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2Ecole Centrale de Lille, Laboratoire de Mécanique de Lille, Boulevard Paul Langevin, 59655 Villeneuve d’Ascq, France

(Received 6 August 2011; revised manuscript received 16 September 2011; published 3 November 2011)

The flapping of the flag is a classical model problem for the understanding of fluid-structure interaction:

How does the flat state lose stability? Why do the nonlinear effects induce hysteretic behavior? We show

in this Letter that, in contrast with the commonly studied model, the full three-dimensional flag with

gravity has no stationary state whose stability can be formally studied: The waves are oblique and must

immediately be of large amplitude. The remarkable structure of these waves results from the interplay of

weight, geometry, and aerodynamic forces. This pattern is a key element in the force balance which allows

the flag to hold and fly in the wind: Large amplitude oblique waves are responsible for lift.
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When asked to draw a flapping flag, most—scientists
and laymen alike—will produce something in the spirit
of Fig. 1(a): propagating waves with vertical crests.
Figure 1(f) is a typical flag as you could observe on a
windy day: The waves are oblique.

In 1879, Lord Rayleigh—Nobel prize laureate and one
of the founding fathers of hydrodynamic stability—
touches upon the flapping of flags and sails in his influen-
tial paper on unstable fluid motion [1]. The analogy be-
tween a flag and shear layer stability is immediate since
Helmholtz and Kelvin have developed a framework for
stability analysis based on surfaces of discontinuity now
known as vortex sheets [2,3]. The fluid motion of a shear
layer consists of two semi-infinite bodies of constant ve-
locities separated by such an immaterial mobile surface.
Quantifying the motion of this surface under the dynamic
pressure forces is instrumental in the description of the
Kelvin-Helmholtz instability. When this moving surface is
bestowed with the additional physical properties of mass,
tension, and rigidity, we have the flag. This conception of a
flag has inherited the simplifications which are relevant for
the description of the Kelvin-Helmholtz instability: It is
infinitely long to allow for description of its motion into
harmonic waves, and it is two-dimensional with waves
propagating with the stream.

The stability analysis for waves short with respect to the
flag length has now reached a standard [4]: Applied ten-
sion, be it external or induced from fluid drag, is stabiliz-
ing, as is bending rigidity, whereas instability increases for
longer wavelengths and heavier cloth. The simulations in
Ref. [5] confirm the relevance of this local stability analy-
sis for two-dimensional soft flags. Large amplitude analy-
sis shows in addition an hysteretic behavior which is now
understood as typical for these systems. This was shown,
for instance, in Ref. [6] by observation of the flapping of a
silk thread in a falling soap film.

When, on the other hand, considering more rigid media,
like a cardboard flag for which the rigidity is such that only

waves of length comparable to that of the flag can be
unstable [7,8], we see that the dynamics of the vorticity
in the free wake will be important for the stability: The
flapping induces shedding of vortices, and these vortices
act in turn through the pressure on the surfaces of the flag
such as to organize a synchronized flapping behavior remi-
niscent of typical fluid-structure instabilities like aeolian
tones [9,10] or airplane wing flutter [11]. For a review of
flapping and bending bodies in fluid flow, see [12].
These studies are instrumental steps in conceiving a

fundamental model system—as simple as possible—to
form the basis of understanding of fluid-flexible structure
interaction. We may now take the occasion to turn back to
the original inspiration of the flag and see whether the
picture is complete or if the simplifications that were
made necessary by the search for a quantitative modeling
have overlooked some characteristic phenomena. In this,
the most striking observation is made by Ref. [13] in a

FIG. 1 (color online). General representation of the flag which
is discussed in the Letter. (a) Popular conception of the flapping
flag with vertical wave crests. (b) A first pattern of oblique
waves. (c) An alternative pattern of accordion waves.
(d) Naming of the flag’s parts in analogy to quadrangular sails.
(e) Numerical simulation of a flag in the wind by Ref. [13]. (f) A
flapping flag on a windy day.
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numerical simulation, showing that the same flag in the
same wind remains flat if weightless but flaps with oblique
waves otherwise. For another observation of oblique waves
in numerical simulations, see [14].

The flag is a piece of cloth held in the wind just like sails
are. We may, inspired by Ref. [15], name its elements in
analogy to quadrangular sails. See Fig. 1; the leading and
trailing edges are the luff and the leech, the top and bottom
edges are the head and the foot; the top and bottom corners
at the pole are the throat and the tack, and the top and
bottom free corners are the peak and the clew, respectively;
see [16,17].

Wave obliquity is of geometrical origin. Consider
first the case sketched in Fig. 2(a): no wind—we just distort
the rectangular piece of cloth by bringing the leech down;
the lower free edge must shorten, and, since the length
of the cloth is constant, it wrinkles. These wrinkles
connect the throat to a wavy foot and naturally form an
oblique pattern. We could in a first step think of the flag’s
undulation as these wrinkles, advected with the wind along
the flag. This wave can grow in amplitude while propagat-
ing if instability is strong or decays otherwise.

This first mechanism is really a simplified configuration;
let us consider the effect of aerodynamic forces in addition
to the cloth weight. Fluid drag generates a tension mitigat-
ing the instability, but it is also the only force which can
oppose collapse due to weight. The complete surface of
the cloth is subject to an oblique force composed of the
downward weight and the backward drag as sketched in
Fig. 2(b). It is clear that horizontal drag can only partly
oppose the weight, but it is not easy to determine which is
the exact zone of the flag that will be able to hold flat. On
the other hand, we may imagine an analog configuration
for which the answer is straightforward. This is the case for

a flag hanging under its weight only but from a tilted pole
as in Fig. 2(c). It is then clear that part B will not hold flat
but shall fold and hang below the throat. Indeed, the down-
ward motion of any point of the cloth is constrained by
inextensibility, most importantly from the tack and throat
whose constraining effect is represented by arcs of circles.
Inextensibility forbids any A point to move down, but all B
points may through a downward motion reduce the poten-
tial energy, so they will. For a true cloth, a slight bending
rigidity and the associated elastic energy will partly oppose
folding. Now see Fig. 2(d), for the flag put back in the
wind. We must expect just the same: Zone B folds or
wrinkles, and these wrinkles are advected with the wind
and the flag undulates with oblique waves.
The shape of sails is seldom a perfect triangle; sail-

makers add an arc of extra material on the leech, called
the roach [16]. By analogy with this part of the sail which
is not directly held between mast and boom, we may call
zone B the flag’s roach. Also, the frontier may be called the
roach line and ! the roach angle.
We have here introduced a useful notion: As long as the

roach line passes through the cloth—as long as there is a
roach—there is no basic stationary flat state whose stability
can be formally studied; the roach must collapse and will
remain subject to endless flapping. There is no roach if the
cloth is cut below the roach line in a triangle shape or if the
pole is tilted. If so, there is in fact a stationary state, and
assessment of its stability under aerodynamic forces is
relevant. If bending rigidity is imparted to the cloth, the
flat configuration becomes a stationary state and the roach
is unstable to buckling under its own weight.
Note also that we have not considered aerodynamic

stability in this discussion: The roach shall fall and fold
whatever the instability as predicted by the weightless
linear analysis. If the two-dimensional equivalent flag
were in addition unstable, the gravity collapse of the roach
would be there to feed the motion: Indeed, instability is
merely the process by which preexisting waves may grow
in amplitude. We know now where the preexisting waves
may come from.
Advertising banners towed by airplanes are a useful

illustration of the above conception. The banners carry
no wave, which would otherwise form a great hazard for
the flight. Along with our analysis, the main missing
ingredient for flutter is here the absence of a pole
holding the front of the cloth vertical: no geometrical cause
for wave nucleation. The force balance on the cloth—
aerodynamic and weight—will naturally align the free
banner with the roach line as in Fig. 2(d).
This notion of a roach, central to our purpose, must be

certified through a quantitative analysis. We first consider
the case of a laminar flow. The average viscous drag per

unit surface on a flat plate is f ¼ 1:3Re!1=2"U2 [5,18],
where the Reynolds number Re ¼ "UL=# is based on flag
length L and fluid viscosity# and density ". We obtain the

FIG. 2 (color online). Geometrical justification of the oblique
waves. (a) Oblique pattern obtained by geometrical deformation
of the cloth. (b) Sketch of the oblique surface force applied on
the cloth: weight plus fluid drag. (c) Analogy with a tilted cloth
and definition of the roach: zone B, which would collapse under
the cloth weight. (d) Oblique pattern of waves resulting from the
collapse of the roach and comparison with a banner aligned with
the external oblique force such that no roach is created.
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angle ! from the pole by using the balance of cloth weight
and viscous pull:

tanð!Þ ¼ f

$g
¼ 1:3Re!1=2 "U

2

$g
¼ 1:3Re!1=2 Fr

2

r
(1)

with $ the cloth density, r ¼ $="L the cloth-fluid density
ratio, and the Froude number Fr ¼ U=

ffiffiffiffiffiffiffi
gL

p
. We compare

this formula for the roach angle and thus the wave obliquity
with data from Ref. [13]. We have four cases with gravity
at our disposal, with Re ¼ 200, Fr 2 ½1;

ffiffiffi
5

p
&, and r 2

½0:2; 1&. We measure ! on these simulated data by coloring
the cloth according to the sign of its deflection, as shown in
Fig. 1(e), and recording the largest and smallest angles of
the waves upstream of the bulge that forms when the cloth
folds down at low wind velocities. Case (4) shows the best
agreement, which behaves closest to what we expect in our
theoretical description of the roach: a moderate transverse
deformation and a well-defined pattern of propagative
waves rather than a bulge of folds.

For large Reynolds numbers, the flow quickly becomes
turbulent. The turbulent boundary layer on both sides of a
flat plate exerts an average drag f ¼ 0:072Re!1=5"U2

[18], which leads to a roach angle

tanð!Þ ¼ 0:072Re!1=5 "U
2

$g
: (2)

We performed a set of wind tunnel experiments using a
0:6' 0:6 m2 silk flag of density $ ¼ 42 g=m2 (r ’ 0:06).
The cloth is clamped to a vertical wire by using Scotch
tape, and its motion is recorded from the side by using a
high speed camera. The wave activity can be appreciated
from the shadow-reflection pattern of an halogen
lighting below and upstream of the flag. The wind speed
U is measured by using a Pitot tube upstream of the test

section. Figure 3(b) displays the smallest and largest wave
angles obtained from the video sample by measuring the
straight shadow lines originating at the luff and extending
across the flag.
The mere turbulent boundary layer pull of Eq. (2),

shown with a dashed line, largely underpredicts the wave
angle. We know, on the other hand, that in fluid-structure
instabilities onset of flutter induces a larger drag. A theo-
retical analysis was done for the case of a flapping flag in
Ref. [15], and measurements were performed in Ref. [19]
for a flag under longitudinal tension. In Fig. 9 of Ref. [19],
the drag of a fluttering polyethylene sheet is displayed with
comment that ‘‘the measured results indicate that the drag
experienced by the flag is generally of Oð10Þ greater than
that of a plate of equal dimensions.’’ The theoretical roach
angle with that magnified force is drawn as a solid line, and
we observe that the order of magnitude of the angle is now
much better.
This example shows that the mere viscous drag of a high

Reynolds number flow fails to have the flag fly. We have
justified the presence of oblique waves, so we may now
discuss three mechanisms by which obliquity will impart
the flag with aerodynamic lift. Here we denote by lift the
component of aerodynamic force which opposes weight
and by drag the component in the wind direction.
Finite amplitude waves nucleate free vortices and recir-

culation zones. This large scale unsteadiness induces
through pressure forces across the cloth a drag much larger
than that of viscous shear. In Ref. [15], it is shown that,
against the usual conception, a structural aspect of the large
wave motion may also be responsible for large tension due
to the in-plane back and forth motion of the cloth. These
are the effects we invoked to predict a realistic wave angle
in Fig. 3(b). In Ref. [19], the force from the unsteady
motion of a flapping flag was measured only horizontally,

FIG. 3 (color online). Measurement of the wave angle. (a) Low Reynolds number; the wave angle obtained by a balance of
aerodynamic drag and weight for a laminar flow from Eq. (1), compared to numerical simulations from Ref. [13]. The flag is colored in
blue (red) for positive (negative) deflections of the cloth. (b) High Reynolds number; wave angle estimated from turbulent boundary
layer drag using Eq. (2) (dashed line) and with a force magnified to account for extra drag due to large amplitude wave motion (solid
line). The flag motion is shown in a movie included as Supplemental Materials [21].
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but in fact the aerodynamic force must be orthogonal to the
wave’s crest and induces lift as sketched in Fig. 4(a).

This first lift is a mere modification of the effect already
known for vertical waves. A new effect is found in the
downward deflection of streamlines. The situation is best
illustrated in Fig. 4(b) by an exaggeration of the oblique
pattern, here just formed of the head and peak flipping and
folding over. We observe this motion dominant at low wind
velocities. The flipping of the upper part of the flag in awide
coherent motion provides a large lifting surface. This situ-
ation must be unsteady: The cloth slips along the deflected
stream and flips over to the other side in a periodic motion.

We may invoke yet a third mechanism for lift through a
phenomenon analog to the crack of the whip [20]. This is
discussed for flags in Ref. [5] as a ‘‘snapping event.’’ When
large waves propagating along the cloth reach the leech,
the kinetic energy stored up is focused through reflection at
the free boundary and induces a fast flip of the tip: the snap,
responsible for quick and large tension event, which peaks
at about 5 times the average pull. Now through obliquity,
this snapping is directed upward at the peak as sketched in
Fig. 4(c), and we may speculate that the snapping at a
corner would be even more violent through focusing onto a
smaller area. We note that the peak is typically where old
flags show most wear.

Now that we have introduced the additional forces due to
the presence of the waves, we may think of a wave configu-
ration in a pattern of an accordion linked to the throat as
illustrated in Fig. 1(c). Through the magnified pull, all
points at the cloth are strongly dragged away from the
pole, aft, and up. The configuration most compatible with
this pull and the weight is a downward rotation of beams
stemming from the throat: the accordion wrinkles. Indeed,
we observe this pattern in the photograph of Fig. 1(f) but in a
motion of lesser coherence with erratic connections and
dissolution of a general pattern of accordion wrinkles.
The notion of a roach is still relevant in this configuration
to define a region which is not concerned with the gravity
collapse, but now the most relevant measure should be the
oblique angle of the head, which is linked to thewavelength
and the wave amplitude along the cloth.

Oblique waves are omnipresent in the flapping of flags
under gravity. We have explored their origin and impact on

the ability of the flag to fly in the wind through a lift effect.
The roach angle ! is a simple way to describe the wave
obliquity. The drag of a flapping flag in turbulent flow
conditions was measured in Ref. [19]; it would be very
interesting if the lift could be measured as well. We should
not be surprised if the scale measured a weight lesser than
that of the cloth. In the extreme, the cloth may be entirely
carried by the wind. More is impossible since a flag de-
flected upward would form a reversed oblique pattern
of waves [Fig. 2(a), flipped], and the vertical force we
have described would then push the flag back down to
horizontal.
We are grateful to Professor Hyung Jin Sung andWei-Xi
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aging discussion during his stay at the lab.We could use the
wind tunnel and high speed camera at the Laboratoire de
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FIG. 4 (color online). Three causes of lift due to oblique
waves. (a) Aerodynamic resistance due to a large wave ampli-
tude. (b) Lift through downpush of the stream. (c) Lift through
snapping at the peak.
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