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This paper presents the application of feedback control to spatially developing boundary
layers. It is the natural follow-up of Högberg & Henningson (2002), where exact knowledge
of the entire flow state was assumed for the control. We apply recent developments of
stochastic models for the external sources of disturbances that allow the efficient use
of several wall measurement for estimation of the flow evolution: the two components
of the skin-friction and the pressure fluctuation at the wall. Perturbations to base flow
profiles of the family of Falkner–Skan–Cooke boundary layers are estimated by use of
wall measurements. The estimated state is in turn fed back for control in order to reduce
the kinetic energy of the perturbations. The control actuation is achieved by means
of unsteady blowing and suction at the wall. Flow perturbations are generated at the
upstream region in the computational box and are propagating in the boundary layer.
Measurements are extracted downstream over a thin strip, followed by a second thin strip
where the actuation is performed. It is shown that flow disturbances can be efficiently
estimated and controlled in spatially evolving boundary layers for a wide range of base
flows and disturbances.

1. Introduction

There is much to be gained in the application of control to fluid mechanical systems,
the most widely recognized and targeted aim being the reduction of skin friction drag on
airplane wings. Flow control is a growing field and much research effort is spent in both
fundamental understanding and direct application of control methods. For a review see
e.g. Bewley (2001) and Högberg & Henningson (2002).

Linear control theory gives powerful model-based tools for application of control to
fluid systems provided the system at hand can be well described by a linear dynamic
model. The theory of Linear–Quadratic–Gaussian control (LQG) is one of the major
achievement in the field of control theory. It gives a methodology to compute the optimal,
measurement based, control when the dynamic model is linear, the objective is quadratic,
and the external sources of excitations are stochastic. This theory is applied to boundary
layer control in the present work.

Feedback control design can be conceptually and technically decomposed into two
subproblems. The first subproblem is to estimate the flow state from noisy wall measure-
ments. In our case, the state is the flow perturbation about the known base flow profile.
The estimator is a simulation of the dynamic system that is run in parallel to the flow.
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Its state is forced by a feedback of the measurements in order to converge to the real
flow state. The estimated state is in turn used for feedback control of the flow which
constitutes the second subproblem. The closed loop system with estimation and control
is commonly referred to as measurement feedback control or compensator.

This paper is the necessary follow-up of Högberg & Henningson (2002) in which full
information control was applied to spatially developing flows. The use of stochastic model
for external sources of excitation was introduced in Hœpffner et al. (2005) and Chevalier
et al. (2006), which allows computation of well-behaved estimation feedback kernels for
three wall measurements: the two components of the skin-friction and the wall pressure.
Each of these three measurements provide the estimator with additional information on
the instantaneous flow state. This variety of measurements is instrumental when complex
flows are targeted. This improvement of the estimation thus makes possible to apply the
full theory of feedback control to complex flow cases such as the transitional scenarios
presented in this paper. For this reason, we have systematically reconsidered the flow
cases of Högberg & Henningson (2002), where exact knowledge of the entire flow state
was assumed, and applied measurement-feedback control, where the estimated flow state
is used for control. We compared the performance between the full information control
of Högberg & Henningson (2002) and the present estimation based control, and found
satisfactory performance.

One of the major limitations to the application of control to spatially distributed
systems (system in space and time, usually described by partial differential equations) is
the realization of the sensing and actuation that would handle relatively fast events as
well as small scales of fluid motion. In addition, control over physical surfaces typically
requires dense arrays of sensors and actuators. Recent development in MEMS technology
and related research may lead to solutions of this problem. For application of MEMS
technology to flow control see e.g. Yoshino et al. (2003).

Several recent investigations have pursued the application of LQG-type feedback con-
trol to wall-bounded flow systems. A recent overview of this progress is given in Kim
(2003). Högberg et al. (2003a) demonstrated the localization of the feedback kernels.
This property allows a local application of the control, i.e. only the local properties of
the system (dynamics, disturbance sources and measurement information) are necessary
for control. The efficiency of the control scheme we use here was illustrated in Högberg
et al. (2003b), where relaminarization of a fully developed turbulent flow was achieved.
In Hœpffner et al. (2005) and Chevalier et al. (2006), the focus was on the estimation
performance. By introducing a relevant model for the external source of disturbance, it
was possible to improve the estimation performance on both transitional and turbulent
flows.

The procedures of control design are based on the manipulations of a linear dynamic
model for the flow system, which is typically of large order. In the case of spatially
invariant systems, i.e. system for which the dynamics is independent of some spatial
coordinates, the problem can be decoupled in a parameterized family of smaller systems.
In our case, we assume spatial homogeneity over the two horizontal directions. After
Fourier transforming, this allows to design and tune the controller and estimator for
individual wavenumber pairs.

In a spatially developing flow like the boundary layer, this procedure can still be
used, even though the spatial invariance in the streamwise direction is lost. Indeed, the
localization of the control and estimation kernels ensures that the feedback is local, so
that the flow can be assumed to be locally parallel. In Högberg & Henningson (2002), the
actuation was successfully applied over a strip parallel to the leading edge in Falkner–
Skan–Cooke (FSC) boundary layers, and the control feedback law was computed based
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upon the local Reynolds number. In Högberg et al. (2003c), a measurement strip was
added, and the subsequent state estimate was used for control. The present paper aims
at the application of the recent development and improvement on the estimation of the
complex flow cases where the full information control was shown to be successful in
Högberg & Henningson (2002).

The structure of this paper is as follow. In §2, the flow system is described: dynamics,
input and output. In §3, we outline the main issues for the feedback control and estima-
tion. The numerical method is described in §4. The performance of the control in several
flow cases is shown in §5, and concluding remarks are given in §6.

2. System description

2.1. Flow dynamics

The Navier–Stokes equations are linearized about solutions of the FSC boundary layer.
Favourable and adverse pressure gradients can be accounted for as well as the effect of
a sweep. To obtain the family of FSC similarity solutions we assume that the chordwise
outer-streamline velocity obeys the power law U∗

∞
= U∗

0 (x∗/x∗

0)
m and that the spanwise

velocity W ∗

∞
is constant. In the expression above, U∗

0 is the free-stream velocity at a
fixed position x∗

0, the physical distance from the leading edge, and the asterisks (∗)
denote dimensional quantities. Note that the Blasius profile is a special case of FSC with
zero cross-flow component and no pressure gradient. If we choose the similarity variable
ξ as

ξ(y∗) = y∗

√

m + 1

2

U∗

∞

2νx∗

one can derive the following self-similar boundary layer profiles,

f ′′′ + ff ′′ + βh(1 − f ′2) = 0,

g′′ + fg′ = 0,

where the Hartree parameter βh relates to the power law exponent m as βh = 2m/(m+1).
The accompanying boundary conditions are

f = f ′ = g = 0, for ξ = 0,

f ′ → 1, g → 1, as ξ → ∞.

The complete derivation can be found in e.g. Schlichting (1979) and Cooke (1950). From
the FSC similarity solutions, we construct the nondimensional velocity profiles

U(y) = f ′(ξ(y)), (2.1a)

W (y) =
W ∗

∞

U∗

∞

g(ξ(y)), (2.1b)

for a fixed x = (x∗−x∗

0)/δ∗0 and where y = y∗/δ∗0 . The symbol δ∗0 denotes the displacement
thickness at position x∗ = x∗

0. The velocity profiles (2.1a) and (2.1b) are then used as
base flow when constructing the linear dynamic model for the flow disturbance and the
initial conditions for the direct numerical simulations (DNS).

Once linearized, the system can be transformed to Fourier space by assuming local
spatial invariance. This implies that the non-parallel effects are small, i.e. the base flow
is slowly developing in the streamwise direction. After transformation to the velocity–
vorticity (v – η) formulation, we obtain the Orr–Sommerfeld/Squire equations (see e.g.
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Schmid & Henningson 2001)

(
v̇
η̇

)

=

(
LOS 0
LC LSQ

)(
v
η

)

, (2.2)

where

LOS = ∆−1[−i(kxU + kzW )∆ + ikxU ′′ + ikzW
′′ + ∆2/Re],

LSQ = −i(kxU + kzW ) + ∆/Re,

LC = i(kxW ′ − kzU
′),

(2.3)

and where the Laplacian operator is denoted ∆ = D2 − k2 and D is the wall-normal
derivative and k2 = k2

x + k2
z . The boundary conditions are defined as

v(0, t) = ϕ, Dv(0, t) = 0, η(0, t) = 0,

v(y, t) = 0, Dv(y, t) = 0, η(y, t) = 0, as y → ∞.
(2.4)

The control actuation affects the system through a non-homogeneous boundary condition
on the wall-normal velocity ϕ(t) (time varying wall blowing and suction). The Reynolds
number Re is based on the free-stream velocity and displacement thickness at x = 0
(denoted δ∗0).

In order to apply tools from control theory, see for example Lewis & Syrmos (1995),
it is convenient to write the linearized fluid system in the general state-space form

q̇ = Aq + B2uc + B1f, q(0) = q0,

y = Cq + g,
(2.5)

where q is the state, A is the linear operator representing the dynamics of the system.
The external disturbances, denoted by f , force the state through the input operator
B1, and q0 is the initial condition. The operator B1 transforms a forcing on (u, v, w)
to a forcing on (v, η), since the flow state is expressed in this formulation. The control
signal uc affects the system through the input operator B2. Operator C extracts the
measurements from the state variable, and g adds a stochastic measurement noise with
given statistical properties. The noisy measurement is then denoted by y.

The controlled Orr–Sommerfeld/Squire system can be cast into the formalism of (2.5)
by means of a lifting procedure (see e.g. Högberg et al. 2003a) where the control at the
wall vwall now enters the flow through a volume forcing term instead of as an inhomoge-
neous boundary condition at the wall. This is done by decomposing the flow state into a
time varying homogeneous component (subscript h) and a steady particular (subscript
p) component

(
v(t)
η(t)

)

=

(
vh(t)
ηh(t)

)

+

(
vp

ηp

)

ϕ(t). (2.6)

The augmented state q, incorporating the actuation variable thus reads

q =





vh(y, t)
ηh(y, t)
ϕ(t)



 , (2.7)

and augmented operator A and operator B (see §3) can be written

A =

(
LOSS LOSSqp

0 0

)

, B =

(
−qp

1

)

, (2.8)
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with

LOSS =

(
LOS 0
LC LSQ

)

, (2.9)

and where the particular solution qp is chosen to satisfy the numerically convenient
equation LOSS qp = 0 with a unity boundary condition on the wall-normal velocity at
the wall. With this formulation the control signal becomes uc = ϕ.

2.2. Stochastic disturbances

2.2.1. Modeling of the external disturbances

The description of a dynamical system can also include a description of its input
(external sources of excitations) and its output (measurements, possibly corrupted by
noise). The performance of the state estimation relies on the construction of a proper
model for the flow disturbances. Indeed, if the external sources of perturbations in the
flow are well identified, it becomes an easy task to estimate the flow evolution using a
dynamic model of the system.

The external sources of perturbations in typical aeronautical applications can be wall
roughness, acoustic waves, and free-stream turbulence.

We will assume the external disturbance forcing f = (f1, f2, f3)
T in (2.5) to be a

zero-mean stationary white Gaussian process with auto-correlation

E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t
′)] = δ(t − t′)

︸ ︷︷ ︸

Temporal

Qfjfk
(y, y′, rx, rz)

︸ ︷︷ ︸

Spatial

,

where δ(·) denotes the Dirac δ-function.
The remaining property to be described is the spatial extent of the two-point, one-time,

auto-correlation of f over the whole domain

Qfjfk
(y, y′, rx, rz) = E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t)].

The corresponding quantity in Fourier space is a covariance operator, obtained for any
wavenumber pair {kx, kz} via the following integration over the homogeneous directions

Rfjfk
(y, y′, kx, kz) =

∫ ∫

Qfjfk
(y, y′, rx, rz)e

−i(kxrx+kzrz)drx drz.

Our model for the covariance of f assumes that the disturbance has a localized structure
in space (i.e., the two-point correlation of the disturbance decays exponentially with dis-
tance) and that the correlations between forcing terms on different velocity components
are zero. We assume a model for the covariance of the external forcing f of the form

Rfjfk
(y, y′, kx, kz) = d(kx, kz) δjkM

y(y, y′), (2.10)

where

d(kx, kz) = exp

[

−

(
kx − k0

x

dx

)2

−

(
kz − k0

z

dz

)2
]

. (2.11)

The model parameters k0
x and k0

z can be used to locate the peak energy of the disturbances
in Fourier space, and dx and dz to tune the width of this peak. These parameters are
specific for each flow case, e.g. for a typical TS-wave the peak energy will be at k0

x = 0.3
and k0

z = 0, or for a typical streamwise streak, the choice will be k0
x = 0 and k0

z = 0.5.
The y-variation of Rfjfk

is given by the function

My(y, y′) = w ((y + y′)/2) exp

[

−
(y − y′)2

2dy

]

, (2.12)
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Figure 1. The covariance of f , for the FSC problem (cases 12–13 in table 1) is depicted in (a).
The covariance is stronger in the interior of the boundary layer. From top to bottom and right
to left each square represent the covariance for f1, f2, and f3. The wavenumber space amplitude
function is shown in (b). The peak is set at {0.25,−0.25}, about the mode that is triggered in
the FSC simulations.

where the design parameter dy governs the width of the two-point correlation of the
disturbance in the wall-normal direction. The function w(ξ) describes the variances at
different distances from the wall. In the present paper, the estimator will be applied to
disturbances inside the boundary layer, we thus use the wall-normal derivative of the
base flow,

w(ξ) =
U ′(ξ)

U ′(0)
, (2.13)

so that the variance of the disturbance varies as the mean shear: greatest close to the
wall and vanishing in the free-stream. The parameters for all flow cases presented are
given in table 2.

Other forms for d(kx, kz) are also possible, and may be experimented with in future
work. Note that we will denote R = Rff = diag(Rf1f1

, Rf2f2
, Rf3f3

) in the sections that
follow.

2.2.2. Sensors and sensor noise

The measurements used in this study are the streamwise and spanwise shear stresses
and the wall pressure fluctuations.







τx = τxy|wall =
1

Re

∂u

∂y

∣
∣
∣
∣
wall

=
1

Re

i

k2
(kxD2v − kzDη)|wall ,

τz = τzy|wall =
1

Re

∂w

∂y

∣
∣
∣
∣
wall

=
1

Re

i

k2
(kzD

2v + kxDη)|wall ,

p = p|wall =
1

Re

1

k2
D3v|wall .

which yields the following measurement matrix C

C =
1

Re

1

k2





ikxD2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0



 .

Each of the three measurements is assumed to be corrupted by random sensor noise
processes, the amplitude of which is determined by the assumed quality of the sensors.
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The covariance of the sensor noise vector g can thus be described in Fourier space by
a 3 × 3 matrix G where the diagonal elements α2

ι are the variances of the sensor noise
assumed to be associated with each individual sensor. The covariance for each sensor can
be written on the following form

Rgι(t),gκ(t′) = δικδ(t − t′)α2
ι , (2.14)

where δικ denotes the Kronecker delta. Thus, in the present work, we assume that the
sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed back only gently
into the estimator, lest the sensor noise disrupt the estimator. When the signal-to-noise
ratio is high, the measured signal may be fed back more aggressively into the estimator,
as the fidelity of the measurements can be better trusted. For a given covariance of the
external disturbances, the tuning of the assumed overall magnitude of the sensor noise
in the Kalman filter design thus provides a natural “knob” to regulate the magnitude of
the feedback into the estimator.

3. Compensation

The system is now described: its dynamics is governed by (2.2), it is excited by external
sources of disturbance as in (2.11) and the sensor information is corrupted by noise as
in (2.14). We can now apply the procedure of LQG control and estimation governed by
system 2.5.

3.1. Controller

To construct an optimization problem we need to define an objective function. The
performance measure for optimality is chosen as a weighted sum of the flow kinetic energy
and the control effort. We thus aim at preventing small disturbances from growing, and
achieve this goal with the minimum possible actuation energy. The objective functional
thus reads

J =

∫
∞

0

(q∗Qq + l2u∗

cuc) dt (3.1)

where l2 is included to penalize the time derivative of the control uc = ϕ̇, and

Q =

(
Q Qqp

q∗pQ (1 + r2)q∗pQqp

)

(3.2)

where the term r2 is an extra penalty on the control signal itself. The operator Q repre-
sents the energy inner-product in the (v, η) space

(
v∗ η∗

)
Q

(
v
η

)

=
1

8k2

∫
∞

0

(

k2|v|2 +

∣
∣
∣
∣

∂v

∂y

∣
∣
∣
∣

2

+ |η|2

)

dy, (3.3)

with k2 = k2
x + k2

z .
We now want to find the optimal K that feeds back the state to update the control

uc = Kq. It can be found as the solution of a algebraic Riccati equation (ARE)

A∗X + XA −
1

l2
XB2B

∗

2X + Q = 0 (3.4)

where X is the unique non-negative self-adjoint solution. Note that the linear feedback
law does not depend on the disturbances present in the flow and is thus computed once
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and for all for a given objective function and base flow. The optimal control gain K is

K = −
1

l2
B∗

2X. (3.5)

A sufficient range of wavenumber pairs are computed and after Fourier transform in both
horizontal directions, we obtain physical space control convolution kernels. Examples of
such control kernels are depicted in figure 2.

3.2. Estimator

We build an estimator analogous to the dynamical system (2.5) as

˙̂q = Aq̂ + B2uc − L(y − ŷ), q̂(0) = q̂0,

ŷ = Cq̂,
(3.6)

where q̂ is the estimated state and ŷ represents the measurements in the estimated flow.
Kalman filter theory, combined with the models outlined in §2.2.1 and §2.2.2 for the

statistics of the unknown external forcing f and the unknown sensor noise g respectively,
provides a convenient and mathematically-rigorous tool for computing the feedback op-
erator L in the estimator described above such that q̂(t) converges to an accurate ap-
proximation of q(t) (see e.g. Lewis & Syrmos 1995, p. 463–470). Note that the volume
forcing v = L(y− ŷ) used to apply corrections to the estimator trajectory is proportional
to the measurement difference in the flow and in the estimator ỹ = y − ŷ.

The problem reduces to solving an algebraic Riccati equation similar to equation (3.4)

0 = AP + PA∗ − PC∗G−1CP + B1RB∗

1 , (3.7)

where P is the unique non-negative self-adjoint solution. The optimal gain L that mini-
mizes the expected energy of the state estimation error at steady state is

L = −PC∗G−1. (3.8)

3.3. Extension to spatially developing flows

When solving the linear control problem and computing optimal control and estimation
gains we have linearized about a base flow profile at a specific streamwise position, hence
assuming a parallel base flow. However, due to the non-parallel base flows in the DNS,
errors will be introduced when the control signal and estimation forcing are computed.

When the gains are applied in the control and measurement strip, the base flow varies
along those regions i.e. errors will be introduced due to the changes of the base flow.
Based on findings in Högberg & Henningson (2002), Högberg et al. (2003b), Högberg
et al. (2003c), and Chevalier et al. (2006) it was expected that the controller and the
estimator had some robustness properties with respect to changes in the base flow profile.
Due to the fact that the convolution kernels themselves, for proper choices of parameters,
are localized indicates that only local information is needed which relaxes the requirement
of constant base flow profile. For almost all control and estimation gains, the base flow
profile in the centre of the control and measurement regions have been used. For the
longer control interval in the optimal perturbation flow case, the same gains were used
as for the shorter interval.

The control and estimation convolution kernels for the Falkner–Skan–Cooke boundary
layer flow, corresponding to cases 12–13 in table 1, are depicted in figures 2 and 3.
Both the control and estimation kernels were computed with a physical box size of
100×10×125.7 with 192×65×125.7 Fourier, Chebyshev, Fourier modes. Furthermore, the
kernels were based on the mean-flow at x = 95 and x = 200 for the estimation and control
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(a)

y

x

z

(b)

y

x

z

Figure 2. Steady-state control convolution kernels relating the flow state v̂ (a) and η̂ (b) to the
control at {x = 0, y = 0, z = 0} on the wall. Positive (dark) and negative (light) isosurfaces
with isovalues of ±20% of the maximum amplitude for each kernel are illustrated. The kernels
correspond to cases 12–13 in table 1 and 3.

respectively which also corresponded to what was used in the simulations cases 12–13.
For all cases studied the general behaviour of the control kernels are the same in the sense
that they all reach upstream in order to get information about the perturbations present
in the flow. Correspondingly the estimation kernels reach downstream from the point
of sensoring yielding information on how each measurement should force the estimator.
However, due to the differing base flows and their inherent instabilities the kernels will
differ in shape and extent.

4. Numerical issues

4.1. Direct numerical simulations

All direct numerical simulations have been performed with the code reported in Lund-
bladh et al. (1992) and Lundbladh et al. (1999), which solves the incompressible Navier–
Stokes equations

∂u

∂t
= NS(u)+λ(x)(u − uλ) + F,

∇ · u = 0,
(4.1)

by a pseudo-spectral approach. The variable u is given by u = (u, v, w)T . In the subse-
quent we will divide the velocity field into a base flow U = (U, V,W ) and a disturbance
part u′ = (u′, v′, w′) so that u = U + u′. In order to allow spatially developing flows,
a fringe region technique as described in e.g. Nordström et al. (1999) has been applied.
This forcing is implemented in the term λ(x)(u − uλ), where λ(x) is a non-negative
function which is nonzero only in the fringe region located in the downstream end of
the computational box. The outflow and inflow conditions are determined by the desired
velocity distribution uλ. The other additional forcing term F = [F1, F2, F3]

T is used e.g.
to enforce a parallel base flow in temporal simulations, or to introduce perturbations in
the spatial simulations.

At the lower wall a no-slip boundary condition is applied where it is also possible to
apply zero mass-flux blowing and suction. An asymptotic free-stream boundary condition
is used to limit the computational box in the wall-normal direction, at a constant height
from the lower wall (see e.g. Malik et al. 1985).

The computational domain is discretized in space by Fourier series in both horizontal
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(v) (η)
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(τx)

y
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(τz)

y
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z

y

x

z

(p)

y
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Figure 3. Steady-state estimation convolution kernels relating the measurements τx, τz, and p
at the point {x = 0, y = 0, z = 0} on the wall to the estimator forcing on the interior of the
domain for the evolution equation for the estimate of (left) v̂ and (right) η̂. Positive (dark) and
negative (light) isosurfaces with isovalues of ±10% of the maximum amplitude for all kernels
illustrated. The kernels correspond to case 13 in tables 1 and 3.

directions and with Chebyshev polynomials in the wall-normal direction. The time inte-
gration uses a four-step low-storage third-order Runge–Kutta method for the advective
and forcing terms whereas the viscous terms are treated by a Crank-Nicolson method.
The incompressibility condition is enforced implicitly by expressing the flow state in the
wall-normal velocity and wall-normal vorticity state space.
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Case Flow Perturbation Estimation Control
xm ∈ r2 l xc ∈

0 A Eigenmode
1 A Eigenmode 0 102 [0, 25.14]
2 A Eigenmode [0, 25.14] 0 102 [0, 25.14]
3 B TS-wave
4 B TS-wave 0 102 [100, 250]
5 B TS-wave [0, 100] 0 102 [100, 250]
6 C Optimal
7 C Optimal 0 102 [300, 450]
8 C Optimal [0, 300] 0 102 [300, 450]
9 C Optimal 0 102 [300, 750]
10 C Optimal [0, 300] 0 102 [300, 750]
11 D Random
12 D Random 0 102 [175, 325]
13 D Random [40, 150] 0 102 [175, 325]
14 E Stationary
15 E Stationary 0 102 [150, 300]
16 E Stationary [40, 150] 0 102 [150, 300]

Letter Flow Resolution Box Fringe
xstart xmix ∆mix ∆rise ∆fall

A Temporal FSC 4 × 129 × 4 25.14 × 20 × 25.14
B Spatial Blasius 576 × 65 × 4 1128 × 20 × 12.83 928 928 50 30 15
C Spatial Blasius 576 × 65 × 4 1128 × 20 × 12.83 1028 1028 40 100 20
D Spatial FSC 192 × 49 × 48 500 × 8 × 251.4 350 400 40 100 20
E Spatial FSC 768 × 65 × 24 500 × 8 × 25.14 350 400 40 100 20

Table 1. The tables contain detailed information about the simulations performed in this study.
Both the control and estimation kernels are computed based on a velocity profile from the centre
of each domain except for cases 9–10 where the same control kernels were used as for cases 7–8.
The rise and fall distance of the control region and the measurement regions are always ∆x = 5.
The domain xm denotes the measurement region used in the estimator and the domain xc

denotes the region where blowing and suction is applied in the control part of the simulations.
The estimator model parameters for the different cases are given in table 3.

4.2. Temporal simulations

When needed, we add a volume forcing vector F = [F1, F2, F3]
T to enforce a parallel base

flow, defined as

F1 = −
∂U(y, t)

∂t
−

1

Re

∂2U(y, t)

∂y2
,

F2 = 0,

F3 = −
1

Re

∂2W (y, t)

∂y2
.

(4.2)

The velocity profiles U(y, t) and W (y, t) are given for a spatial position xr. To further
allow for a moving frame we make the following variable transformation xr = x0 + ct
where c is the reference frame speed and let U(xr, y) = U(x0 + ct, y) = U(t, y).
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Parameter Cases
3–5 6–10

xf −201.06 −158.16
ω 0.06875 0
kz 0 0.4897
as 10−5

ts 0
tr 20

Parameter Cases
11–13 14–16

x0 20.95 20.95
at 0.001
as 0.0036

xscale 10 10
yscale 1 1
zscale −25.14
zcenter 0 0
lskew 1

nmodes 21
tdt 1

Table 2. Volume forcing parameters for the spatial simulations. Note that negative
coordinates indicate positions upstream of the inflow boundary.

4.3. Spatial simulations

4.3.1. Fringe region

By adding the fringe forcing mentioned in §4.1 we can enforce flow periodicity and
thus apply spectral methods allowing us to solve spatially developing flows. The fringe
function is defined as

λ(x) = λmax

[

S

(
x − xstart

∆rise

)

− S

(
x − xend

∆fall

)]

(4.3)

where the ramping function S is defined as

S(x) =







0, x 6 0,

1/
[

1 + exp
(

1
x−1 + 1

x

)]

, 0 < x < 1,

1, x > 0.

(4.4)

The parameters xstart and xend define the start and end location of the fringe domain,
whereas the parameters ∆rise and ∆fall define the rise and fall distance of the fringe
function.

In order to enforce the inflow boundary condition at the downstream end of the domain
we construct the following blending function which gives a smooth interpolation between
two velocity profiles. Let the velocity components be given as

uλ = U(x, y) + [U(x − lx, y) − U(x, y)]S

(
x − xmix

∆mix

)

+ u′

f (x − lx, y, z, t),

wλ = W (x, y) + [W (x − lx, y) − W (x, y)]S

(
x − xmix

∆mix

)

+ w′

f (x − lx, y, z, t),

(4.5)

where lx is the box length in the streamwise direction. The parameters xmix and ∆mix

are both blending parameters. The former is the start of the blending region and the
latter is the rise distance of the blending. Additional forcing to add streaks or different
wave forms can be added through the velocity components (u′

f , v′

f , w′

f ) directly in the
fringe.

4.3.2. Perturbations

To introduce perturbations into the spatially evolving flow an external volume force
can be applied locally in the computational domain. This forcing can either be applied in
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the fringe region, as for the optimal disturbance and the TS-wave case, or in the physical
flow domain.

In order to introduce unsteady perturbations in the physical computational domain,
we use a random forcing, acting only on the wall-normal component of the momentum
equations

F rand
2 = at exp[−((x − xcenter)/xscale)

2 − (y/yscale)
2]f(z, t), (4.6)

where

f(z, t) = [(1 − b(t))hk(z) + b(t)hk+1(z)] (4.7)

and

k = floor(t/tdt),

b(t) = 3p2 − 2p3,

p = t/tdt − k,

(4.8)

where floor denote rounding to the next smaller integer, and hk(z) is a Fourier series of
unit amplitude functions with random phase generated at every time interval k. Within
each time interval tdt, the function b(t) ramps the forcing smoothly in time. The max-
imum amplitude is determined by at and the forcing is exponentially decaying in both
streamwise and wall-normal direction centred at xcenter. The number of modes with non-
zero amplitude is determined by the parameter nmodes. This forcing has been used to
generate the travelling cross-flow vortices described as cases 11–13 in table 1 with the
corresponding parameters given in table 2.

Generating disturbances in the fringe region is done through prescribing the com-
ponents (u′

f , v′

f , w′

f ) in equation (4.5). Since we are looking at the evolution of linear
disturbances, these components can be taken as the eigenfunctions of the parabolized
stability equations, known as the PSE (Bertolotti et al. 1992; Herbert 1997). Input to
the eigenvalue problem is a given real frequency ω, an appropriate Reynolds number Re
and a real spanwise wavenumber kf

z . A set of equations valid for both algebraically and
exponentially growing disturbances was derived in Levin (2003), capturing the different
scales associated with the two growth scenarios. Having obtained the complex eigenval-
ues kf

x(x) and the eigenfunctions q̂ = (û(x, y), v̂(x, y), ŵ(x, y))T from the solution of the
PSE, one can readily formulate the forcing applied in the fringe as the real part of

q′f = as q̂(x, y) exp

(

iRe

∫ x

xf

kf
x(ξ)dξ + ikf

z z − iωt

)

S

(
t − ts

tr

)

(4.9)

where xf is typically the start of the fringe region and as is the amplitude of the distur-
bance. The ramping function S is given by equation (4.4) and ts and tr are used as time
ramping parameters.

4.3.3. Zero mass-flux actuation

The numerical model in the DNS does not allow for net inflow or outflow, we thus
have to enforce a zero-mass flux through the actuation strip by the transformation

ϕ̂(x, z) = (ϕ(x, z) + c)H(x), (4.10)

where

c = −

∫

z

∫

x

ϕ(x, z)H(x) dxdz

zl

∫

x

H(x) dx

(4.11)
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Figure 4. Compensator configuration. The upper box represents the “real” flow where the light
grey rectangle along the wall is the measurement region (x ∈ [xm

1 , xm
2 ]) and the corresponding

dark grey rectangle is the control area (x ∈ [xc
1, x

c
2]). In the beginning of the box a perturbation

is indicated as a function of the wall-normal direction. This perturbation will evolve as we
integrate the system in time. The estimated flow system is depicted in the lower box. Here the
volume force that is based on the wall measurements and the estimation gains is shown as a
grey cloud in the computational domain.

and

H(x) = S

(
x − (xc − lcx)

∆x

)

− S

(
x − (xc − lcx)

∆x

)

. (4.12)

The parameter S(x) is defined as in equation (4.4) and xc denotes the centre of the control
interval. Parameters lcx and lcz are respectively the length and width of the control domain
and ∆x is the rise and fall distance of the actuation.

4.4. Compensator algorithm

The compensator algorithm is depicted in figure 4. The “real” flow could be an experi-
mental setup where only wall information is extracted. In our studies the “real” flow is
represented by a DNS. The estimator is another DNS, which is used to recover the state
from sensor information. The compensation algorithm can be sketched in the following
steps

(a) Take wall measurements in both real and estimated flows
(b) Compute the estimator volume forcing based on precomputed estimation gains

and the difference of the wall measurements from the real and estimated flows
(c) Apply the volume forcing to the estimator flow to make it converge to the real flow
(d) Compute the control signal as a feedback of the reconstructed state in the estimator
(e) Apply the control signal in both the real and estimated flows

5. Flow cases

In order to evaluate the compensator performance in transitional flows we test a range
of different flow cases. To ease the comparison with the full information controller results
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Parameter Cases
3 5 8 & 10 13 16

k0
x 0.25 0.28 0 0.25 0.25

k0
z −0.25 0.0 0.49 −0.25 −0.25

dx 0.10 0.25 0.15 0.20 0.20
dy 0.10 0.10 0.10 0.10 0.10
dz 0.10 0.25 0.15 0.20 0.20

ατx 29.56 4.0 0.20 0.20 0.20
ατz 2.21 0.30 0.20 0.20 0.20
αp 14783 2000 300 30000 30000

Table 3. Estimator model parameters. The parameters k0
x, k0

z , dx, dy, and dz all relate to the
covariance model of the external disturbances and the parameters ατx , ατz , and αp relate to
the modeling of the sensor noise.

reported in Högberg & Henningson (2002) we study partly the same flow cases and the
same control parameter l2 = 100 have been used. However, some control regions have been
set further downstream to fit also a measurement region into the computational domain.
Note that in principle we could have overlapping control and measurement regions. The
computational parameters for each flow type are listed in table 1.

5.1. Single eigenmode

To validate the numerical implementation of the control and the estimator forcing we
studied a temporal FSC boundary layer flow where the Reynolds number at the beginning
of the simulation box was Re = 337.9 with a free-stream cross-flow velocity component
W∞ = 1.44232U∞(x = 0) and a favourable pressure gradient m = 0.34207 as defined
in §2.1. The same flow setup is also studied in a spatial setting in §5.4. In the case of
temporal flow the measurement and control regions overlap since they both extend over
the whole wall.

The initial disturbance is the unstable eigenfunction associated with the eigenvalue
c = −0.15246 + i0.0382 that appears at kx = 0.25 and kz = −0.25. The exponential
energy growth of the uncontrolled eigenmode is depicted in figure 5 as a thick solid line.
In the same figure the full information controller is plotted as a thick dashed line and
the disturbance energy decays rapidly in time and levels out. All thin lines are related to
the compensator simulation. The thin solid line represents the disturbance energy in the
estimator and it increases initially to quickly align with the energy growth of the actual
state. This can also be viewed through the estimation error plotted as a thin dash-dotted
line which decays exponentially in time. The compensator control is shown as the thin
dashed line. Initially when the estimated state is poor the controller is not very efficient.
However as the estimated state improves the compensator control is also improving.

5.2. TS-wave

The TS-wave perturbation is applied in a spatially developing Blasius boundary layer
with an inflow Reynolds number of Re = 1150. This base flow can be obtained as a
similarity solution described in §2.1 with m = 0. The perturbations are introduced by
means of forcing in the fringe region as described in §4.3.2. Since the TS-wave is a pure
two-dimensional instability, the spanwise wavenumber in (4.9) is kf

z = 0. These waves
are forced at the dimensionless oscillating frequency F = 59, relating to the physical
frequency ω as F = 1062πων/U2

∞
. This value is chosen according to Levin (2003) where

it was found to be the most unstable. The unstable area for this wave extends from Branch
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Figure 5. Time evolution of the perturbation energy of the uncontrolled unstable eigenmode
at kx = 0.25, kz = −0.25 in a FSC boundary layer and the corresponding controlled system.
Solid: uncontrolled energy growth (case 0). Dashed: full information control applied (case 1).
Solid-thin: energy growth in the estimator when no control is applied. Dash-dotted-thin: the
estimation error when no control is applied. Dashed-thin: compensator control is applied (case
2). The simulations correspond to cases 0–2 in table 1.

I at x = −124 (Re ≈ 949) to branch II at x = 621 (Re ≈ 1854). The measurement region
is x ∈ [0, 100] and the control region is x ∈ [100, 250] so that they are both located in the
exponential growth region. The simulation parameters correspond to cases 3–5 in table
1 and the parameters defining the fringe forcing are given in table 2.

Figure 6 shows the uncontrolled energy growth and decay as the solid thick line. Full
information control, displayed as the thick dash-dotted line, performs perfectly, lowering
the amplitude of the energy by approximately five decades. The estimator builds up
energy levels throughout the whole estimation region, reaching almost the amplitude of
the original flow. This is visualized as the thin solid line.

Note that the difference between the compensator control and full information control
in Figure 6 is exaggerated due to the logarithmic scale. In fact this difference is of the
same order of magnitude as the energy difference between the real and estimated flow.
Indeed by extending the estimation region (and moving the control region further down-
stream) one can get a closer agreement between the compensator and the full information
controller. Note however that there is an interest in controlling the TS-wave evolution
as far upstream as possible. Choosing the moderate estimation region length of 100, the
compensator still manages to lower the energy levels by almost three decades.

Figure 7(a) shows a snapshot of an x–y plane of the wall-normal uncontrolled velocity
field. The forcing has been turned on long enough to let the waves propagate throughout
the whole computational box. In figure 7(b) the compensator control has been active
for 926 time units, corresponding to approximately fifteen periods of the forcing. At this
instance of time there are still large amplitude disturbances present far downstream, but
as can be seen from figure 7(c), 30 periods later the contour-levels of the disturbances
are small throughout the whole domain. It is evident that the unsteady blowing and
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Figure 6. Spatial evolution of the perturbation energy of a TS-wave in a spatially growing
boundary layer. Solid: uncontrolled energy growth. Solid-thin: estimated flow energy. Dash-dot-
ted: full information control applied. Dash-dotted-thin: compensator control applied.

(a)

(b)

(c)

y

y

y

x

Figure 7. A snapshot of the wall-normal perturbation velocity for controlled and uncontrolled
TS-waves. (a) The TS-wave at t = 3926 with no control. (b) Compensator control applied during
15 TS-wave periods which corresponds to 926 time units. (c) Compensator control applied during
45 TS-wave periods. The unsteady wall blowing and suction effectively eliminates disturbances,
with the results that the original TS-wave disturbances are advected out of the domain

suction has effectively diminished the disturbances, leaving the remaining TS-wave to be
advected out of the domain by the base flow.

Instantaneous control signals for the full information control and the compensator
control are shown in figure 8. The control signals mimic waves with decaying amplitude
in the streamwise direction. The large amplitude at the beginning of the control interval
is due to the fact that the controller manages to do the job within only a few wavelengths
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Figure 8. Control signal when the control has been turned on for 926 time units. Solid: Full
information control. Dash-dotted: Compensator control.

of the TS-wave, hence leaving large amplitude control further downstream is unnecessary.

5.3. Optimal perturbation

The compensator performance is also studied for transiently growing perturbations, also
known as optimal perturbations after Butler & Farrell (1992). The spatial optimal per-
turbations in a Blasius boundary layer have been computed by Andersson et al. (1999)
and Luchini (2000). The optimal perturbation is introduced at x = −158.16 and then
marched forward to x = 0 with the technique developed in Andersson et al. (1999). The
perturbation is introduced in the fringe region to give the proper inflow condition, as
described in section §4.3 and with the choice of parameters displayed in table 2. The
perturbation is optimized to peak at x = 237.24.

The base flow is essentially the same as the one described in §5.2, with the same
box-size but with a smaller fringe region and a lower Reynolds number. Here the local
Reynolds number at the inflow is Re = 468.34 (Andersson et al. (2000)). The simulation
parameters are given in table 1 as cases 6–10.

Figure 9 shows the energy of the uncontrolled flow, full information control and com-
pensator control once steady state has been reached. Here the energy is defined as

E =

∫ 2π/k0

z

0

∫
∞

0

(u2 + v2 + w2) dy dz, (5.1)

where the spanwise wave number is k0
z = 0.4897. Two different lengths of the control

regions have been implemented. Both types of controllers for both control intervals work
well at reducing the perturbation energy. In the case with a narrow control strip the
perturbation energy starts to grow again since a stronger component of the growing
disturbance remains. Note that the estimated flow energy does not reach the exact per-
turbation energy level, but in contrast to the TS-wave perturbation this does not seem
to strongly affect the compensator performance.

The control signal for the full information and compensator control cases, applied in
the interval x ∈ [300, 750], are depicted in figure 10. The actuation presents a peak at
the beginning of the control region and then a fast decay which levels out progressively.
A similar feature is reported in Cathalifaud & Luchini (2000) where control is applied
over the whole domain.

5.4. Travelling cross-flow vortices

The FSC boundary layer flow studied in this paper is subject to several other studies, for
example Högberg & Henningson (1998) and Högberg & Henningson (2002). Originally
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Figure 9. Spatial energy evolution of the optimal perturbation. Solid: no control. Dashed: full
information control applied in region x ∈ [300, 450]. Dash-dotted: compensator control with
measurement region xm ∈ [0, 300] and the control region xc ∈ [300, 450]. Thin-solid: estimated
flow energy. Thin-dashed: full information control applied in region x ∈ [300, 725]. Thin dash–
dotted: compensator control with the measurement region xm ∈ [0, 300] and the control region
xc ∈ [300, 725]. The flow cases correspond to cases 6–10 in table 1.
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Figure 10. The control signal for the optimal disturbance case after the initial transient. Solid:
full information control. Dashed: compensator control in domain. The simulations correspond
to case 9 and 10 in table 1.

it was an attempt to reproduce experimental results where travelling cross-flow modes
have been observed (see e.g. Müller & Bippes 1988). A random perturbation in space
and time that generates cross-flow vortices downstream is applied, as described in §4.3.2.
The specific numerical details can be found under cases 11–13 in tables 1 and 2.

In case 11 we compute the time evolution of the forcing as it develops downstream and
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Figure 11. Time averaged perturbation energy for cross-flow vortices in a Falkner–Skan–Cooke
boundary layer. Solid: uncontrolled. Dashed: full information control. Dash-dotted: compensator
control. Thin-solid: estimator energy. The simulations correspond to cases 11–13 in table 1.
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Figure 12. Time evolution of the disturbance energy integrated throughout the computational
box. During the first 2000 time units the flow is uncontrolled. At time t = 2000 the compensator
is turned on. Solid: energy in the flow. Thin-solid: energy in the estimator.

forms the cross-flow vortices. When the simulations have reached a statistically steady
state the disturbance energy is sampled and averaged in time and the spanwise direction
as shown in figure 13. The energy growth of the perturbation is shown as a black solid
line. In case 12 we apply full information control. Exponential decay then replaces the
uncontrolled exponential growth, as shown by the dashed line in figure 11. However
almost adjacent to the downstream end of the control region the disturbances start to
grow exponentially. Indeed, this wave is unstable over the whole box, and resumes growth
behind the control strip. In the same figure the perturbation energy for the compensator
is plotted as a dash-dotted line.

In figure 12 the evolution in time of the perturbation energy, integrated throughout
the computational box in space, is shown. The energy in the estimator is shown as a
thin-sold line which is zero at time t = 0 but as time evolves reaches the same level
as the perturbation energy in the real flow. From figure 12 it is also evident that the
estimator is able to adapt to the time variations of the perturbation energy.
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Figure 13. Snapshots of the wall-normal velocity component at y = 1.0. The flow state is
depicted in part (a). In (b) the effect of the compensator control is shown. In the controlled flow
the actuation was applied in 2000 time units. The black to white scales lie within the interval
v ∈ [−0.00045, 0.00055].

The control gains are computed for the base flow at position x = 250 which is the
centre of the control domain x ∈ [175, 325]. The estimator gains are centred at x = 95
and the measurements are taken in x ∈ [40, 150]. In figure 13(a) the uncontrolled flow
for the wall-normal perturbation velocity is plotted at y = 1.0. The corresponding plot
for the compensated flow is depicted in figure 13(b).

5.5. Stationary cross-flow vortices

Stationary perturbations introduced at the beginning of the computational domain, with
large enough amplitudes, will generate stationary nonlinearly saturated cross-flow vor-
tices that develop downstream.

The control is acting in the interval x ∈ [150, 300] and the control kernels are computed
based on the mean flow at x = 225 with l = 102. The measurement region is in the interval
x ∈ [40, 150] and the the estimation kernels are computed based on the base flow centred
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Figure 14. Perturbation energy growth for cross-flow vortices in a Falkner–Skan–Cooke bound-
ary layer. Solid: uncontrolled. Dashed: full information control. Dash-dotted: compensator con-
trol. Thin-solid: estimator energy. The simulations correspond to cases 14–16 in table 1.

in that interval. The complete set of parameters for these simulations is given as cases
14–16 in table 1.

The full information control has been applied to both a flow with fully developed
cross-flow vortices throughout the computational domain as well as a flow where the
control is turned on at the same time as the perturbation is first introduced in the
upstream region. Both approaches give the same result after the initial transients, due to
the control. However the transition phase in the former case requires smaller time steps
due to stronger transients. There could also be a problem in the former case if too strong
wall-normal velocities are generated due to technical limitations in the spectral code that
are being used.

For estimation-based control, two approaches regarding the initial state of the estima-
tor have been attempted. First the control is applied after a well converged estimated
state is obtained. This leads to full actuation strength immediately. To avoid a strong
initial actuation, we turn on estimator and control at the same time. The results shown
here have been produced with the latter method.

The simulation is run until a stationary state has been reached and the corresponding
energy is shown in figure 14. The solid line shows the perturbation energy and the thin line
shows the corresponding estimator state energy. The dashed and dash-dotted lines show
the full information and compensated control cases respectively. In both cases, oscillations
in the upstream part of the control region indicate that there are nonlinear interactions
taking place. As reported in Högberg & Henningson (2002), the full information control
turns exponential growth into exponential decay, and downstream of the control region,
new cross-flow vortices appear due to the inflectional instability.

6. Conclusion

Based on findings on how to improve the performance state estimation performance,
reported in Hœpffner et al. (2005), combined with the state-feedback control used in, for
example, Bewley & Liu (1998) and Högberg & Henningson (2002), viscous instabilities,
non-modal transient energy growth and inflectional instabilities in spatially developing
boundary layer flows are controlled based on wall measurement.
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The key to the improved performance of the estimator is the design of a physically
relevant stochastic model for the external sources of disturbances. For this purpose we
choose a correlation length which is weighted to be stronger in the interior of the boundary
layer than outside. We also choose an amplitude distribution in wavenumber space such
that it represents the most dominant wavenumbers in the specific flow being studied. This
procedure leads to well resolved estimation gains for the three measurements: streamwise
and spanwise skin frictions and wall pressure. Both the sensor noise and the external
disturbances are assumed to be white noise processes. As the estimator is switched on,
there is an initial transient that propagates with the group velocity of the dominating
disturbances through the computational domain. Upstream of this transient the estimate
is converged. This feature makes the compensator control efficient since little extra time
is needed to have a good state estimate where it is needed for control, i.e. above the
actuation region.
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Högberg, M. & Henningson, D. S. 1998 Secondary instability of cross-flow vortices in
Falkner–Skan–Cooke boundary layers. J. Fluid Mech. 368, 339–357.



24 M. Chevalier, J. Hœpffner, E. Åkervik and D. S. Henningson
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