J =






W ∈ H2n/

(

A, I
)

W




AH

I



 ≤ 0







T =






W ∈ H2n/W =




0 W12

WH
12 0



 ,W12 ∈ Hn







Projection on J :

Comes down to a projection on negativity set

{P ∈ Hn/P ≤ 0} in the rank subspace of
(

A, I
)

Projection on T :

V ∗ =




0 1

2
(V12 + V H

12 )

1
2
(V12 + V H

12 ) 0





It costs one eigendecomposition in Hn per iteration.



Example: Channel flow
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v

eta

Spatial invariance in horizontal direc-

tion→ work in spatial frequency space.

Orr-Sommerfeld/squire equation for

small state perturbations at each fre-

quency pair:



v̇

η̇





︸ ︷︷ ︸

ẋ

=




∆−1LOS 0

LC LSQ





︸ ︷︷ ︸

A




v

η





︸ ︷︷ ︸
x

+




dv

dη





︸ ︷︷ ︸

d

State variable is wall-normal

velocity/wall-normal vorticity.

LOS = −ikxU∆+ ikxD
2U +∆2/Re,

LSQ = −ikxU +∆/Re,

LC = −ikzDU

plant/Model: Parametric mismatch in

the Reynold number:

µ =

∣
∣
∣
∣

Re−Remodel

Remodel

∣
∣
∣
∣

Low Re→ dominating viscous effects.



Given an experimental state covariance
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State covariance is assimetric → something happens at one wall!



Projected state covariance (µ = 0.5)
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Projected using alternating convex projection



Corresponding disturbance covariance (µ = 0.5)
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from Lyapunov equation M = −(AP + PAH)



Compare to “true” disturbance covariance
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(parametric mismatch µ = 0.5)
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Remodel = Re/2. Lower sensitivity → need larger forcing.



Distance with mismatch µ

experimental/projected distance:
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||P−Pprojected||

||A−Amodel||

||M−Mmodel||

P was in the cone

P is not in the cone, but the projected one is close.

Matrix distance measured in Frobenius norm.



Computation

Iterations computation time

More iteration when larger mismatch. Slower when reaching solution.



Conclusions

Have a model and a experimental state covariance → recover distur-

bance covariance. Illustration on channel flow.

Observations

• Need projection if P is not in the cone

• Can use alternating convex projection, defining cone as intersec-

tion

Remains

• Too slow computations → should use directional alternating pro-

jection



Extra slides



Alternating projection for optimality problem

We recall here the alternating projection algorithm for the optimality problem.

Consider the family of closed, convex sets {C1, C2, . . . , Cm} and a given matrix X0. The sequence

of matrices {Xi}, i = 1, 2, . . . ,∞ computed as follow:

X1 = PC1
X0, Z1 = X1 −X0

X2 = PC2
X1, Z2 = X2 −X1

...

Xm = PCm
Xm−1, Zm = Xm −Xm−1

Xm+1 = PC1
(Xm − Z1), Zm+1 = Z1 +Xm+1 −Xm

Xm+2=PC2
(Xm+1 − Z2), Zm+2=Z2 +Xm+2 −Xm+1

...

X2m=PCm
(X2m−1 − Zm), Z2m = Zm+X2m−X2m−1

X2m+1=PC1
(X2m−Zm+1), Z2m+1=Zm+1+X2m+1−X2m

...

converges to the orthogonal projection of X0 on C1

⋂
C2

⋂
· · ·

⋂
Cm.



Projection on negativity set

Let X ∈ Hn, with eigenvalue-eigenvector decomposition X = LΛLH . The projection X∗ of X

onto the set of negative semidefinite matrices is

X∗ = LΛ−L
H ,

where Λ− is the diagonal matrix obtained by replacing the positive eigenvalues of X in Λ by zero.



Projection on J

Let W ∈ H2n. Consider the singular value decomposition
(

A, I
)

F−1
2 = U

(

Σ, 0
)

V H (1)

where U and V are unitary matrices, and define

Y , V HF2WFH
2 V =




Y11 Y12

Y H
12 Y22



 , Y11 ∈ Hn (2)

The projection PQ2

J W of the matrix W onto the set J is

PQ2

J W = F−1
2 V




Y ∗

11 Y12

Y H
12 Y22



V HF−1H
2 (3)

where Y ∗
11 is the projection of Y11 on the set of negative definite matrices for the unweighted

Frobenius norm as in (20).

Let

Ŵ =




Ŵ11 Ŵ12

ŴH
12 Ŵ22



 ∈ J (4)

be an arbitrary matrix in J . We will show that the inner product 〈W ∗ −W,W ∗ − Ŵ 〉 is

non-positive (see [?]). Let V be defined from the singular-value decomposition (1), and F2 from



(??), we have

〈W ∗ −W,W ∗ − Ŵ 〉Q1

= 〈F2W
∗FH

2 − F2WFH
2 , F2W

∗FH
2 − F2ŴFH

2 〉I

= 〈Y ∗ − Y, Y ∗ − Ŷ 〉I ,

(5)

with
Y ∗ = V HF2W

∗FH
2 V, Y = V HF2WFH

2 V,

Ŷ = V HF2ŴFH
2 V.

(6)

since V is unitary. Partitioning the matrices as in (4) we obtain

〈Y ∗ − Y, Y ∗ − Ŷ 〉I

=

〈


Y ∗

11 − Y11 0

0 0



 ,




Y ∗

11 − Ŷ11 Y12 − Ŷ12

Y H
12 − Ŷ H

12 Y22 − Ŷ22





〉

I

= 〈Y ∗
11 − Y11, Y

∗
11 − Ŷ11〉I

(7)

Now observe that, since Ŵ ∈ J ,we have

(

A, I
)

Ŵ




AH

I



 ≤ 0, (8)



and by substituting the singular value decomposition

U
(

Σ, 0
)

V HF2ŴFH
2 V

︸ ︷︷ ︸

Ŷ




ΣH

0



UH ≤ 0, (9)

then pre- and post- multiplying by Σ−1UH and (Σ−1UH)H we obtain

(

I, 0
)

Ŷ




I

0



 ≤ 0, (10)

that is, Ŷ11 ≤ 0. Note that, from lemma ??, the orthogonal projection of the matrix Y11 on this

set is given by (20). Hence, by construction of Y ∗
11 in (3), we have

〈Y ∗
11 − Y11, Y

∗
11 − Ŷ11〉I ≤ 0, (11)

that is, the inner product (5) is non-positive.


