Modeling flow statistics
using convex optimization

State fluctuations
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Motivations

We can observe the flow fluctuations, but what are the sources of disturbances?

\ Nominal base flown

State fluctuations

f

Disturbances

Wall roughness, Accoustic waves, Free-stream turbulence, ...
Lead to a great variety of state fluctuations

Hope for a quantitative, statistical description of sources of disturbances



Inspiration

1) Modeling flow statistics using the linearized Navier—Stokes
equations,

Jovanovic & Bamieh, CDC 2001

— Presentation and justification of the modeling problem in fluid

mechanics. Model the covariance of disturbances.

2) A unified algebraic approach to linear control design,
Skelton, lwasaki & Grigoriadis, Taylor & Francis 1998

— LMI problem formulation, solution by alternating projection.

Add an optimal flavour to 1) |,
Our aim: show the limitations of the modeling,

use methods from 2)



Idea: Lyapunov equation

Assume a dynamic model A is available: linear, stable.

Stochastic description of system’s state and external disturbances

P = Exzt
T =Ax +w o
M = Fww
(AP +PA"T + M =0
A : Dynamic operator
At steady state, Lyapunov equation: < _
P : State covariance

M : Disturbance covariance

\

Knowing the state covariance and with a dynamic model,

— recover covariance of disturbances



The Lyapunov cone

P and M are covariance matrices

P>0, M>0,= AP+ PA" <0

The operator A generates a convex cone.
Lyapunov theorem:
VM > 0,3'P > 0/AP + PA" + M =0
but 3P > 0/AP + PA" is indefinite

Problem: P might be out of the cone of our model A ...



Find the closest one

— Minimization problem

Cone S (model’

Consider the cone :

P* (projected) S={P>0/AP + PA" <0}

Find P* € S closest to our experimental P

P (experimental) P* is the orthogonal projection of P on &




Solution by alternating projection

Convex minimization problem, large dimension: P, M, A, have n(n — 1)/2 elements

Too big for central path method. Can we use alternating projection?

We can decompose S into the intersection of two simpler sets 7 ()7

— Derive simple analytical projection formula on sets 7 and 7



Intersection of the sets 7 and 7
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W e Han/ (A1) W ] =0

J =

S=J(7, )
Wia
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Wi 0
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Projection on 7: Projection on 7:

Comes down to a projection on negativity set 0 L(Vis + Vi)

*

{(P € H,/P < 0} in the rank subspace of 4 %(‘/12+‘/v1]2f) 0
A1)

It costs one eigendecomposition in H,, per iteration.



Example: Channel flow

s
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..~'. Log = —ik,UA + ik,D*U + A?/Re,
4% 5555 Lgo = —ik,U + A/ Re,
Lo = —ik,DU

Spatial invariance in horizontal direc-

tion — work in spatial frequency space.

Orr-Sommerfeld /squire  equation  for plant/Model: Parametric mismatch in

. the Reynold number:
small state perturbations at each fre- y

quency pair: = |R€ — Remodel
R
€model
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Given an experimental state covariance
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State covariance is assimetric — something happens at one wall!
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Projected state covariance (u = 0.5)

Projected using alternating convex projection
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0.5)

Corresponding disturbance covariance (u
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parametric mismatch p = 0.5)
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H Mechanics

Distance with mismatch u

experimental /projected distance:

0 [ [ [
P was In the cone
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u

P is not in the cone, but the projected one is close.

Matrix distance measured in Frobenius norm.



Computation
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Number of iterations Matrix order n
Iterations computation time

More iteration when larger mismatch. Slower when reaching solution.



Conclusions

Have a model and a experimental state covariance — recover distur-

bance covariance. lllustration on channel flow.

Observations
e Need projection if P is not in the cone

e Can use alternating convex projection, defining cone as intersec-

tion

Remains

e Too slow computations — should use directional alternating pro-

jection



Extra slides



Alternating projection for optimality problem

We recall here the alternating projection algorithm for the optimality problem.

Consider the family of closed, convex sets {C1,Cs,...,C,,} and a given matrix X. The sequence

of matrices {X;}, i =1,2,..., 00 computed as follow:

X1 =Pe, Xo, Z1 = X1 — X
Xo = Pe, X1, Zo = Xo— X,

Xm — PCme—la Zm — Xm — Xm—l
Xm—l—l — PQ (Xm — Zl); Zm+1 — Zl + Xm—l—l — Xm

Xmro=Pe, X1 — 29), Zmro="722 + X2 — Ximt1

XQmZPCm(X2m—1 — Zm); ZQm — Zm—l'XQm_XQm—l
Xom+1="Pec, Xom—Zm+1); Zoms1=Zm+1+Xom+1—Xom

converces to the orthoconal nroiection of Xo on C-NCa(Y.. - (C..



Projection on negativity set

Let X € H,,, with eigenvalue-eigenvector decomposition X = LAL*. The projection X* of X

onto the set of negative semidefinite matrices is
X*=LA_L",

where A_ is the diagonal matrix obtained by replacing the positive eigenvalues of X in A by zero.



Projection on 7

Let W € Hs,. Consider the singular value decomposition

(A, 1) Fyl=U (2, 0) v (1)

where U and V' are unitary matrices, and define

Yi Y,
Y2VARWEAV = | 7" TP vy en, (2)
Yy Ya

The projection P%W of the matrix W onto the set J is

Yy Y,
Pew =Fv | M TR v R (3)
Yiy Yo

where Y7 is the projection of Y}; on the set of negative definite matrices for the unweighted
Frobenius norm as in (20).
Let
W VAV11 me c 7 (4)
Wi W,
be an arbitrary matrix in 7. We will show that the inner product (W* — W, W* — W) is



(W* =W, W* = W)g,
= (LWF — EWFE W FE — BWER)Y,
=Y =Y, Y*=Y),

with
v =vVEipw*Fly, v =VERWFV,

Y =VERWERY.
since V' is unitary. Partitioning the matrices as in (4) we obtain

Y*—Y, Y=Y,

C/(Yh =Y 0 [Yi-Yy Y-V
0 0] \YH -V Yy -V
- <Y1*1 — Y11, Y]] — 5711>[

Now observe that, since W e J ,we have

oy (M) <o

1



H Mechanics

and by substituting the singular value decomposition

A s H
U (z, 0) VH R W REY Ut <o, (9)

Y

then pre- and post- multiplying by X71U*# and (X71U*)# we obtain
~ 1
([7 o) % <0, (10)
0

that is, YH < 0. Note that, from lemma ??, the orthogonal projection of the matrix Y7; on this

set is given by (20). Hence, by construction of Y7} in (3), we have
(Vi = Vi1, Y3, = Yi)r <0, (11)

that is, the inner product (5) is non-positive.



