

Résonance et contrôle en cavité ouverte

Jérôme Hœpffner *KTH, Sweden*

Avec Espen Åkervik, Uwe Ehrenstein, Dan Henningson

Outline

- The flow case
- Investigation tools
- resonance
- Reduced dynamic model for feedback control
- Control performance

Boundary layer with cavity

2D flow over a smooth cavity Inflow: Blasius profile Reynolds number : 320

Cavity: Shear layer mode (compressible)

KTH Mechanics

Nieren, M=0.64 (b) Run 2M6, M=0.6

(d) Run 2M7, M=0.7

(c) Schlieren, M=0.7

, 31-0,7

From Rowley et al, JFM 2002

Self sustained cycle: perturbation \rightarrow growth \rightarrow pressure wave \rightarrow new perturbation

Cavity: Wake mode

From Rowley et al, JFM 2002

Subcritical bifurcation to oscillating state

Low frequency ejection of large vortices. (for large aspect ratio)

Sound generation in organ pipes

from http://www.fluid.tue.nl/GDY/acous/

Interaction of the jet and the edge generates sound.

Cavity: linear instability of the incompressible flow?

- Stable boundary layer, or convectively unstable
- convectively unstable shear layer

Questions:

- Can we have an globally unstable cavity flow?
- What role does the pressure play in the incompressible case?
- Can we control the cavity flow?

Investigation tools

DNS to compute the base flow: Chebyshev in wall normal, finite difference in streamwise.

Stability analysis by computation of 2D eigenmodes: Chebyshev/Chebyshev and Arnoldi

Optimal growth by optimization over initial conditions : Singular value decomposition, using the reduced model

Control optimization by solution of two Riccati equations : Using the reduced order model

The eigensolver

2D Navier-Stokes + continuity

$$\begin{cases} -i\omega\hat{u} = -(U\cdot\nabla)\hat{u} - (\hat{\mathbf{u}}\cdot\nabla)U - \frac{\partial\hat{p}}{\partial x} + 1/Re\nabla^{2}\hat{u} \\ -i\omega\hat{v} = -(U\cdot\nabla)\hat{v} - (\hat{\mathbf{u}}\cdot\nabla)V - \frac{\partial\hat{p}}{\partial y} + 1/Re\nabla^{2}\hat{v} \\ 0 = \nabla\cdot\mathbf{u} \end{cases}$$

Generalized eigenproblem:

$$B\omega \mathbf{u} = A\mathbf{u}$$

To be rewritten

$$A^{-1}B\mathbf{u} = \frac{1}{\omega}\mathbf{u}$$

Solved by Arnoldi iterations.

Matrix formulation:

$$\begin{pmatrix} -i\omega\hat{u} \\ -i\omega\hat{v} \\ 0 \end{pmatrix} = \begin{pmatrix} \dots & \dots & -\frac{\partial}{\partial x} \\ \dots & \dots & -\frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & C \end{pmatrix} \begin{pmatrix} \hat{u} \\ \hat{v} \\ p \end{pmatrix}$$

Additional constraints ${\it C}$

Grids & resolution

The resolution are:

DNS: nx=2048 finite difference, ny=97 Chebyshev, Lx=409, Ly=80

EIG: nx=250 Chebyshev, ny=50 Chebyshev, Lx=270. Ly=15.

The base flow

Flow is composed of :

- Boundary layers (before and after the cavity)
- Shear-layer over the cavity
- Recirculating zone inside the cavity

The base flow

Globally unstable flow \rightarrow Base flow obtained from time averaging

Eigenvalues

Spectra: unstable shear layer mode, (m1)

Spectra: unstable shear layer mode, (m2)

Spectra: higher frequency mode, (m3)

Spectra: more damped, (m4)

Spectra: propagative mode, (m5)

Spectra: propagative mode free-stream, (m6)

eigenmodes and their adjoint, Integrated

Where are the modes localised and where are they sensitive ?

Optimal transient energy growth from initial conditions

System x(t) = Ax, $\dot{x}(0) = x_0$, with solution $x(t) = e^{At}x_0$

Find the initial condition x_0 maximizing

 $G(t) = \max_{x_0} \frac{\langle x(t), x(t) \rangle}{\langle x_0, x_0 \rangle}, \quad \text{adjoint:} \langle Ax_1, x_2 \rangle = \langle x_1, A^+x_2 \rangle \forall x_1, x_2$

$$G(t) = max \frac{\langle e^{At}x_0, e^{At}x_0 \rangle}{\langle x_0, x_0 \rangle} = max \frac{\langle e^{A^+t}e^{At}x_0, x_0 \rangle}{\langle x_0, x_0 \rangle}$$

leads to

 \rightarrow Maximum growth at time t: eigenvalue of $e^{A^+t}e^{At}$.

Optimal growth in the cavity

- Global instability
- Potentiality of strong energy growth
- Low frequency cycle

Trajectories from the worst initial conditions

The most dangerous initial condition

Forcing/initial condition

A wave packet at the beginning of the shear layer.

Animation of flow cycle

Flow cycle, \boldsymbol{u} and \boldsymbol{v}

U, x/time diagram, y=4

Flow cycle, the pressure

P, x/time diagram, y=5

Generation of **global pressure change** when the wave-packet impacts on the downstream lip **Regeneration of disturbances** when the pressure hits the upstream lip

Flow cycle, the pressure

P, x/time diagram, y=5

KTH Mechanics

Control

Control

Seek to minimize the energy growth

- One actuator upstream
- One sensor downstream
- Oscillating disturbance in the shear layer

Feedback control

Using a dynamic model of the system:

 $\begin{cases} \dot{x} = Ax + B\mathbf{u} \\ \mathbf{r} = Cx \end{cases}$

One can optimize for the feedback

 $u = \mathcal{G}(r)$

- \bullet The model in 2D is too big for optimization $\rightarrow~$ reduced model .
- For reduction: project the dynamics on the least stable eigenmodes.
- Finally, couple the reduced controller and the flow system

Model reduction

Galerkin projection on least stable eigenmodes:

Physical space:

Eigenmode space:

Projection on eigenmodes \rightarrow **biorthogonal** set of vectors:

 $\begin{cases} \mathsf{Eigenmodes:} \ q_i, \\ \mathsf{Adjoint operator:} \ A^+/ < Ax_1, x_2 > = < x_1, A^+x_2 >, \forall x_1, x_2 \\ \mathsf{Adjoint eigenmodes:} \ q_i^+, \\ \mathsf{Biorthogonality:} \ \delta_{ij} = < q_i, q_j^+ >, \quad \mathsf{Projection:} \quad k_i = < x, q_i^+ > \end{cases}$

Control terminology

- Estimation: From sensor information, recover the instantaneous flow field.
- Full information control: From full knowledge of the flow state, apply control.
- **Compensation:** Close the loop by using the estimated flow state for control.
- Model reduction: Project the dynamics on a set of selected basis vectors.
- **Control penalty:** Penalisation of the actuation amplitude.
- **sensor noise:** Uncertainty in the measured signal.
- **Disturbances:** External forcing exciting the flow.
- **Objective function:** Function of the flow state to be minimized.

Central elements of the design

1) From the sensors, estimate the flow state:

- Sensor location
- Sensor noise
- Disturbance model (here perturbations at the inflow)

2) Using the flow state information, apply control :

- Actuator location
- Control penalty
- Objective function

Optimization is done by solving two Riccati equations

Testing procedure

- 1. Decide penalties, sensor noise, locations
- 2. Reduce the model by projection
- 3. Optimize for the feedback
- 4. Couple flow system and controller

The reduced controller (20 states) is applied on the full system (20,000 states)

5. Compute energy of controlled flow

Compensation performance

Flow, compensated flow

KIN Wechanics

Flow/compensated flow animation

Flow/compensated flow, x/t diagram

flow, V(y=4)

Flow/compensated flow, x/t diagram

Flow, pressure(y=7)

Actuation signal

Starting the compensator at later times

Dynamic distortion

blue :flow

Red :compensated flow

Spectra with and without compensation

Control gain

Function used to extract the actuation signal from the flow

Estimation gain

Estimation gain, for u 0.02 -0.02 Estimation gain, for v 0.02 -0.02

Function used to force the estimator flow

Compensator impulse response

Compensator:

- input (sensor signal, r)
- output (Control signal, u)
- linear system

The input-output relation is described by convolution

Conclusion

- Found supercritical Hopf bifurcation for long cavity
- Incompressible cavity can have global cycle due to pressure.
- Global eigenmodes can be used for analysis and model reduction.
- Model reduction allows optimal feedback design for large systems.
- Non-parallel effects/global instabilities can be treated.

KTH Mechanics

Extra slides

Boundary conditions

