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Boundary layer with cavity
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2D flow over a smooth cavity

Inflow: Blasius profile

Reynolds number : 320



Cavity: Shear layer mode (compressible)

From Rowley et al, JFM 2002

Self sustained cycle: perturbation→ growth→ pressure wave→ new perturbation

Also known as Rossiter mechanism



Cavity: Wake mode

From Rowley et al, JFM 2002

Subcritical bifurcation to oscillating state

Low frequency ejection of large vortices. (for large aspect ratio)



Sound generation in organ pipes

from http://www.fluid.tue.nl/GDY/acous/

Interaction of the jet and the edge generates sound.



Cavity: linear instability of the incompressible flow?

• Stable boundary layer, or convectively unstable

• convectively unstable shear layer

Questions:

• Can we have an globally unstable cavity flow?

• What role does the pressure play in the incompressible case?

• Can we control the cavity flow?



Investigation tools

DNS to compute the base flow:

Chebyshev in wall normal, finite difference in streamwise.

Stability analysis by computation of 2D eigenmodes:

Chebyshev/Chebyshev and Arnoldi

Optimal growth by optimization over initial conditions :

Singular value decomposition, using the reduced model

Control optimization by solution of two Riccati equations :

Using the reduced order model



The eigensolver

2D Navier-Stokes + continuity





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0 = ∇ · u

Generalized eigenproblem:

Bωu = Au

To be rewritten

A−1Bu =
1

ω
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Solved by Arnoldi iterations.
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Grids & resolution

The resolution are:

DNS: nx=2048 finite difference, ny=97 Chebyshev, Lx=409, Ly=80

EIG: nx=250 Chebyshev, ny= 50 Chebyshev, Lx=270. Ly=15.
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DNS grid vs eigenmode grid



The base flow

Streamwise velocity profiles u:
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Flow is composed of :

• Boundary layers (before and after the cavity)

• Shear-layer over the cavity

• Recirculating zone inside the cavity



The base flow

Globally unstable flow → Base flow obtained from time averaging



Eigenvalues
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Spectra: unstable shear layer mode, (m1)



Spectra: unstable shear layer mode, (m2)



Spectra: higher frequency mode, (m3)



Spectra: more damped, (m4)



Spectra: propagative mode, (m5)



Spectra: propagative mode free-stream, (m6)



eigenmodes and their adjoint, Integrated
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Adjoint eigenmodes integrated in y 

Where are the modes localised and where are they sensitive ?



Optimal transient energy growth from initial conditions

System x(t) = Ax, ẋ(0) = x0, with solution

x(t) = eAtx0

Find the initial condition x0 maximizing

G(t) = maxx0

< x(t), x(t) >

< x0, x0 >
, adjoint: < Ax1, x2 >=< x1, A

+x2 > ∀x1, x2

leads to

G(t) = max
< eAtx0, e

Atx0 >

< x0, x0 >
= max

< eA
+teAtx0, x0 >

< x0, x0 >

→ Maximum growth at time t: eigenvalue of eA
+teAt .



Optimal growth in the cavity

• Global instability

• Potentiality of strong energy growth

• Low frequency cycle
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Energy envelopes, number of modes from 1 to 260



Trajectories from the worst initial conditions
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The most dangerous initial condition

A wave packet at the beginning of the shear layer.



Animation of flow cycle



Flow cycle, u and v



Flow cycle, the pressure

Generation of global pressure change when the wave-packet impacts on the downstream lip

Regeneration of disturbances when the pressure hits the upstream lip



Flow cycle, the pressure



Control



Control

Seek to minimize the energy growth
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Sensing

Actuation
Disturbance

• One actuator upstream

• One sensor downstream

• Oscillating disturbance in the shear layer



Feedback control

Using a dynamic model of the system:
{

ẋ = Ax + Bu

r = Cx

One can optimize for the feedback

u = G(r)

• The model in 2D is too big for optimization → reduced model .

• For reduction: project the dynamics on the least stable eigenmodes.

• Finally, couple the reduced controller and the flow system



Model reduction

Galerkin projection on least stable eigenmodes:

Physical space:
{

ẋ = Ax + Bu

r = Cx

Eigenmode space:



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Projection on eigenmodes → biorthogonal set of vectors:






Eigenmodes: qi,

Adjoint operator: A+/ < Ax1, x2 >=< x1, A
+x2 >, ∀x1, x2

Adjoint eigenmodes: q+
i ,

Biorthogonality: δij =< qi, q
+
j >, Projection: ki =< x, q+

i >



Control terminology

• Estimation: From sensor information, recover the instantaneous flow field.

• Full information control: From full knowledge of the flow state, apply control.

• Compensation: Close the loop by using the estimated flow state for control.

• Model reduction: Project the dynamics on a set of selected basis vectors.

• Control penalty: Penalisation of the actuation amplitude.

• sensor noise: Uncertainty in the measured signal.

• Disturbances: External forcing exciting the flow.

• Objective function: Function of the flow state to be minimized.



Central elements of the design

1) From the sensors, estimate the flow state:

• Sensor location

• Sensor noise

• Disturbance model (here perturbations at the inflow)

2) Using the flow state information, apply control :

• Actuator location

• Control penalty

• Objective function

Optimization is done by solving two Riccati equations



Testing procedure

1. Decide penalties, sensor noise, locations

2. Reduce the model by projection

3. Optimize for the feedback

4. Couple flow system and controller

The reduced controller (20 states) is applied on the full system (20,000 states)

5. Compute energy of controlled flow



Compensation performance
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Good control performance from the second cycle

Reduced order model:20 states



Flow/compensated flow animation



Flow/compensated flow, x/t diagram



Flow/compensated flow, x/t diagram



Actuation signal
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Starting the compensator at later times
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Compensator cannot affect the disturbance propagation

but can affect the disturbance generation



Dynamic distortion

blue :flow

Red :compensated flow

0 0.05 0.1 0.15 0.2 0.25

−0.08

−0.06

−0.04

−0.02

0

Spectra with and without compensation



Control gain

Function used to extract the actuation signal from the flow



Estimation gain

Function used to force the estimator flow



Compensator impulse response

Compensator:

• input (sensor signal, r )

• output (Control signal, u )

• linear system

The input-output relation is described by convolution

u(t) =

∫ ∞

τ=0

G(τ)r(t− τ)

0 50 100 150 200 250 300 350 400 450 500

−2

0

2

x 10
−5

τ

G

Compensator Impulse response 



Conclusion

• Found supercritical Hopf bifurcation for long cavity

• Incompressible cavity can have global cycle due to pressure.

• Global eigenmodes can be used for analysis and model reduction.

• Model reduction allows optimal feedback design for large systems.

• Non-parallel effects/global instabilities can be treated.



Extra slides



Base flow:

Normal velocity: 20 40 60 80 100 120 140
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Re 300/Re 500: 20 40 60 80 100 120 140 160
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Boundary conditions
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