Modeling flow statistics using convex optimization

Jérôme Hœpffner
KTH, Sweden

Motivations

We can observe the flow fluctuations, but what are the sources of disturbances?

Wall roughness, Accoustic waves, Free-stream turbulence, ...
Lead to a great variety of state fluctuations
Hope for a quantitative, statistical description of sources of disturbances

Inspiration

1) Modeling flow statistics using the linearized Navier-Stokes equations,
Jovanovic̀ \& Bamieh, CDC 2001
\rightarrow Presentation and justification of the modeling problem in fluid mechanics. Model the covariance of disturbances.
2) A unified algebraic approach to linear control design,

Skelton, Iwasaki \& Grigoriadis, Taylor \& Francis 1998
\rightarrow LMI problem formulation, solution by alternating projection.
Add an optimal flavour to 1),
Our aim: show the limitations of the modeling, use methods from 2)

Idea: Lyapunov equation

Assume a dynamic model A is available: linear, stable.
Stochastic description of system's state and external disturbances

$$
\dot{x}=A x+w \quad\left\{\begin{array}{l}
P=E x x^{H} \\
M=E w w^{H}
\end{array}\right.
$$

At steady state, Lyapunov equation: $\left\{\begin{array}{l}A P+P A^{H}+M=0 \\ A: \text { Dynamic operator } \\ P: \text { State covariance } \\ M: \text { Disturbance covariance }\end{array}\right.$
Knowing the state covariance and with a dynamic model,
\rightarrow recover covariance of disturbances

The Lyapunov cone

P and M are covariance matrices

$$
P \geq 0, \quad M \geq 0, \Rightarrow A P+P A^{H} \leq 0
$$

The operator A generates a convex cone.
Lyapunov theorem:
$\forall M \geq 0, \exists!P \geq 0 / A P+P A^{H}+M=0$
but $\quad \exists P \geq 0 / A P+P A^{H}$ is indefinite
Problem: P might be out of the cone of our model $A \ldots$

Find the closest one

\rightarrow Minimization problem

Consider the cone :

$$
\mathcal{S}=\left\{P \geq 0 / A P+P A^{H} \leq 0\right\}
$$

Find $P^{*} \in \mathcal{S}$ closest to our experimental P P^{*} is the orthogonal projection of P on \mathcal{S}

Solution by alternating projection

Convex minimization problem, large dimension: P, M, A, have $n(n-1) / 2$ elements
Too big for central path method. Can we use alternating projection?

We can decompose \mathcal{S} into the intersection of two simpler sets $\mathcal{J} \bigcap \mathcal{T}$:
\rightarrow Derive simple analytical projection formula on sets \mathcal{J} and \mathcal{T}

Intersection of the sets \mathcal{J} and \mathcal{T}

$$
\begin{aligned}
& \mathcal{J}=\left\{W \in \mathcal{H}_{2 n} /(A, I) W\binom{A^{H}}{I} \leq 0\right\} \\
& \mathcal{T}=\left\{W \in \mathcal{H}_{2 n} / W=\left(\begin{array}{cc}
0 & W_{12} \\
W_{12}^{H} & 0
\end{array}\right), W_{12} \in \mathcal{H}_{n}\right\}
\end{aligned}
$$

Projection on \mathcal{J} :

Comes down to a projection on negativity set $\left\{P \in \mathcal{H}_{n} / P \leq 0\right\}$ in the rank subspace of (A, I)

Projection on \mathcal{T} :
$V^{*}=\left(\begin{array}{cc}0 & \frac{1}{2}\left(V_{12}+V_{12}^{H}\right) \\ \frac{1}{2}\left(V_{12}+V_{12}^{H}\right) & 0\end{array}\right)$

It costs one eigendecomposition in \mathcal{H}_{n} per iteration.

Example: Channel flow

State variable is wall-normal velocity/wall-normal vorticity.

$$
\begin{aligned}
L_{O S} & =-\mathrm{i} k_{x} U \Delta+\mathrm{i} k_{x} \mathrm{D}^{2} U+\Delta^{2} / R e \\
L_{S Q} & =-\mathrm{i} k_{x} U+\Delta / R e \\
L_{C} & =-\mathrm{i} k_{z} \mathrm{D} U
\end{aligned}
$$

Spatial invariance in horizontal direction \rightarrow work in spatial frequency space. Orr-Sommerfeld/squire equation for small state perturbations at each frequency pair:

$$
\underbrace{\binom{\dot{v}}{\dot{\eta}}}_{\dot{x}}=\underbrace{\left(\begin{array}{cc}
\Delta^{-1} L_{O S} & 0 \\
L_{C} & L_{S Q}
\end{array}\right)}_{A} \underbrace{\binom{v}{\eta}}_{x}+\underbrace{\binom{d_{v}}{d_{\eta}}}_{d} \text { Low } R e \rightarrow \text { dominating viscous effects. }
$$

plant/Model: Parametric mismatch in the Reynold number:

$$
\mu=\left|\frac{R e-R e_{\text {model }}}{R e_{\text {model }}}\right|
$$

Given an experimental state covariance

State covariance is assimetric \rightarrow something happens at one wall!

Projected state covariance ($\mu=0.5$)

Corresponding disturbance covariance ($\mu=0.5$)

from Lyapunov equation $M=-\left(A P+P A^{H}\right)$

Compare to "true" disturbance covariance

(parametric mismatch $\mu=0.5$)

$R e_{\text {model }}=R e / 2$. Lower sensitivity \rightarrow need larger forcing.

Distance with mismatch μ

experimental/projected distance:

P is not in the cone, but the projected one is close.
Matrix distance measured in Frobenius norm.

Computation

Iterations

computation time

More iteration when larger mismatch. Slower when reaching solution.

Conclusions

Have a model and a experimental state covariance \rightarrow recover disturbance covariance. Illustration on channel flow.

Observations

- Need projection if P is not in the cone
- Can use alternating convex projection, defining cone as intersection

Remains

- Too slow computations \rightarrow should use directional alternating projection

Extra slides

We recall here the alternating projection algorithm for the optimality problem.
Consider the family of closed, convex sets $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{m}\right\}$ and a given matrix X_{0}. The sequence of matrices $\left\{X_{i}\right\}, i=1,2, \ldots, \infty$ computed as follow:

$$
\begin{aligned}
& X_{1}=\mathcal{P}_{\mathcal{C}_{1}} X_{0}, Z_{1}=X_{1}-X_{0} \\
& X_{2}=\mathcal{P}_{\mathcal{C}_{2}} X_{1}, Z_{2}=X_{2}-X_{1} \\
& \quad \vdots \\
& X_{m}=\mathcal{P}_{\mathcal{C}_{m}} X_{m-1}, Z_{m}=X_{m}-X_{m-1} \\
& X_{m+1}=\mathcal{P}_{\mathcal{C}_{1}}\left(X_{m}-Z_{1}\right), Z_{m+1}=Z_{1}+X_{m+1}-X_{m} \\
& X_{m+2}=\mathcal{P}_{\mathcal{C}_{2}}\left(X_{m+1}-Z_{2}\right), Z_{m+2}=Z_{2}+X_{m+2}-X_{m+1} \\
& \quad \vdots \\
& X_{2 m}=\mathcal{P}_{\mathcal{C}_{m}}\left(X_{2 m-1}-Z_{m}\right), Z_{2 m}=Z_{m}+X_{2 m}-X_{2 m-1} \\
& X_{2 m+1}=\mathcal{P}_{\mathcal{C}_{1}}\left(X_{2 m}-Z_{m+1}\right), Z_{2 m+1}=Z_{m+1}+X_{2 m+1}-X_{2 m}
\end{aligned}
$$

Projection on negativity set

Let $X \in \mathcal{H}_{n}$, with eigenvalue-eigenvector decomposition $X=L \Lambda L^{H}$. The projection X^{*} of X onto the set of negative semidefinite matrices is

$$
X^{*}=L \Lambda_{-} L^{H}
$$

where Λ_{-}is the diagonal matrix obtained by replacing the positive eigenvalues of X in Λ by zero.

Projection on \mathcal{J}

Let $W \in \mathcal{H}_{2 n}$. Consider the singular value decomposition

$$
\begin{equation*}
(A, I) F_{2}^{-1}=U(\Sigma, 0) V^{H} \tag{1}
\end{equation*}
$$

where U and V are unitary matrices, and define

$$
Y \triangleq V^{H} F_{2} W F_{2}^{H} V=\left(\begin{array}{cc}
Y_{11} & Y_{12} \tag{2}\\
Y_{12}^{H} & Y_{22}
\end{array}\right), Y_{11} \in \mathcal{H}_{n}
$$

The projection $\mathcal{P}_{\mathcal{J}}^{Q_{2}} W$ of the matrix W onto the set \mathcal{J} is

$$
\mathcal{P}_{\mathcal{J}}^{Q_{2}} W=F_{2}^{-1} V\left(\begin{array}{cc}
Y_{11}^{*} & Y_{12} \tag{3}\\
Y_{12}^{H} & Y_{22}
\end{array}\right) V^{H} F_{2}^{-1 H}
$$

where Y_{11}^{*} is the projection of Y_{11} on the set of negative definite matrices for the unweighted Frobenius norm as in (20).

Let

$$
\hat{W}=\left(\begin{array}{ll}
\hat{W}_{11} & \hat{W}_{12} \tag{4}\\
\hat{W}_{12}^{H} & \hat{W}_{22}
\end{array}\right) \in \mathcal{J}
$$

be an arbitrary matrix in \mathcal{J}. We will show that the inner product $\left\langle W^{*}-W, W^{*}-\hat{W}\right\rangle$ is

$$
\begin{align*}
& \left\langle W^{*}-W, W^{*}-\hat{W}\right\rangle_{Q_{1}} \\
& =\left\langle F_{2} W^{*} F_{2}^{H}-F_{2} W F_{2}^{H}, F_{2} W^{*} F_{2}^{H}-F_{2} \hat{W} F_{2}^{H}\right\rangle_{I} \tag{5}\\
& =\left\langle Y^{*}-Y, Y^{*}-\hat{Y}\right\rangle_{I}
\end{align*}
$$

since V is unitary. Partitioning the matrices as in (4) we obtain

$$
\begin{align*}
& \left\langle Y^{*}-Y, Y^{*}-\hat{Y}\right\rangle_{I} \\
& =\left\langle\left(\begin{array}{cc}
Y_{11}^{*}-Y_{11} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
Y_{11}^{*}-\hat{Y}_{11} & Y_{12}-\hat{Y}_{12} \\
Y_{12}^{H}-\hat{Y}_{12}^{H} & Y_{22}-\hat{Y}_{22}
\end{array}\right)\right\rangle_{I} \tag{7}\\
& =\left\langle Y_{11}^{*}-Y_{11}, Y_{11}^{*}-\hat{Y}_{11}\right\rangle_{I}
\end{align*}
$$

Now observe that, since $\hat{W} \in \mathcal{J}$, we have

$$
\begin{equation*}
(A, I) \hat{W}\binom{A^{H}}{I} \leq 0 \tag{8}
\end{equation*}
$$

and by substituting the singular value decomposition

$$
\begin{equation*}
U(\Sigma, 0) \underbrace{V^{H} F_{2} \hat{W} F_{2}^{H} V}_{\hat{Y}}\binom{\Sigma^{H}}{0} U^{H} \leq 0 \tag{9}
\end{equation*}
$$

then pre- and post- multiplying by $\Sigma^{-1} U^{H}$ and $\left(\Sigma^{-1} U^{H}\right)^{H}$ we obtain

$$
\begin{equation*}
(I, 0) \hat{Y}\binom{I}{0} \leq 0 \tag{10}
\end{equation*}
$$

that is, $\hat{Y}_{11} \leq 0$. Note that, from lemma ??, the orthogonal projection of the matrix Y_{11} on this set is given by (20). Hence, by construction of Y_{11}^{*} in (3), we have

$$
\begin{equation*}
\left\langle Y_{11}^{*}-Y_{11}, Y_{11}^{*}-\hat{Y}_{11}\right\rangle_{I} \leq 0 \tag{11}
\end{equation*}
$$

that is, the inner product (5) is non-positive.

