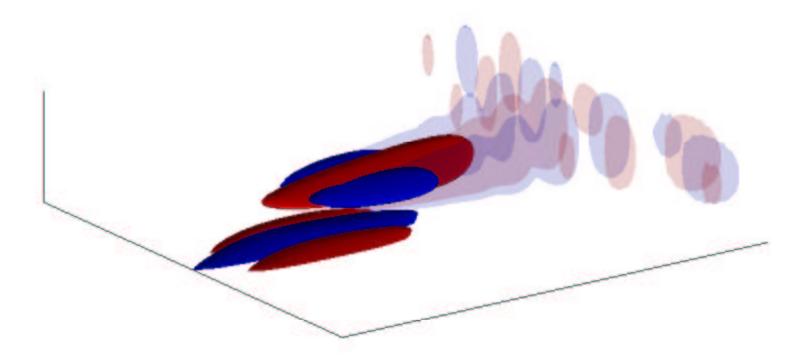


Linear feedback control of transition in shear flows

KTH Mechanics



Jérôme Hœpffner Mattias Chevalier, Thomas Bewley Supervisor Dan Henningson Department of Mechanics, KTH, Sweden

Optimal linear control

- State model using linearized Navier-Stokes (LNS)
- OS-SQ formulation assuming parallel mean flow
- External sources of disturbances
- Control at the wall with blowing/suction
- Minimize disturbance energy

Shear flows are highly sensitive to external sources of disturbances because of the non-normality of the underlying dynamical operator: OS-SQ

OS-SQ equations

KTH Mechanics

Dynamics of small perturbations qabout the laminar base flow profile U

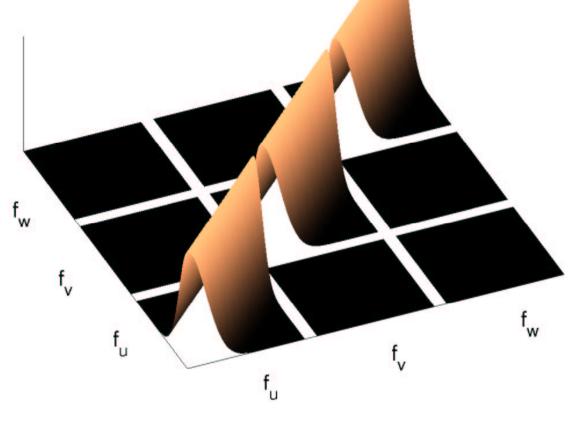
Flow state $q = (v, \eta)^T$ and dynamics A $\underbrace{\begin{pmatrix} \dot{v} \\ \dot{\eta} \end{pmatrix}}_{\dot{q}} = \underbrace{\begin{pmatrix} \mathcal{L}_{OS} & 0 \\ \mathcal{L}_C & \mathcal{L}_{SQ} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} v \\ \eta \end{pmatrix}}_{q} + \underbrace{\begin{pmatrix} f_v \\ f_\eta \end{pmatrix}}_{f}, \quad \underbrace{\begin{pmatrix} v(0) \\ \eta(0) \end{pmatrix}}_{q(0)} = \underbrace{\begin{pmatrix} v_0 \\ \eta_0 \end{pmatrix}}_{q_0}.$ $\begin{cases} \mathcal{L}_{OS} = \Delta^{-1}(-ik_x U\Delta + ik_x U'' + \Delta^2/Re), \\ \mathcal{L}_{SQ} = -ik_x U\Delta/Re, \\ \mathcal{L}_C = -ik_z U', \end{cases}$

External source of disturbances f as a volume forcing

External disturbances

Forcing exciting the flow state:

- Acoustic waves
- Wall roughness
- Free stream turbulence



Covariance matrix $R_{ff} = E[ff^*]$, for $f = (f_u, f_v, f_w)^T$

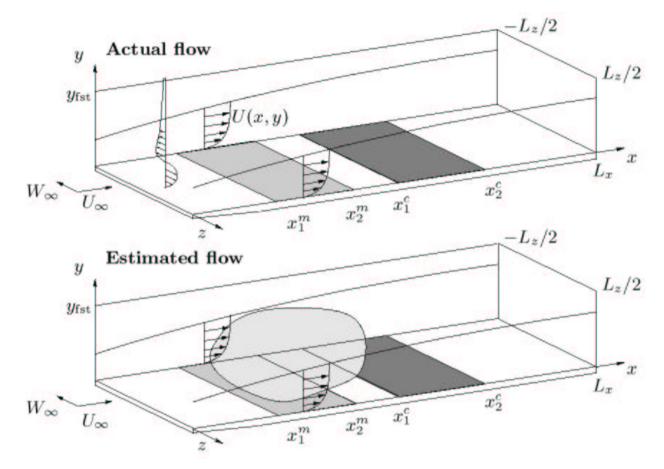
Measurement and actuation

Measure instantaneous wall shear stress and wall pressure.

$$\begin{cases} \tau_x = \tau_{xy}|_{wall} = \mu \frac{\partial u}{\partial y}\Big|_{wall} = \frac{i\mu}{k^2} (k_x D^2 v - k_z D\eta)|_{wall}, \\ \tau_z = \tau_{zy}|_{wall} = \mu \frac{\partial w}{\partial y}\Big|_{wall} = \frac{i\mu}{k^2} (k_z D^2 v + k_x D\eta)|_{wall}, \\ p = p|_{wall} = \frac{\mu}{k^2} D^3 v|_{wall}. \end{cases}$$

Actuate by means of wall blowing and suction (boundary conditions on v)

Control procedure



- Get difference in measurements from flows
- Apply estimator forcing in estimated flow
- Compute control signal from estimated flow
- Apply control signal in flow and estimator

Formulation of the LQG control problem

$$\begin{aligned} \mathsf{Flow} & \begin{cases} \dot{q} = Aq + B_1 f + B_2 u \\ r = Cq + g. \end{cases} \\ & \mathsf{Estimator} \begin{cases} \dot{\hat{q}} = A\hat{q} + B_2 u - v \\ \hat{r} = C\hat{q}. \end{cases} \\ & \mathsf{Feedback} \begin{cases} \mathsf{Control:} \quad v = L(r - \hat{r}) \\ & \mathsf{Estimation:} \quad u = K\hat{q}. \end{cases} \end{aligned}$$

Objective function:

minimize kinetic energy

$$\mathcal{J} = \frac{1}{2} \int_{-1}^{1} (q^* Q q + \ell^2 u^* u) \, \mathrm{d}t,$$

l penalty on control effort

Decouple into an estimation problem and a full information control problem.

Solve two optimization problems to get the optimal L and K.

Solution of the optimisation

- 1. Constrained optimisation problem
- 2. Lagrange multipliers \rightarrow unconstrained minimisation of a Lagrangian
- 3. Obtain operator equation : Riccati equation
- 4. Solve the Riccati equation by spectral factorization

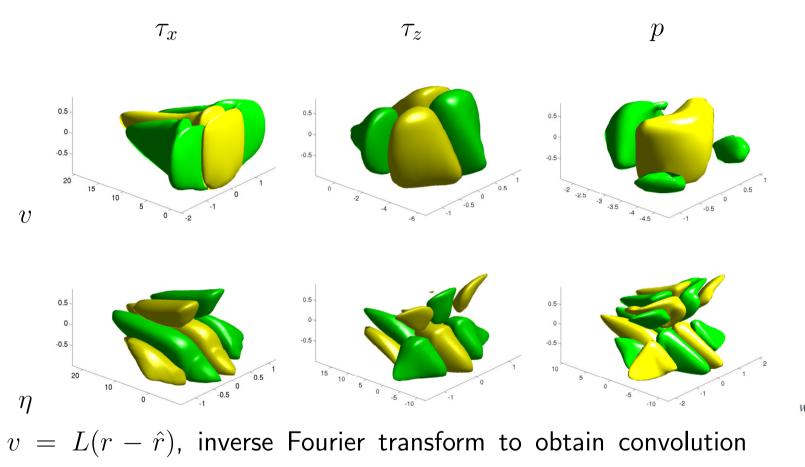
$$Control: \begin{cases} A^*X + XA - \frac{1}{l^2}XB_2B_2^*X + Q = 0, \\ Control \text{ gain } K = -\frac{1}{l^2}B^*X, \end{cases}$$
$$Estimation: \begin{cases} AP + PA^* + B_1R_{ff}B_1^* - PC^*G^{-1}CP = 0, \\ \text{Estimation gain } L = -PC^*G^{-1}. \end{cases}$$

Q is the quadratic norm, R_{ff} is the covariance of f

Results

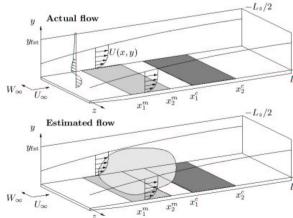
Compact estimation kernels

KTH Mechanics



kernels

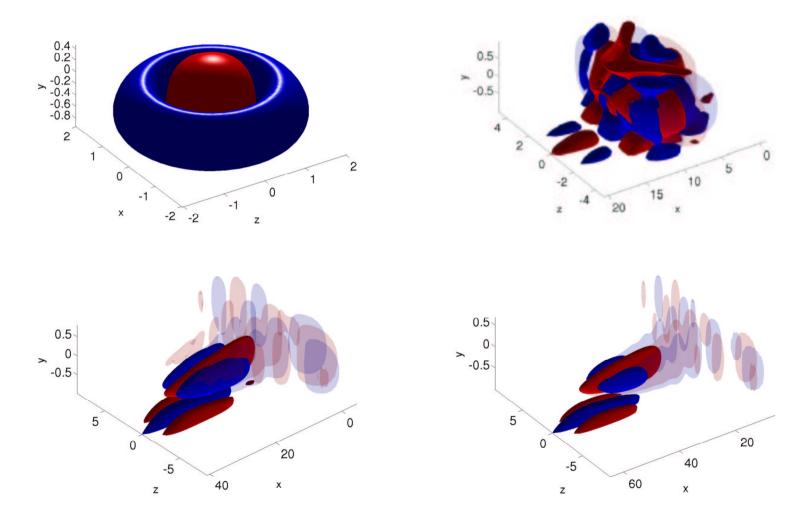
 \rightarrow 3D forcing in the estimator flow.



Feedback controlled initial condition

KTH Mechanics

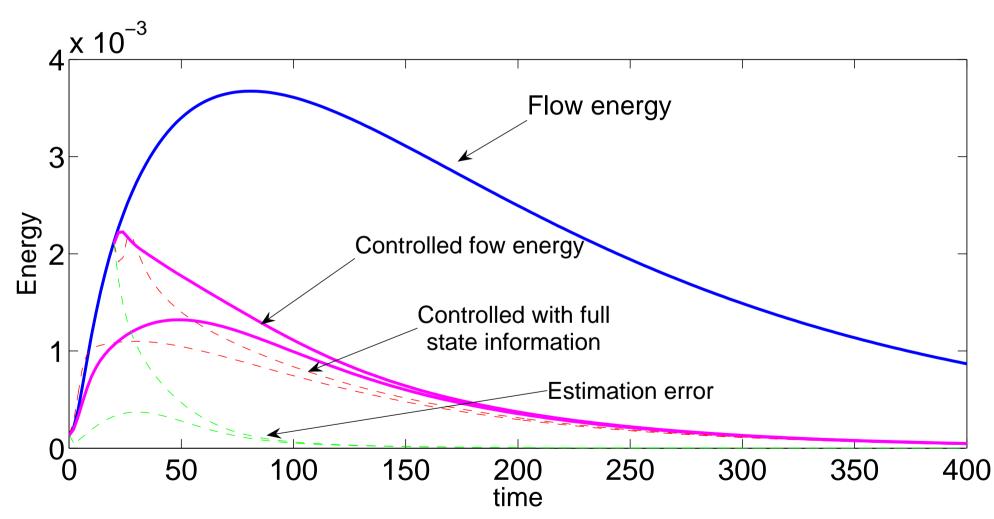
Axisymmetric localised initial condition



Wall normal velocity for original flow and controlled flow, Time 0, 10, 70, 90.

Energy evolution

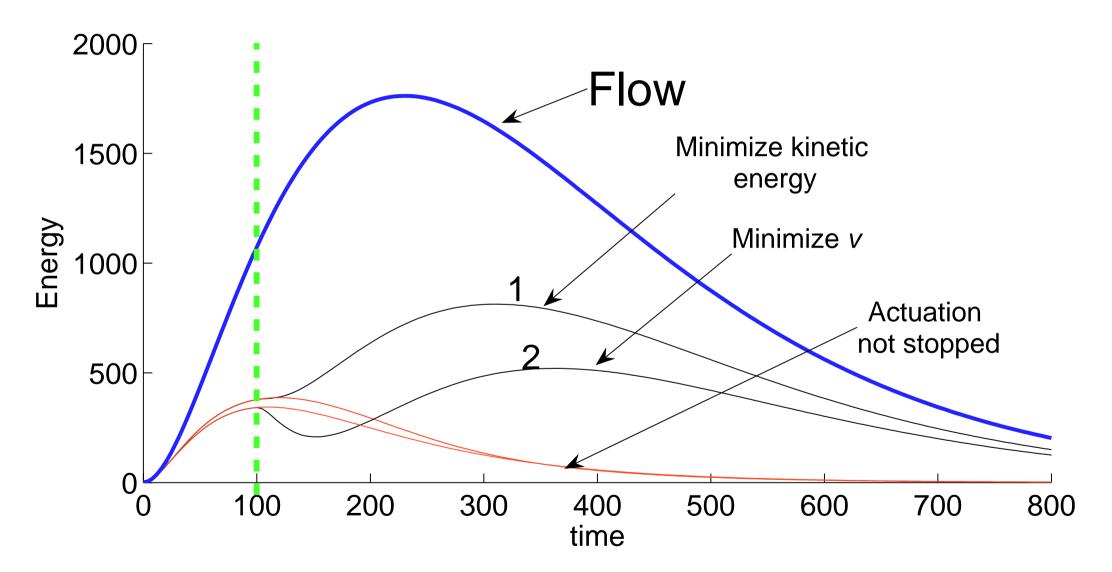
Turn on the controller at time 0 and time 20



Objective function flexibility

Evolution of a WCD initial condition in a B.L.

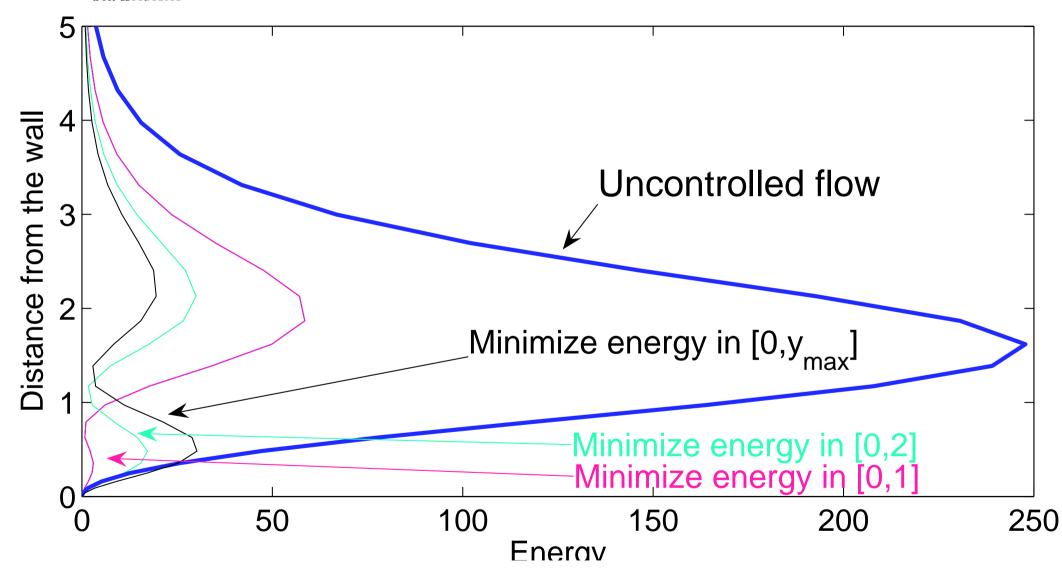
KTH Mechanics



The control is turned off at time 100

Objective function flexibility

Flow forced by stochastic external disturbance



The controller seeks to eject the disturbance out of the B.L.

Conclusions

- Optimal control and estimation applied to linearized Navier–Stokes
- Stochastic description of the external disturbance sources is important
- Localized perturbation controlled using wall measurements and wall actuation only
- Examples of flexibility of the objective function:
 - control effect after the actuation is stopped
 - how to eject the disturbances out of the boundary layer

Related talk

Mattias Chevalier,

Linear control and estimation in boundary layer flows Day 2, session Flow Control II, 5:50

 \rightarrow Same control scheme \rightarrow spatially developing flows