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subject to stochastic excitations

Jérôme Hœpffner 2006
KTH Mechanics
SE-100 44 Stockholm, Sweden.

Abstract

In this thesis, we adapt and apply methods from linear control theory to shear
flows. The challenge of this task is to build a linear dynamic system that mod-
els the evolution of the flow, using the Navier–Stokes equations, then to define
sensors and actuators, that can sense the flow state and affect its evolution.
We consider flows exposed to stochastic excitations. This framework allows to
account for complex sources of excitations, often present in engineering appli-
cations. Once the system is built, including dynamic model, sensors, actuators,
and sources of excitations, we can use standard optimization techniques to de-
rive a feedback law. We have used feedback control to stabilize unstable flows,
and to reduce the energy level of sensitive flows subject to external excitations.

Descriptors: Control, estimation, Stochastic excitations, feedback, model re-
duction, wall-bounded shear flow.



Preface

This thesis considers the application of linear feedback control to wall bounded
shear flow systems. The first part is an introduction to the research presented
in the second part, with special emphasis on stochastic methods. A guide to
the papers and the different authors respective contributions is also included
in the last chapter of part 1 of the thesis.

The papers in part 2 are adjusted to comply with the present thesis format
for consistency, but their contents have not been altered compared to published
or submitted versions, except for minor corrections.
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Part 1

Summary





CHAPTER 1

Introduction

We are constantly immersed in fluids. It is thus natural that the motion of flows
is of great interest. In this thesis, we study flow stability, and attempt to control
flow instability. A flow is said unstable whenever small excitations tend to
transform a regular, well ordered motion into an unsteady, erratic motion. The
discipline of flow stability is concerned with categorizing, modeling, predicting,
i.e. understanding the instances in which a flow becomes unstable, and the
mechanisms of this process.

Common encounters of stable and unstable flows include: breathing the
air, swimming in the water, feeling the wind, typhoons and tornados, the ocean
currents, the flow around aeroplane wings, the flows around boat sails and hulls,
flows around wind- and water-turbines, flow in steam engines, flow in pumps
(like the heart), flow in heat exchangers etc.

If a flow is stable when we would like it unsteady and erratic, or if a flow
is unstable when we would like it regular and well ordered, we should be able
to alter its dynamics. This is the concern of flow control.

Design or control necessarily imply the use of a model, as does prediction
or forecast. Control strategies based on explicit manipulations of a model are
termed model-based. The Navier–Stokes equations are a reliable model for a
wide range of fluids and flow regimes. We will use them to study flow stability
and as a model for flow control.

We would like to devise a control methodology where an artificial device,
the controller, interacts with the flow, in order to change its dynamics. The
system to be controlled can be accessed via actuators, and its state can be
measured via sensors. The coupling of the system and its controller is referred
to as feedback when the controller follows a predefined strategy on how to react,
this is the feedback law.

Interacting with processes is common practice of everyday life. When driv-
ing, we form with the car an hybrid system. This hybrid ”bio-mechanical”
system has interesting new features, if compared to a driver without car or
a car without a driver. This idea is very attractive for a fluid mechanician:
coupling ”in vivo” fields of mathematics as deep and abstract as partial dif-
ferential equation, numerical analysis and optimization theory, with fluid flows
and their stability properties. Are the new possibilities of such hybrid systems
less than the coupling between car and driver?

3



4 1. INTRODUCTION

The aim of research in flow control is to devise a framework within which,
given a flow case, the following questions can be routinely answered:

1. Is this flow possible to control?
2. Do we need to use feedback control?
3. Do we need to use model based optimization?
4.? What should we optimize for?
5.? How to model the system?
6. Which type of actuators and sensors can we use?
7. Which control architecture?
8.? How to describe the external excitations?
9. What are the internal uncertainties?

10. What is the acceptable level of uncertainty?
11.? How to simplify the model, and how much can we simplify it?
12. Which hardware implementation?

Items noted ? are considered in this thesis. We focused on model based feedback
control. Deriving and manipulating linear dynamic models is central to the field
of hydrodynamic stability. The related skills can be used to the design and
optimization necessary for feedback control. We used the linearized Navier–
Stokes equations to describe the flow dynamics. In this sense, the modeling
part of the control design was straightforward, but yielding a model difficult to
manipulate. We discretize in space the dynamic equations using spectral and
pseudospectral methods because these are of common use in hydrodynamic
stability. The control objective was to minimize the flow kinetic energy when
exposed to stochastic external excitations.

We chose to model external excitations using stochastic variables. Flows of
engineering interest are often exposed to complex excitations that are favourably
described by their statistics.

In chapter 1, we introduce several tools of hydrodynamic stability. In
chapter 2 we present the framework of stochastic variables and how it can be
used together with linear dynamic systems. In chapter 3 we formulate and
derive the control problem as a stochastic optimization. Chapter 4 is a quick
guide of the papers and author contributions included in part 2 of this thesis,
and a short conclusion/outlook is given in chapter 5.

1.1. Literature on flow control

The literature on flow control is constantly growing and has diversified in many
sub-topics. For an early review on the challenges of flow control, see Gunzberger
(1996) and Bewley (2001). For a recent review on flow control using linear feed-
back, see Bewley & Kim (2007). Here is a short selection of references. Linear
feedback control has been applied to laminar flows, for instance in Joshi et al.
(1997), Bewley & Liu (1998), Cortelezzi & Speyer (1998), and to turbulent
flows, see for instance in Kim (2003), Högberg et al. (2003a), Iwamoto et al.
(2005). It has been applied to spatially developing flows in Högberg & Hen-
ningson (2002), Cathalifaud & Bewley (2004a), Cathalifaud & Bewley (2004b).
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For modeling and control of vortex breakdown, see Gallaire et al. (2004). For
experimental implementation of feedback control, see e.g. Rathnasingham &
Breuer (2003) and Li & Gaster (2006) for boundary layer flows. Experimen-
tal implementation has also been achieved using genetic algorithms and neural
networks as in Lee et al. (1997) and Yoshino et al. (2003). There has been
several experimental and theoretical work on flow control at the department
of mechanics at KTH, see the PhD theses of Lundel (2003), Shiomi (2003),
Fransson (2003), Pralits (2003), Högberg (2001). Note that there are alterna-
tives to using feedback, see for instance Fransson et al. (2006), Airiau et al.
(2003), Gavarini et al. (2005), Amoignon et al. (2004). Stochastic analysis of
the linearized Navier–Stokes equations have been performed for instance in Far-
rell & Ioannou (1993), Bamieh & Dahleh (2001), Jovanović & Bamieh (2005).
Contribution to flow control from the dynamic systems community includes
Burns et al. (2002b), Burns et al. (2002a), Borggaard & Burns (1997), Aamo
& Krstic (2002). For feedback control applied to nonlinear systems, and the
related topic of reduced order modeling, see for instance King et al. (2005) and
Rowley & Williams (2006).

For more references, please consult the papers included in part 2 of this
thesis.

1.2. Flow stability

In this section, we introduce the basic tools and concept used for analysis of the
linear stability of flow systems. The fundamental notions are the linearization
about a base flow, the hypothesis of homogeneous directions, and the wave
decomposition. Going through these steps give a powerful framework for the
analysis of stability of common shear flows.

1.2.1. The Navier–Stokes equations

The motion of a fluid is governed by the conservation of momentum, i.e. the
acceleration of a fluid particle is proportional to the sum of the forces applied.
In the context of a continuous medium, the internal forces are termed stress.
The motion should as well conserve the mass of the fluid, i.e. fluid particles
cannot be created or destructed.

Most liquids and gases at room temperature and pressure, at speed low
compared to the speed of sound, and in geometries large compared to the
mean free path of atoms can be considered incompressible, so that the fluid
density will be considered constant.

All gases and most liquids composed of small molecules have the internal
stresses depending linearly on the pressure gradient and the local shear, they
are called Newtonian fluids.

The Navier–Stokes equations express the conservation of momentum for
Newtonian fluids. The dependent variables are the three components of the
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velocity field and pressure (u, v, w, p). The equations are





∂tu+ u∂xu+ v∂yu+ w∂zu = −∂xp+ ∆u/Re,

∂tv + u∂xv + v∂yv + w∂zv = −∂yp+ ∆v/Re,

∂tw+u∂xw+v∂yw+ w∂zw = −∂zp+∆w/Re,

(1.1)

where ∂t denote differentiation with respect to time, ∂x, ∂y, ∂z denote differenti-
ation with respect to the spatial coordinates x, y, and z, and ∆ = ∂xx+∂yy+∂zz

is the Laplacian operator.

The quantities involved in a flow are velocity, length, time, pressure, den-
sity, and viscosity. By choosing a reference length, a reference speed and a
viscosity, one can build reference values for all quantities. The system (1.1) is
written in non-dimensional form, where all variables have been divided by their
respective reference value, and where all reference values have been lumped in
the Reynolds number Re = U0L0/ν where U0 is the reference velocity, L0 is a
reference length and ν is the dynamic viscosity (viscosity over density). Two
flows with same Reynolds number are identical once scaled properly.

For an incompressible flow, since the density is constant, the conservation
of mass can be expressed by the conservation of volume

∂xu+ ∂yv + ∂zw = 0. (1.2)

This is the continuity equation, enforcing a divergent-free velocity field. This
condition can be seen as a constraint on the velocity variables u, v, w, and the
pressure in (1.1) plays the role of enforcing this constraint.

For a well defined mathematical solution to the partial differential equa-
tions (1.1), we must impose boundary conditions, i.e. the value of the velocity
and/or its derivatives at the boundaries of the domain.

1.2.2. Base flow and linearization

The first step of the stability analysis is to obtain the base flow. This base flow
should be a solution of the Navier–Stokes equations. It could be time varying,
but in this thesis, we consider steady solutions, i.e. flow fields for which the time
derivative in (1.1) vanishes. If the amplitude of perturbations superimposed
on this base flow decay in time, then the base flow is stable, if the amplitude
grows to a large amplitude, the base flow is unstable.

We can now decompose the total flow field as the base flow plus the per-
turbation

(u, v, w, p) = (U, V,W, P ) + (u′, v′, w′, p′) (1.3)

where (u, v, w, p) are the three velocity components and pressure of the total
flow, (U, V,W, P ) is the base flow profile, and (u′, v′, w′, p′) is the perturbation.
Inserting this decomposition in the Navier–Stokes equations, assuming a known
steady base flow, one obtains a nonlinear equation for the perturbation field.
After subtracting the Navier–Stokes equations for the base flow, and neglecting
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the quadratic terms in the perturbation variable one obtains

∂tu
′ + U∂xu

′ + u′∂xU + V ∂yu
′ + v′∂yU +W∂zu

′+ w∂zU = −∂xp
′ + ∆u′/Re

∂tv
′ + U∂xv

′ + u′∂xV + V ∂yv
′ + v′∂yV +W∂zv

′ + w′∂zV = −∂yp
′ + ∆v′/Re

∂tw
′ +U∂xw

′+u′∂xW+V ∂yw
′+v′∂yW+W∂zw

′+w′∂zW =−∂xp
′ + ∆w′/Re

∂xu
′ + ∂yv

′ + ∂zw
′ = 0

(1.4)
with corresponding boundary conditions. The base flow profile has to satisfy
the boundary conditions, so the perturbation variables vanish at the bound-
aries.

1.2.3. Asymptotic stability

In the classical framework for flow stability analysis, it is common to express
the state as a sum of wave components, this is the normal mode decomposition.
Waves will be growing if their spatial structure enables them to extract energy
from the base flow. This framework is termed asymptotic because the analysis
gives information about the evolution of the system after long times, in op-
position to the transient growth analysis, concerned with transient behaviour
related to initial conditions (see 1.2.4).

1.2.3.1. A model equation

We use the Ginzburg-Landau equation to illustrate the methods of stability
analysis. This is a model equation describing the evolution in time of the
variable q(x, t), function of a single spatial direction x and time t. The equation
reads

∂tq + U∂xq = γ∂xxq + µq. (1.5)

We assume U ∈ R+, γ = 1+icd, with cd ∈ R. This equation present similarities
with the Navier–Stokes equations, and gathers in a simple setting several cen-
tral ingredients of flow stability. If we consider (1.5) with one term at a time,
and assume that the parameters U, ν, γ do not vary with x, we can obtain the
explicit solutions

∂tq = −U∂xq ⇒ q(x, t) = q(x − Ut, 0)

∂tq = ν∂xxq ⇒ q̂(α, t) = exp(−α2γ)q̂(α, 0)

∂tq = µq ⇒ q(x, t) = exp(µt)q(x, 0)

where q̂(α, t) is the Fourier transform of q(x, t). The first relation tells that the
term U∂xq is a convective term, simply translating the initial condition q(x, 0)
toward larger x (downstream). The second relation expresses the evolution
of q̂(α, t), i.e the amplitude of a wave component of q(x, t) with wavenumber
α ∈ R, (with wave length 2π/α). Since the real part of γ is positive, all
wavelengths are damped, and short wavelengths will be mostly damped (large
α). The third relation shows the effect of µ. If µ > 0 the amplitude increases,
and if µ < 0 the amplitude decreases. These three terms give the central
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ingredients of a flow system. The effect of the pressure and the interplay of the
three spatial directions are missing.

Since this equation is linear and the parameters are independent of the
spatial direction x, it is convenient to decompose the variable q(x, t) in Fourier
series. This amounts to study the time evolution of waves of the form

q(x, t) = q̂ei(αx−ωt) + c.c. (1.6)

where q̂(t) is the wave amplitude with wavenumber α. The term c.c. stands
for complex conjugate. Note that α and ω can be complex numbers α =
αr + iαi, ω = ωr + iωi. The purely imaginary part of the complex exponent in
(1.6) corresponds to oscillatory behaviour in x and t, whereas the real part of
the exponent corresponds to exponential growth in time and space:

q(x, t) =q̂[cos(αrx− ωrt) + i sin(αrx− ωrt)]exp(−αix+ ωit) + c.c.

=[q̂r cos(αrx− ωrt) − q̂i sin(αrx− ωrt)]exp(−αix+ ωit),
(1.7)

where we have decomposed q̂ = q̂r + iq̂i. From this expression, one sees how
the real and imaginary part of q̂ contributes to the wave solution, as well as
the real and imaginary parts of the wavenumber and angular frequency α and
ω.

Introducing this expression in the dynamic equation (1.5) we obtain

−iω + iαU = −α2γ + µ. (1.8)

This is the dispersion relation, that relate the temporal and spatial character-
istics of the evolution of a wave-like solution.

The situation with both α and ω complex is the most general. In some
cases it is possible to simplify further the analysis. In the temporal framework,
the wave is allowed to oscillate and grow/decay in time, but only oscillate in
space. This corresponds to taking ω ∈ C and α ∈ R. This approach amounts
to considering a given wave length in space, and testing if this given wave will
grow in time or decay, i.e. if it is a stable or unstable wave. In the case of (1.5),
we obtain

ωr = αU + α2cd

ωi = µ− α2.
(1.9)

We first see that the oscillation in time, related to ωr, is due to the convection
with the base flow of the spatially oscillating wave (term αU) and the parameter
cd. The growth or decay in time is related to the competition of the negative
diffusion term α2 (always has a damping effect) and the production term µ.
When production exceeds dissipation, the wave is unstable.

This temporal setting is appropriate to analyse the evolution of initial
conditions. For instance a wave packet can be decomposed in the superposition
of waves with varying wavelength α. If one of these waves is unstable, i.e. has
ω with a positive imaginary part, this wave will grow in time, and all other
frequency contributions will be damped. It is thus very likely that after some
time, this unstable wave will dominate.
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A similar approach can be considered in the spatial case. Due to the
second order spatial derivative ∂xxu, the spatial wavelength appears squared
in the dispersion relation, thus leading to two solutions α±, see Huerre (2000).

1.2.3.2. Dispersion relation as an eigenvalue problem

In the previous section, the state of the analysed model equation (1.5) had
only one spatial dimension. In that case, the wave-like assumption (Fourier
transform) in this direction transformed the problem to a parameterized scalar
equation. The parameters were ω, α, ν and µ, and the stability properties are
changed with these parameters. In the general case on the other hand, the
original system might have two or three spatial dimensions. Most real flows
are three dimensional: flow in pipes, ducts, atmosphere, oceans. . .

The state of the system will vary in these spatial dimensions, but it might
be that the dynamic equations are constant in some given directions. These
directions in which the system is invariant are called homogeneous directions
of the system. In these directions it is possible to assume a wave-like behaviour
of the flow state (Fourier transform), effectively reducing the problem dimen-
sionality, and introducing a parameter, the corresponding spatial wavenumber.

Once these reductions are performed, the dispersion relation is obtained as
an eigenvalue problem, where the eigenvector has the dimension of the trans-
formed state, and with eigenvalue ω in the temporal case, or α in the spatial
case.

1.2.3.3. Application to the stability analysis of the Boundary–Layer flow

A natural application for this stability analysis is the boundary layer over
an aeroplane wing. The boundary layer is the thin region of shear between
the wing surface where the flow velocity vanishes due to adherence, and the
free-stream where the flow can be considered as uniform, at the speed of the
aeroplane. We can imagine a very thin wing without angle of attack. The
stability of this flow can be analysed using the tools presented in the previous
section. The boundary layer is born at the leading edge of the plate, and grows
as the square root of the spatial distance x from the leading edge, inducing an
increase of the local length scale, and thus of the local Reynolds number away
from the leading edge. An approximate solution for the base flow over the flat
plate can be build using the boundary layer equations, resulting in a self-similar
flow field known as the Blasius profile. See figure 1.1 for a sketch of the flow.

Since the growth of the boundary layer thickness is slow, we can assume
that the flow is locally parallel and assume a wave-like behaviour of pertur-
bations to the base flow in the streamwise x direction. The flow depends as
well on the wall-normal direction y so we are left with an one dimensional
eigenvalue problem similar to (1.8). In the temporal setting, the eigenvalue is
the complex ω and the parameters are the real α, the Blasius base flow U(y)
and the Reynolds number. In the spatial setting, we would get a quadratic
eigenvalue problem for α with parameters the real temporal frequency ω, the
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Figure 1.1. Sketch of the boundary layer flow over a flat plate.

base flow and the Reynolds number. In this section we consider the temporal
problem, and analyse how the stability properties of the base flow change with
the downstream position, i.e. with the local Reynolds number.

This system has some similarity with (1.5), the base flow convects the
perturbations, the viscosity introduces dissipation, and the base flow variation
in the wall-normal direction, interacting with the pressure, will induce energy
generation. The balance between these three ingredients will determine the
stability properties of this flow.

The dynamics of small perturbations to the Blasius profile is described by
the Orr–Sommerfeld/Squire system. The spatial coordinate are x the stream-
wise direction, y the wall-normal direction, and z the spanwise direction. The
flat plate is located at y = 0. The flow components can be decomposed into
a base flow component, steady solution of the Navier–Stokes equations in this
geometry, and a fluctuating part denoted u, v and w along x, y, and z direc-
tions. The base flow profile is the Blasius profile. The reference length for
non-dimensionalization of the Navier–Stokes equation is the boundary layer
thickness

δ? =

∫ ∞

y=0

(1 − U(y)/U∞)dy, (1.10)

where U∞ is the free-stream velocity. Due to spatial invariance along horizontal
directions x and z, we can expand the velocity components in Fourier series.
We will denote α and β the wavenumbers in the x and z directions, and the
Fourier transformed velocity components are û(α, y, β), v̂(α, y, β), ŵ(α, y, β).

Introducing the decomposition base flow/perturbation in the linearized
Navier–Stokes equations, we obtain (1.4) in which the only contributions from
the base flow is associated with U(y) and ∂yU(y).






∂tu+ U∂xu+ v∂yU = −∂xp+ ∆u/Re

∂tv + U∂xv = −∂yp+ ∆v/Re

∂tw+U∂xw = −∂xp+ ∆w/Re

(1.11)

We can now derive two equations for the wall normal velocity v and wall-normal
vorticity η = ∂zu− ∂xw. We first derive a Poisson equation for the pressure by
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considering the divergence of system (1.11)

−∆p = 2∂yU∂xv. (1.12)

Evaluating the Laplacian of the v equation, and using the Poisson equation for
the pressure we obtain

∂t∆v + U∆∂xv = ∂yyU∂xv + ∆2v/Re. (1.13)

We now derive the equation for η by considering the wall-normal component
of the curl of system (1.11)

∂tη + U∂xη + ∂yU∂zv = ∆η/Re. (1.14)

We finally transform these two equations to Fourier space, to obtain the Orr–
Sommerfeld/Squire system

∂t

(
∆v̂
η̂

)
=

(
L 0
C S

)(
v̂
η̂

)
, (1.15)

where





L = −iαU∆ + iα∂yyU + ∆2/Re,

S = −iαU + ∆/Re,

C = −iβ∂yU,

(1.16)

and ∆ = −α2 + ∂yy − β2 is the Laplacian operator. There is differentiation up
to fourth order on v̂ and to second order on η̂, so we need to impose the six
boundary conditions: v(0) = ∂yv(0) = η(0) = 0, equivalent to no-slip at the
wall, and v(∞) = ∂yv(∞) = η(∞) = 0 in the free-stream.

See table 1.1 for a Matlab function to build the Orr–Sommerfeld/Squire
system, using Chebyshev collocation.

We solve the eigenvalue problem for ω, considering several Reynolds num-
bers. For each Reynolds number we consider only the least stable eigenmode.
The results are presented in figure 1.2 where the neutral curve is represented.
The neutral curve indicates where the flow changes from stable to unstable, as
a function of the streamwise wavenumber α, and Reynolds number. One sees
that at low Reynolds number, all waves are stable. At Re = 519.4 there is
the first appearance of an unstable wave. This Reynolds number is denoted as
the critical Reynolds number, i.e. the smallest one where instability can be ob-
served. The corresponding unstable wavenumber is α = 0.303. This instability
is known as the Tollmien–Schlichting instability.

If there was a small amount of free-stream turbulence in the flow upstream
of the flat plate, all the perturbations introduced in the boundary layer close to
the plate would decay in amplitude, until they reach the downstream location
of the critical Reynolds number. At that point onward, the perturbations
corresponding to the unstable waves will grow exponentially.
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function [A,B,C,Q,y]=oss(N,alpha,beta,Re,L,u)

% build the Orr-Sommerfeld/Squire system using Chebyshev collocation

% inputs:

% N: number of inner points

% alpha, beta: streamwise and spanwise wavenumbers

% Re: Reynolds number, based on deltastar

% L,u: boxheight and base flow profile

% outputs:

% A,B,C: state space operators

% Q, y: inner product matrix and collocation points

%%%% differentiation matrices and base flow

scale=2/L;

[y,DM] = chebdif(N+2,2); %Chebyshev collocation

DM(:,:,1)=DM(:,:,1)*scale;

DM(:,:,2)=DM(:,:,2)*scale^2;

y=(y(2:end-1)+1)/scale;

up=DM(:,:,1)*u; % differentiate base flow

upp=DM(:,:,2)*u;

%%%% implement homogeneous boundary conditions

sel=2:N+1;

D1=DM(sel,sel,1);

D2=DM(sel,sel,2);

[y,D4]=cheb4c(N+2); % fourth order differentiation matrix

D4=D4*(2/L)^4;

%%%% laplacian

I=eye(N);Z=zeros(N,N);

k2=alpha^2+beta^2;

delta=(D2-k2*I); % Laplacian

delta2=(D4-2*k2*D2+k2*k2*I); % square of the Laplacian

%%%% build oss matrix

LOS=-i*alpha*diag(u(sel))*delta+i*alpha*diag(upp(sel))+delta2/Re;

LSQ=-i*alpha*diag(u(sel))+delta/Re;

LC= -i*beta*diag(up(sel));

A=[delta\LOS,Z;LC,LSQ]; % the dynamic matrix for OSS

%%%% input, output, and inner product operators

B=[delta\(-i*alpha*D1),delta\(-k2*I),delta\(-i*beta*D1);i*beta*I,Z,-i*alpha*I];

C=[i*alpha*D1/k2,-i*beta*I/k2 ; I,zeros(N,N) ; i*beta*D1/k2,i*alpha*I/k2];

Q=enermat(N,L,DM,k2);

Table 1.1. The Matlab function oss.m to build the Orr–
Sommerfeld/Squire system using pseudospectral spatial dis-
cretization. The function enermat.m builds the energy mea-
sure matrix, see table 2.1. The pseudospectral differentiation
matrices are built using the function chebdiff.m, see §1.4.
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Figure 1.2. The neutral curve for the two dimensional flat
plate boundary layer. One sees as a function of the Reynolds
number and the streamwise wave number α the zones of insta-
bility as shaded region.

1.2.4. Transient behaviour

The stability analysis presented in the previous section gives information on
the evolution of the system for large times. If a wave-like component of an
initial condition is unstable, this wave will after some transients in time, grow
in magnitude and dominate the evolution of the system. In this section, we
analyse the evolution of the flow system due to initial conditions. We will
see that there are indeed mechanisms that might lead to large energy growth
at the initial evolution of an initial condition. This phenomena is known in
fluid dynamics as transient growth. For early work on transient growth, see
Hultgren & Gustavsson (1981) and Gustavsson (1991). For the analysis using
optimization, see Butler & Farrell (1992) and Reddy & Henningson (1993).

Imagine in a boundary layer flow, a perturbation in the form of a stream-
wise elongated vortex located close to the wall. This vortex will lift-up low
velocity flow particles that are close to the wall, to region of higher velocity.
Simultaneously, it will carry closer to the wall high velocity particles. This will
results in the generation of a couple of streamwise elongated streaks of high
and low streamwise velocity. The initial vortex has been able to extract energy
from the base flow to create large perturbations. Eventually, viscous damping
will guide the flow back to steady state. This is a transient growth scenario,
known as lift-up effect.
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The potentiality for transient energy growth is a characteristic of the sys-
tem itself, but the ability to use this effect depends on the initial conditions
present in the system. The streamwise elongated vortices can be considered
as a dangerous perturbation possibly present in a real environment, but one
can imagine initial conditions with little growth. In this sense, the evolution
of the system shows a strong sensitivity to the initial condition. One is then
in position to ask: which initial condition leads to the largest energy growth?
The subsequent growth might be thought as a good measure for the risk of
transition and breakdown mechanisms based on transient growth. For this we
define the maximum growth at time t

G(t) = max
q0

‖q(t)‖2

‖q0‖2
= max

q0

〈q(t), q(t)〉
〈q0, q0〉

(1.17)

where q0 denotes the initial condition and q(t) the subsequent flow at time t.
The solution for the evolution of the linear dynamic system can be explicitly
written

q(t) = H(t)q0 (1.18)

where the semigroup H(t) is related to the exponential matrix H(t) = exp(At)
defined as

exp(At) ,

∞∑

k=0

(At)k

k!
. (1.19)

Inserting the explicit solution in (1.17) we obtain

G(t) = max
q0

〈H(t)q0,H(t)q0〉
〈q0, q0〉

= max
q0

〈H(t)+H(t)q0, q0〉
〈q0, q0〉

(1.20)

where we have introduced the adjoint operator H+(t).

Adjoint operators are a useful tool in relations involving inner products, as
in (1.20). It allows to move the operators from one side of the inner product
to the other. The adjoint to the linear operator H is denoted H+, and is the
unique linear operator such that

∀x, y, 〈Hx, y〉 = 〈x,H+y〉 (1.21)

where x and y play the role of test vectors. For more details on the properties
of adjoint operators, see for instance Balakrishnan (1976). The two most inter-
esting properties for our purpose are that a self-adjoint operator (i.e. H = H+)
has orthogonal eigenvectors (for the corresponding inner product) and real
eigenvalues.

From (1.20), one sees that the maximum growth for a given time t is
achieved when the initial condition q0 is the eigenvector of H(t)+H(t) with
largest eigenvalue. In fact, note that H(t)+H(t) is self-adjoint so that its eigen-
values are positive real, and that if q0 is its eigenvector with corresponding
eigenvalue λ, then we have

G(t) = max
q0

〈λq0, q0〉
〈q0, q0〉

= λ. (1.22)
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Figure 1.3. Maximum transient energy growth for the Bla-
sius boundary layer in wavenumber space for Reynolds number
1000 (based on displacement thickness δ?).

The computation of the maximum transient growth can be performed by means
of an eigenvalue computation, or alternatively by a singular value decomposi-
tion (see Schmid & Henningson (2001)).

By computing the maximum energy growth for all times t, one obtains the
envelope of maximum possible growth. In figure 1.3, the envelope were com-
puted for the Blasius boundary layer for Reynolds number 1000, for an array
of wavenumbers in streamwise and spanwise direction. One sees that a growth
of the order of 1400 can be reached. This worst case perturbation corresponds
to streamwise elongated vortices. The corresponding optimal response, i.e. the
flow perturbation at the time of the maximum growth is streamwise streaks of
alternating high and low streamwise velocity, as seen in the description of the
lift-up effect.

See table 1.2 for a Matlab function that computes the transient energy
growth.

1.2.5. Breakdown of the linear assumption

When perturbations grow, the assumption of linearity can lose validity. This
will happen for asymptotically unstable flows, because the perturbations to
the base flow will grow at the speed of the least stable mode. When the
perturbations reach finite amplitude, typically when their amplitude is a few
percents of the base flow amplitude, the quadratic terms that we neglected in
(1.4) will become important and the linearized equation are no longer a good
model for the flow evolution.
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The assumption of linearity might as well be invalidated when there is po-
tentiality for large transient growth. In this case, it will depend on the presence
or not in the real system of the “dangerous” initial condition. Indeed if a sys-
tem is sensitive to a perturbation very unlikely to be present, the corresponding
growth will not be observed. For instance, in the case of a flow system excited
by random excitations, it is possible to project the random excitations unto
the worst case initial condition. If the projection has large variance, it means
that the worst case initial condition is likely, and the growth predicted from
(1.20) will be observed.

There are two options to pursue the analysis after linear growth of pertur-
bations. The first one consist in re-linearizing about the state resulting from
the primary growth. This is the secondary instability analysis, using the same
tools as presented above, but with a base flow of increased complexity. The
second method consist in weakly nonlinear analysis, where the small perturba-
tions are written in a series expansion, where evolution equations are obtained
by neglecting high order terms.

When neither of these approaches are valid, for instance when the primary
instability does not lead to a quasi-steady well defined secondary base flow, or
when the growth of perturbations is so large that too many orders have to be
included in the weakly nonlinear analysis, one can turn to physical or numerical
experiments.

1.3. Linear dynamic systems

We have introduced the basic tools for analysis of fluid flows. We saw that
despite the complexity of the governing equations with solution evolving in
time and in several spatial dimensions, we could gain insight into stability by
various decompositions and simplifying assumptions. In other words, we have
proceeded to the modeling of the evolution of the flow state. In this section, we
will introduce the formalism developed to manipulate linear dynamic systems
in general. The central focus of this section is on the definition of inputs and
outputs.

The concept of system in mechanics is an abstraction, consisting of the
isolation from the rest of the world of a process to be studied. In some cases, it
is possible to completely isolate a process, so that its evolution is described by
its own dynamic laws. On the other hand, the isolation can be partial, in which
case the rest of the world affects the system, and the system in turn will affect
the rest of the world. This relation can be described through the definition of
the inputs and outputs. In fluid mechanics, it is common to study complex
systems, isolated from their environment. The laws consist usually in partial
differential equations, often extracted from the Navier–Stokes equations. We
will see in this section how to connect and interconnect dynamic systems.
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1.3.1. State space formulation

We have described the evolution of flows using dynamic equations for their
state, i.e. for their velocity component depending on time and space. This is the
state space representation. We will consider the partial differential equations
in the following abstract operator form

∂tq = Aq, q(0) = q0 (1.23)

where here q denote the flow state, for instance the vector of velocity com-
ponents, and where the dynamic operator A is built with the various spatial
differentiation operators and flow parameters, as Reynolds number and base
flow profile (see 1.2.3.3). The initial condition is the value of the state at time
t = 0 when everything begins. In the following, we will denote time differenti-
ation using a dot (q̇ instead of ∂tq).

1.3.2. Definition of inputs and outputs

In general, one might want to describe how our system is affected by external
excitations, like for instance changes of boundary conditions, incoming pertur-
bations like acoustic waves, free–stream turbulence, vibrations. An other type
of external action can be actuators, designed to control the flow. All these
sources can be lumped in the input vector u. The output vector y on the other
hand is used to lump all information wished to be extracted from the flow state,
it can be for instance the drag at a wall, the pressure at a given location of the
flow domain etc. The output can also be the measurement that will later be
used for estimating the flow state. The input and output will be denoted by
u and y, to be distinguished from the streamwise velocity and the wall-normal
coordinate, but the confusion should be minimal. We write the state space
representation of the system, with input u and output y

{
q̇ = Aq +Bu,

y = Cq +Du.
(1.24)

B is the input operator, used to describe how the input affects the state, and
the output operator C is used to describe how the information is extracted
from the state. The input might in some case directly affect the output, this
feedthrough effect is represented by the operator D.

When the input vector u and output vector y have dimension one, the
system is called single input single output (SISO). On the other hand when the
dimensionality is larger, the system is called multiple inputs multiple outputs
(MIMO).

As an example, we define input and output for the Orr–Sommerfeld and

Squire system. Suppose that the flow is subject to a volume forcing f̂ =

(f̂x, f̂y, f̂z) in the flow domain, and that we would like to see how the velocity
components in primitive variables (û, v̂, ŵ) are affected. Introducing the forcing
term on the right-hand side of the Navier–Stokes equations, and proceeding to
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the steps of the derivation of the Orr–Sommerfeld/Squire equations, we obtain

(
f̂v̂

f̂η̂

)
=

(
−iα∂y −k2 −iβ∂y

iβ 0 −iα

)


f̂x

f̂y

f̂z



 (1.25)

To extract the primitive variables (û, v̂, ŵ) from v̂ and η̂, we recall the definition
of the wall-normal vorticity, and the continuity equation

η̂ = ∂zû− ∂xŵ = iβû− iαŵ

iαû + ∂y v̂ + iβŵ = 0.
(1.26)

We thus have the system

q̇︷︸︸︷(
˙̂v
˙̂η

)
=

A︷ ︸︸ ︷(
∆−1L 0

C S

)
q︷︸︸︷(
v̂
η̂

)
+

B︷ ︸︸ ︷(
∆−1iα∂y ∆−1k2 ∆−1iβ∂y

iβ 0 −iα

)

u︷ ︸︸ ︷


f̂x

f̂y

f̂z








û
v̂
ŵ





︸ ︷︷ ︸
y

=




iα∂y/k

2 −iβ/k2

1 0
iβ∂y/k

2 iα/k2





︸ ︷︷ ︸
C

(
v̂
η̂

)

︸︷︷︸
q

(1.27)

with input (f̂x, f̂y, f̂z) and output (û, v̂, ŵ). See for instance Jovanović &
Bamieh (2005).

In wall-bounded shear flows, it is common to act on the flow at the wall,
for instance by blowing and suction (changing the boundary condition on the
wall-normal velocity), and to sense the flow at the wall, measuring for instance
the wall-shear stress or the pressure. This can be done using a lifting technique.
Assume that we act on the flow by blowing and suction at the wall. We denote
by φ the boundary condition on v̂ at the wall. We decompose the flow state
q into a time varying homogeneous part qh and a steady particular part qp,
where qp is arbitrary, but should satisfy the boundary conditions

qp =

(
v̂p

η̂p

)
, v̂p(0) = 1, η̂p = ∂y η̂p = ∂y v̂p = 0 at y = 0 and y → ∞.

(1.28)
Injecting the decomposition q(t) = qh(t) + φ(t)qp in the dynamic equation, we
obtain

q̇h + φ̇qp = A(qh + φ(t)qp). (1.29)

A convenient choice for qp is through the equation Aqp = 0, i.e. choosing qp
as a steady solution of the flow with (constant) unit blowing at the wall. The
dynamics simplify to

q̇h = Aqh +Bu, B = −qp, u = φ̇ (1.30)

where the input was identified as the time derivative of the wall blowing and
suction.
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Figure 1.4. Sketch of the boundary layer flow over a flat
plate, with external excitations w, sensor y and actuator u.

1.3.3. System interconnection

Inputs and outputs are useful to describe systems interconnection. Consider for
instance a linear system with two inputs: w(t) describing an external source of
excitations, and u(t) being an actuator for control, and an sensor measurement
output y(t). This system could for instance be a boundary layer flow, with w
a volume forcing upstream, generating waves that propagate and grow along
with the stream, y could be a wall shear stress or pressure sensor flush-mounted
at the wall, and u could describe local blowing and suction at one location at
the wall. See figure 1.4 for a sketch of this configuration.

As an example of system interconnection, we could consider that the inflow
perturbation in this boundary layer system is generated as the output of an
other system, it could be for instance the outflow fluctuations of a system
describing leading edge receptivity.

System interconnection is also useful for control purposes. Let us for exam-
ple imagine that the actuator signal u(t) is a function of the sensor signal y(t).
The simplest case would be a proportionality relation, u = KP y. This would
result in a proportional controller. This is the simplest example of feedback con-
troller. A more sophisticated law can be imagined, for instance implementing
a derivative term and a proportional term

u = KP y +KI

∫ t

0

ydt+KD
dy

dt
(1.31)

where the control parameters KP ,KI , and KD are design coefficients for the
proportional, integral and derivative terms. This class of controllers is known as
proportional, integral, derivative (PID) controllers, and is certainly the type of
controllers the most used in practice. For more discussions, see e.g. Skogestad
& Postlethwaite (2005).

In general, we can represent a linear relation between y and u using a
linear transfer function. There are two common mathematical representations
of a transfer function: the frequency response, where the filtering effect of the
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Figure 1.5. Block diagram representing the interconnection
of the flow system, with input the external sources of excita-
tions w. The controller has as input the sensor measurement
y and as output the actuator signal u. This is a feedback
interconnection.

transfer function is described by a gain and a phase shift as a function of
frequency. This is a frequency space representation of the transfer function.
It is also possible to use a state space representation of the transfer function.
For this, we can imagine a state that is forced by the input, and where the
output is extracted from the state, precisely as in (1.24). We this state space
representation to represent the feedback law: we can imagine a state qc, and
linear operators Ac, Bc, Cc, Dc such that

{
q̇c = Acqc +Bcy

u = Ccqc +Dcy,
(1.32)

where the subscript ·c stands for controller. In the case of the simple propor-
tional controller, we have Ac = 0, Bc = 0, Cc = 0, Dc = KP . A state space
representation can be found as well for the PID controller1. The block diagram
of the interconnection of the flow system and its controller is represented in
figure 1.5.

The feedback interconnection of the flow system (1.24) with the controller
(1.32) amounts to use the measurement output of the flow as input of the
controller, and the output of the controller as the actuation input of the flow
system. The corresponding closed loop dynamics can be written in matrix form

(
q̇
˙̂q

)
=

(
A BCc

BcC Ac

)(
q
q̂

)
(1.33)

where we have assumed for simplicity D = Dc = 0.

In chapter 3 we will introduce optimization methods to build the matrices
Ac, Bc, Cc, Dc when the system is subject to stochastic excitations, in order
to achieve some given control objective.

1with a modification of the derivative term, see Skogestad & Postlethwaite (2005))
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1.4. Spatial discretization

For numerical discretization of functions and differential operators we use pseu-
dospectral or collocation methods. Here is a short introduction. For more in-
formation, see Canuto et al. (1988) and Weideman & Reddy (2000) for more
information.

In spectral methods, spatially varying quantities are represented by their
expansion coefficients in a basis of global interpolants, usually polynomials
or trigonometric functions. In pseudospectral methods on the other hand, a
function f(x) is interpolated at a set of collocation points {xk}N

k=1. We can
thus represent the function using its values at the collocation points fk = f(xk).

Depending on the domain on which the function is defined, one can choose
global interpolants based on Chebyshev polynomials for x ∈ [−1, 1], Laguerre
polynomials for x ∈ [0,∞[, Hermite polynomials for x ∈] − ∞,∞[ etc. The
corresponding collocation points are then the zeros of the polynomial of order
N + 1 of the chosen family.

The derivative of arbitrary order of the interpolated function can be com-
puted analytically, using formulas for differentiation of the interpolant. We can
assemble differentiation matrices D` such that

f ` = D`f (1.34)

where f ` is the vector of the values of the `th order derivative of f(x) at the
collocation points.

We can account for the boundary conditions when assembling the differ-
entiation matrices, to allow for inversion, or for eigenvalue problems. For this,
the boundary conditions are treated as constraints on f and its derivatives.

The numerical examples in this thesis are coded in Matlab. The differen-
tiation matrices for Chebyshev- and Hermite- based interpolant are built using
the Matlab differentiation matrix suite of Weideman & Reddy (2000).
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h
function [e,q0,qm,tvec]=tg(A,Q,nt,tmax);

% compute envelope of maximum energy growth using SVD

% inputs:

% A: dynamic matrix

% Q: energy measure matrix

% nt: number of time for saving

% tmax: last time

% outputs:

% e: envelope of max growth

% q0: worst case initial condition for each time

% qm: optimal response

% tvec: time vector

%%%% compute exponential matrix for dt

tvec=linspace(0,tmax,nt);

dt=tvec(2)-tvec(1);

expmat=expm(A*dt); % state transition matrix for dt

%%%% factorize energy measure matrix F’*F=Q

[U,S,V]=svd(Q);

s=sqrt(diag(S));

F=diag(s)*U’; % the square root factor F

Finv=U*diag(ones(size(s))./s); % inverse of F

%%%% compute optimal growth

n=size(A,1);

env=zeros(nt,1);env(1)=1;% for saving of max energy

q0=zeros(n,nt); % for saving of worst case initial condition

qm=zeros(n,nt); % for saving of optimal response

H=eye(n);

for ind=2:nt;

H=H*expmat; % march state transition matrix

[u,s,v]=svd(F*H*Finv); % SVD decomposition

q0(:,ind)=v(:,1); % worst case initial condition

qm(:,ind)=u(:,1); % optimal response

e(ind)=abs(s(1,1))^2;% max energy

fprintf(’%% it %3.0f / %3.0f %8.3f || %8.3e \n’,ind,nt,tvec(ind),e(ind));

end

q0=Finv*q0;% project back

qm=Finv*qm;

Table 1.2. A Matlab function tg.m to compute the enve-
lope of maximum energy growth, using singular value decom-
position.



CHAPTER 2

Stochastic framework

In the previous section, we have seen how input and outputs can be defined
and used in the state space description of linear systems. We saw as well
that inputs and outputs can be used to connect systems. In some cases, flow
systems might be exposed to complex sources of excitations, as for instance in
the case of boundary layer exposed to free-stream turbulence. In that case, the
forcing experienced by the boundary layer evolves in time in an erratic manner,
unpredictable. On the other hand, information is available on the statistics of
the free-stream turbulence, i.e. mean value, two-points correlation functions,
temporal frequencies, etc. In this context, it is desirable to describe the forcing
as a stochastic process. We will see in this section how to characterize stochastic
processes, how to manipulate them, and how they can be combined with linear
dynamic systems.

2.1. Scalar random variables

A random variable, say ξ is a function from an “event space” Ω to R, or C.
Its “outcome”, or “observed value”, will be denoted x. There is a probability
measure associated with ξ so that subsets of Ω are assigned a probability P (Ω).
There is a distribution function Fξ(x) and a probability density function (pdf)
pξ(x) defined as

Fξ(x) = P (ξ ≤ x),

pξ(x) =
dFξ(x)

dx
.

(2.1)

In words, Fξ(x) is the probability that the observed value of ξ is less or equal
to x, and pξ(x) is the probability that the observed value of ξ is “very close”
to x.

The expected value of a random variable, or its mean, is denoted by the
operator E, and is defined

Eξ =

∫ +∞

−∞

xpξ(x)dx = mξ (2.2)

More generally, the expected value of a function of ξ, say g(ξ) is

Eg(ξ) =

∫ +∞

−∞

g(x)pξ(x)dx. (2.3)

23
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Figure 2.1. The Gaussian probability density function, with
zero mean and unit variance (solid), compared to an other
possible pdf, with same mean and variance (dashed). Note
that despite their equal mean and variance, a very different
type of outcome are to be expected from these two pdf.

The variance of ξ is the mean of ξ2

Eξξ =

∫ +∞

−∞

x2pξ(x)dx. (2.4)

The variance gives information on how “far” from the mean the outcome of ξ
is likely to be observed. The root-mean-square (rms) also known as standard
deviation, is the square root of the variance.

A widely used distribution is the Gaussian, or Normal distribution, with
pdf

pξ(x) =
1√
2πσ

exp

[
−1

2

(
x−m

σ

)2
]
, (2.5)

with mean m and variance σ, as depicted in figure 2.1. The observed values are
scattered around the mean. There is probability approximatively 0.95 for the
outcome of a Gaussian variable to be observed in the interval [m−2σ,m+2σ].

There are several reasons why it is of particular interest to use the Gaussian
distribution. Owing to the central limit theorem, the sum of many independent
and equally distributed random variables is well approximated by a Gaussian
distribution. If excitations are assumed to be due to the effect of many inde-
pendent physical causes, it should therefore be relevant to model the total effect
as Gaussian distributed. In addition, Gaussian random variables have attrac-
tive mathematical properties, in particular linear transformation of Gaussian
variables are still Gaussian distributed.
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Consider now a second random variable, say η. We can define a joint
distribution function and a joint probability density function

Fξ,η(x, y) = P (ξ ≤ x, η ≤ y),

pξ,η(x, y) =
∂2Fξ,η(x, y)

∂x∂y
.

(2.6)

In the following, we assume that our random variables are jointly Gaussian,
i.e. the joint pdf is a two dimensional Gaussian bell. The mean value Eξη is
the covariance of ξ and η.

The covariance of two random variables gives information on how similar
they are. For instance, if ξ and η have zero mean and unit variance, then if
they have unit covariance, there is probability one that their observed values is
identical. Similarly, if their covariance is −1, then there is probability one that
their observed values have opposite sign and same absolute value. On the other
hand, zero covariance means that their outcomes are totally uncorrelated, i.e.
knowledge of the outcome of ξ gives no information about the outcome of η.

For random variables with outcome in C, the variance is real, but the
covariance can be complex. This gives information about the phase relation
of the two random variables. As a simple example consider the covariance of
ξ ∈ R with zero mean and variance σ, and iξ

Eiξξ = iEξξ = iσ (2.7)

which tells that ξ and iξ are to be expected with π/2 phase shift in the complex
plane.

In the following, we consider Gaussian random variables with zero mean.
The external excitations are disturbances about the base flow profile, so we can
do this simplification without loss of generality.

We can readily extend the definitions to the covariance of vectors of random
variables. Consider a vector f whose elements fk are random variables with
zero mean. The (auto-) covariance of f is the matrix of covariance of the
combinations of its elements

Rff = Eff H (2.8)

where ·H denote Hermitian transpose (the complex conjugate of the transpose).
The diagonal elements of Rff are the variances of the individual elements of f ,
and the off-diagonal elements Rff (i, j) are the covariances Efifj . We have the
property Rff = RH

ff , and Rff is positive semi-definite.

2.2. Random variables in Hilbert space

We present now definitions and results to deal with random variables in the
general context of Hilbert spaces. The general definition of the covariance for
will prove very convenient for manipulation of partial differential operators,
and for subsequent discretizations.

We will denote H an arbitrary Hilbert space, with inner product 〈·, ·〉. To
specify the space of square integrable functions, we use L.
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It is a useful conceptual step to consider the covariance as an operator
when manipulating partial differential operators. We define the covariance
Rξξ : H → H of a random variable ξ ∈ H as

∀x, y ∈ H, 〈Rξξx, y〉 = E〈ξ, x〉〈ξ, y〉, (2.9)

where overbar denotes complex conjugate, and where x and y play the role of
test functions. This definition readily have a interpretation as the projection
onto a basis. Consider {φk}∞k=1 a basis of H, and choose x = φi, y = φj ,
ξi = 〈ξ, φi〉 and ξj = 〈ξ, φj〉 are the coordinates i and j of ξ in the chosen
basis. In this sense, Rij = 〈Rξξφi, φj〉 is the element (i, j) of the operator

Rξξ : H → H in the chosen basis. We thus have Rij = Eξiξj , the definition of
the covariance for the (infinite dimensional) discrete counterpart of ξ.

As an example, consider the space L of square integrable function on R,
with inner product. We consider two elements of this space f(s) and g(s). The
inner product is defined

〈f, g〉 =

∫

s

g(s)f(s)ds. (2.10)

From (2.9) we have

∀x, y ∈ H,
∫

s

y(s)Rffx(s)ds = E

∫

s′

x(s′)f(s′)ds′
∫

s′′

y(s′′)f(s′′)ds′′ (2.11)

and by choosing the test functions x(s) = δ(s − s′) and y(s) = δ(s − s′′) we
recover the definition of the covariance familiar to studies of turbulent flows

R̂ff (s′, s′′) = Ef(s′)f(s′′). (2.12)

This is the pointwise covariance of f , similar to (2.8). The kernel R̂ff should
not be considered as an operator, but as statistical data.

For spatial discretization, we use pseudospectral method, i.e. we represent
a function f(s) by the vector f of its values fk at the collocation points {sk}N

k=1

(see §1.4). The matrix

Rff = Eff H (2.13)

is the discrete counterpart of the pointwise covariance (2.12) of f(s) at the
collocation points, i.e. the matrix of the covariance of the f(sk).

2.2.1. Covariance and inner products

The metric in the space in which the flow state evolve is usually based on the
energy norm. This allow to interpret the “size” of flow fluctuation in mean-
ingful units. When transforming the flow state to different representations,
for instance from the three component of the velocity in streamwise, spanwise
and wall-normal directions to the wall-normal velocity/wall-normal vorticity
formulation, it is necessary to be able to represent the kinetic energy in this
formulation. We will see in this section how the definition (2.9) affects the co-
variance operator and how to transform the covariance from one inner product
to an other.
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We can introduce now the weighted inner product with weight W

〈f, g〉W =

∫ ∞

0

g(s)Wf(s)ds. (2.14)

where W can be any self-adjoint positive definite linear operator. We have

∀f, g, 〈f, g〉W = 〈Wf, g〉 = 〈f,Wg〉. (2.15)

If we define FHF = W we have

〈f, g〉W = 〈Ff, Fg〉. (2.16)

We now give an example, deriving the weight W to represent the inner product
from flow kinetic energy in the (v̂, η̂) formulation used for the Orr–Sommerfeld
and Squire equations, and showing the derivation of the adjoint, using inte-
gration by parts. We express the relation between (û, v̂, ŵ) and (v̂, η̂) using
(1.27) 


û
v̂
ŵ



 =




iα∂y/k

2 −iβ/k2

1 0
iβ∂y/k

2 iα/k2





︸ ︷︷ ︸
C

(
v̂
η̂

)
(2.17)

where k2 = α2 + β2. Inversely we have

(
v̂
η̂

)
=

(
0 1 0
iβ 0 −iα

)

︸ ︷︷ ︸
B




û
v̂
ŵ



 (2.18)

Using these transformations we define the inner product based on kinetic
energy. In primitive variables, the kinetic energy writes

r̂ = (û, v̂, ŵ), 〈r̂, r̂〉 =

∫ ∞

y=0

(ûû+ v̂v̂ + ŵŵ)dy, (2.19)

in matrix form

〈r̂, r̂〉 =

∫ ∞

y=0




û
v̂
ŵ




H


û
v̂
ŵ



 dy. (2.20)

To obtain the expression of the inner product based on kinetic energy in (v̂, η̂),
we use the transformation operator C

〈r̂, r̂〉 =

∫ ∞

y=0

[
C

(
v̂
η̂

)]H

C

(
v̂
η̂

)
dy = 〈Cq̂, Cq̂〉, q̂ =

(
v̂
η̂

)
(2.21)

From the definition of the adjoint, we have now

〈Cq̂, Cq̂〉 = 〈C+Cq̂, q̂〉 (2.22)

where we recognize the weighted inner product (2.15) with W = C+C. To ob-
tain the final expression of W , we can derive the adjoint of C using integration
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by parts. We have

〈Cq̂, r̂〉 =

∫ ∞

0








iα∂y/k

2 −iβ/k2

1 0
iβ∂y/k

2 iα/k2




(
v̂
η̂

)


H 


û
v̂
ŵ



dy. (2.23)

Expanding this expression, we get

〈Cq̂, r̂〉 = i/k2

∫ ∞

0

(
α∂y v̂ û− βη̂ û+ k2/iv̂ v̂ + β∂y v̂ ŵ + αη̂ ŵ

)
dy, (2.24)

we can now use integration by parts to switch the differentiation from the first
argument of the inner product to the second. We write here the procedure only
for the first term of the integral

∫ ∞

0

α∂y v̂ û dy = [αv̂ û]∞0 −
∫ ∞

0

αv̂ ∂yûdy, (2.25)

where in the present case the boundary term [αv̂ û]∞0 vanishes due to the no
slip boundary condition at the wall, and since the perturbation tend to zero
in the free-stream. In cases where the boundary condition does not enforce a
zero boundary term in (2.25), there will remain a term out of the integral in
the definition of the adjoint. Regrouping all the terms and reconstructing the
vector expression, we obtain

〈Cq̂, r̂〉 =

∫ ∞

0

(
v̂
η̂

)H (
iα∂y/k

2 1 iβ∂y/k
2

iβ/k2 0 −iα/k2

)

︸ ︷︷ ︸
C+




û
v̂
ŵ



 dy = 〈q̂, C+r̂〉 (2.26)

where we can observe that C+ is simply the transpose of the matrix of adjoints
of individual elements of C. A simple rule for the adjoints of differential oper-
ator, is: take conjugate value, and multiply by −1 for each differentiation (odd
order differentiation changes the sign, even order does not change).

We can now obtain the expression of the inner product weight

W = C+C =

(
1 − ∂yy/k

2 0
0 1/k2

)
. (2.27)

We thus have the equality for kinetic energy inner product in (û, v̂, ŵ) and
(v̂, η̂)

〈r̂, r̂〉 = 〈Wq̂, q̂〉 = 〈q̂, q̂〉W

=

∫ ∞

0

(
v̂
η̂

)H (
1 − ∂yy/k

2 0
0 1/k2

)(
v̂
η̂

)
dy.

(2.28)

2.2.2. Inner product and discretization

From the definition of the inner product, we can derive an expression for the
discretized inner product. Consider f, g ∈ L, the inner product weight W :
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L → L, and a basis {φj}∞j=1 of L on which to project the functions. The inner
product is

〈f, g〉W =

∫ ∞

0

g(y)Wf(y)dy (2.29)

introducing the expansions of f and g on the basis

f =
∑

i

φifi, g =
∑

j

φjgj (2.30)

we obtain

〈f, g〉W =

∫ ∞

0

∑

j

φj(y)fjW
∑

i

φi(y)gidy

=
∑

i

∑

j

fjgi

∫ ∞

0

φj(y)Wφi(y)dy

= f HQg , with Qij =

∫ ∞

0

φj(y)Wφi(y)dy,

(2.31)

where f and g are the vectors of the expansion coefficients fj and gi.

For numerical computations, once the variables are discretized on the basis,
the matrix weights Q of the discrete inner product is obtained by evaluating
the inner products of the basis vector, using the weight W . The matrix Q is
often referred to as the matrix of angles. Using spectral methods, the basis
is build using Fourier modes for periodic domains, Hermite polynomials for
infinite domains, Laguerre polynomials for semi-infinite domains, Chebyshev
for bounded domains. Each of these sets comes with a weights for which the
basis is orthonormal, for instance exp(−x2) for Hermite polynomials. If the
weight W , chosen from physical grounds, is different (which is usually the
case), the matrix of angles will be a full matrix, otherwise it will be the unit
matrix.

When using collocation methods, it is more natural to build the matrix
of angles Q using the discretized version of the differential operators and of
the integration weights. See table 2.1 for a Matlab function to build Q for a
Chebyshev collocation method, for the Orr–Sommerfeld and Squire system.

Given a linear operator A : L → L, there are two ways to obtain the
discretized version of its adjoint, either to discretize the continuous adjoint
using integration by parts, then discretizing, or discretize A into its matrix
counterparts A and then obtain the discrete adjoint:

∀f , g , 〈Af , g〉Q = 〈f ,A+g〉Q
⇔ gHQAf = (A+g)HQf

⇔ gHQAf = gHA+HQf

⇔ QA = A+HQ

⇔ A+ = Q−1AHQ,

(2.32)
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function Q=enermat(N,L,DM,k2)

% build the energy measure matrix for OSS

% inputs:

% N: number of inner points

% L: domain height

% DM: differentiation matrices

% k2=alpha^+beta^2

% output:

% Q: energy measure matrix for collocation points

%%%% integration weights

n=0:1:N+1;

j=0:1:N+1;

b=ones(1,N+2);

b([1 N+2])=0.5;

c=2*b;

b=b/(N+1);

S=cos(n(3:N+2)’*j*(pi/(N+1)));

IWT=L/2*diag(b.*[(2+(c(3:N+2).*((1+(-1).^n(3:N+2))./(1-n(3:N+2).^2)))*S)]);

%%%% build energy measure matrix

QvT=0.125*(DM(:,:,1)’*IWT*DM(:,:,1)/k2+IWT); % for v

QetaT=0.125* IWT/k2; % for eta

Q=[QvT(2:N+1,2:N+1),zeros(N,N);zeros(N,N),QetaT(2:N+1,2:N+1)];

Table 2.1. A Matlab function enermat.m to compute the
discrete inner product matrix Q. For a description on how
to derive the integration weights, see Hanifi et al. (1996) or
Funaro (1992). This function is used by oss.m in table 1.1.

where Q−1 is well defined since Q is positive definite. We thus have A+ =
Q−1AHQ is the adjoint of the discrete version of A. We readily see that in the
case where Q = I the identity matrix, the adjoint is A+ = AH .

We can similarly express the adjoint of the input and output operators of
the state space representation 1.24

{
q̇ = Aq + Bu

y = Cq + Du.
(2.33)

We choose for simplicity unweighted discrete inner products in the input and
output spaces. Proceeding through the same steps as in 2.32, we obtain the
discrete expressions of the adjoints of input and output operators

B+ = BHQ, C+ = Q−1CH , D+ = DH . (2.34)

For numerical purposes it is often preferable to use the discrete adjoint, so
that A and A+ are adjoint down to numerical accuracy.
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2.2.3. Inner product transformations

As shown in (2.9), the covariance depends on the choice of inner product. We
will now see how the weights W comes into the expression of the covariance.

Consider as in the previous section the unweighted inner product 〈·, ·〉,
and the weighted inner product 〈·, ·〉W with weight W . Let us denote R̆ the
covariance of a random variable ξ in the weighted inner product, and R in the
original inner product. From the definition of the covariance

∀x, y ∈ H, 〈R̆x, y〉W =E〈ξ, x〉W 〈ξ, y〉W
=E〈ξ,Wx〉〈ξ,Wy〉
=〈RWx,Wy〉,
=〈RWx, y〉W ,

(2.35)

which imply the relation

R̆ = RW. (2.36)

There is a computational motivation for using this formula: the adjoint
of the discretized version of a linear operator will simply be the Hermitian
transpose of the operator for the inner product with identity weighting. This
property is desirable for computations, for instance of the Lyapunov equation,
as discussed in §2.6. The covariance in the desired inner product can be recov-
ered once the results obtained, using the discrete inner-product weighting.

2.2.4. Linear transformations

Consider a random variable ξ with outcome in H, and a linear transformation
L such that Lξ = η with adjoint L+. From the definition of the covariance, we
have

∀x, y, E〈Lη, x〉〈Lη, y〉
=E〈η, L+x〉〈η, L+y〉
=〈RξξL

+x, L+y〉
=〈LRξξL

+x, y〉.

(2.37)

In this derivation, we did not specify the inner product, but we assume that
the adjoints are defined accordingly. We thus have the relation between the
covariance Rξξ of ξ and the covariance Rηη of η

Rηη = LRξξL
+. (2.38)

In general, with η1 = L1ξ1 and η2 = L2ξ2 where ξ1 and ξ2 are two random
variables, we have

Rη1η2
= L1Rξ1ξ2

L+
2 . (2.39)

Consider again the transformation from r̂ = (û, v̂, ŵ) to q̂ = (v̂, η̂). Suppose
that we have the covariance Rq̂q̂ of (v̂, η̂), we can recover the covariance Rr̂r̂ of
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the primitive variables (û, v̂, ŵ) by the transformation



Rûû Rûv̂ Rûŵ

Rv̂û Rv̂v̂ Rv̂ŵ

Rŵû Rŵv̂ Rŵŵ





︸ ︷︷ ︸
Rr̂r̂

= B

(
Rv̂v̂ Rv̂η̂

Rη̂v̂ Rη̂η̂

)

︸ ︷︷ ︸
Rq̂q̂

B+. (2.40)

Inversely we have

Rq̂q̂ = CRr̂r̂C
+ (2.41)

with B and C the transformation operators defined in (2.17) and (2.18).

2.2.5. Mean of the norm

Another useful result is to obtain the variance of the norm of a random variable.
Consider a random variable ξ with outcome in H. The mean value of the square
of the norm of ξ is E‖ξ‖2. This is for instance the definition of the flow kinetic
energy if the inner product is chosen accordingly. We can extract this quantity
from the covariance Rξξ of ξ,

E‖ξ‖2 = E

∞∑

k=1

〈ξ, φk〉〈ξ, φk〉 ,

∞∑

k=1

〈Rξξφk, φk〉 , TrRξξ (2.42)

for any choice of a basis {φk}∞k=1 of H. The last equality in (2.42) is the
definition of the trace (Tr) of the operator Rξξ. The trace of a matrix for
instance is the sum of its diagonal elements. Indeed, one recognizes in (2.42)
the infinite sum of the diagonal elements of the projection of Rξξ on the chosen
basis. The trace of an operator is of course independent on the choice of the
basis.

2.3. Linear filtering and the Lyapunov equation

We mentioned earlier that we would like to study the response of flow systems
to complex excitations, and characterize the flow response by its statistics. For
this we have introduced the framework of random variables. We have seen
how to extract physical information from the covariance matrices, and how to
manipulate them. This section is the core of the chapter on stochastic processes,
in which we will derive the covariance of the state of a linear system, when it is
excited by stochastic inputs. The equation relating the covariance of the input
to the covariance of the state is the Lyapunov equation.

Note that the expression “stochastic system” includes the cases where the
operators A,B,C,D of the state space representation (1.24) of the system are
themselves stochastic quantities, i.e. not described by their value, but instead
by their probability density function. In this thesis, we only consider deter-
ministic systems, with stochastic inputs. As a result, the state of the system
will be a Gaussian process entirely described by its covariance if the input are
Gaussian processes.
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We consider now a linear system

q̇ = Aq +Bw, q(0) = q0, (2.43)

where A is the dynamic operator, w is the input, and q0 is the initial condition.
We consider that w and q0 are random variables. We denote P0 the covariance
of q0. We assume for simplicity that the initial condition q0 is uncorrelated to
w.

The excitation source w is also varying in time. A central element of
stochastic differential equations is the concept of white noise, i.e a time varying
process that is uncorrelated in time

∀x, y, E〈w(t), x〉〈w(t′), y〉 = 〈Wδ(t− t′)x, y〉 (2.44)

where t and t′ are two time instants, and W is the spatial covariance of w. The
zero correlation in time imply that w(t) does not give any information about
w(t+ h). Such a signal cannot be differentiated in time, since the limit

lim
h→0

E
w(t+ h) − w(t)

h
(2.45)

is not defined. We will thus avoid using the evolution form (2.43). Instead we
can use the integral form of the time evolution of q

q(t) = S(t)q0 +

∫ t

t′=0

S(t− t′)Bw(s)dt′, (2.46)

where S describes the evolution of the state. The term S(t)q0 represents the
evolution in time of the initial condition q0, and the convolution integral ac-
counts for the effect of the input on the evolution of the state. The operator S
is related to the dynamic operator A

Ṡ(t) = AS(t). (2.47)

In addition, we have the two properties S(0) = I the identity operator, and
S(t + t′) = S(t)S(t′). One can regard S as the exponential matrix S(t) =
exp(At). The adjoint of S is denoted S+, and we have

Ṡ(t)+ = S(t)+A+. (2.48)

The derivation presented here is adapted from Balakrishnan (1976). To
obtain the covariance P of q(t) we begin with the definition

∀x, y, 〈P (t, t)x, y〉 = E〈q(t), x〉〈q(t), y〉

= E〈S(t)q0 +

∫ t

0

S(t−t′)Bw(t′)dt′, x〉〈S(t)q0 +

∫ t

0

S(t−t′′)Bw(t′′)dt′′, y〉.
(2.49)

We can expand this expression into four terms. The cross terms will disappear
because the initial condition q0 is uncorrelated from the forcing w. Consider
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for instance the first cross-term

E〈S(t)q0, x〉〈
∫ t

0

S(t−t′′)Bw(t′′)dt′′, y〉

=

∫ t

0

E〈S(t)q0, x〉〈S(t−t′′)Bw(t′′), y〉dt′′

,

∫ t

0

〈S(t) cov(q0, w(t′′))︸ ︷︷ ︸
0

B+S+(t−t′′)x, y〉dt′′

(2.50)

where we have used (2.38) to express the covariance of a linear transformation
of random variables. The two remaining terms are

〈P (t, t)x, y〉 = E〈S(t)q0, x〉〈S(t)q0, y〉

+ E〈
∫ t

0

S(t−t′)Bw(t′)dt′, x〉〈
∫ t

0

S(t−t′′)Bw(t′′)dt′′, y〉

= 〈S(t)P0S(t)+x, y〉 +

∫ t

0

∫ t

0

E〈S(t−t′)Bw(t′), x〉〈S(t−t′′)Bw(t′′), y〉dt′dt′′

= 〈S(t)P0S(t)+x, y〉 +

∫ t

0

∫ t

0

〈S(t−t′)B cov(w(t′), w(t′′))︸ ︷︷ ︸
Wδ(t′−t′′)

B+S(t−t′′)+x, y〉dt′dt′′.

(2.51)
Using the fact that w is a white noise process Rww = Wδ(t′ − t′′), we can
transform the double integral into a single integral to obtain the covariance
operator of q(t)

P (t, t) = S(t)P0S(t)+ +

∫ t

0

S(t−t′)BW (t′, t′)B+S(t−t′)+dt′. (2.52)

From this expression, we can obtain an evolution equation for the covariance

Ṗ (t, t) =Ṡ(t)P0S(t)+ + S(t)P0Ṡ(t)+ + S(0)BW (t, t)B+S(0)+

+

∫ t

0

Ṡ(t−t′)BW (t′, t′)B+S(t−t′)+dt′

+

∫ t

0

S(t−t′)BW (t′, t′)B+Ṡ(t−t′)+dt′

(2.53)

where we have used the formula for differentiation of a convolution

d

dt

∫ t

0

f(t−t′)g(t′)dt′ = f(0)g(t) +

∫ t

0

df

dt
(t−t′)g(t′)dt′. (2.54)
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Now replacing the derivatives of S and S+ using (2.47) and (2.48), we obtain

Ṗ (t, t) =AS(t)P0S(t)+ + S(t)P0S(t)+A+ + S(0)BW (t, t)B+S(0)+

+

∫ t

0

AS(t−t′)BW (t′, t′)B+S(t−t′)+dt′

+

∫ t

0

S(t−t′)BW (t′, t′)B+S(t−t′)+A+dt′

(2.55)

and we rewrite

Ṗ = AP + PA+ +BWB+. (2.56)

This equation was the one aimed for, known as the differential Lyapunov equa-
tion. The two central steps to obtain this equation were the zero correlation of
w in time, and the relation between the evolution operator S and the dynamic
operator A.

If the dynamic matrix A and the covariance W of w do not vary in time,
after initial transient due to the initial condition P0, the system will reach
statistical steady state where the covariance P (t, t) do not evolve in time. We
thus have for long time the algebraic Lyapunov equation

0 = AP + PA+ +BWB+. (2.57)

2.4. Proper orthogonal decomposition

We have seen that we can extract the mean energy from the covariance. We
would like now to find a way to extract more information, for instance de-
compose a random flow field with known covariance into a family of coherent
processes evolving in parallel. Often, in flows with one dominant instabil-
ity mechanism, the most energetic process will give a good idea of the flow
structure. This method of post processing flow fields is common in studies of
turbulence, and is known as the proper orthogonal decomposition (POD).

2.4.1. Optimization

Let us find a set of vectors φ that are the most representative of the random
process q. For this, we seek to build φ1 such that the expansion coefficient of q
on φ1 has the largest possible variance, i.e most of the energy of q is carried by
φ1. To build a support to the energy that is not carried by φ1, we look for φ2

that maximizes the variance of q in the orthogonal subspace to φ1. Proceeding
recursively, we can gather an orthogonal set {φk} that spans the space in which
q evolves. We then have the decomposition

q(x, t) =
∑

i

λi(t)φi(x) (2.58)

where the expansion coefficients λi are scalar random variables used to rep-
resent the evolution in time of the expansion coefficients qi = 〈q, φi〉. The
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problem can be formulated as an optimization problem: find φ1 that maxi-
mizes the variance of q1

σ1 = max
φ1

E
〈q, φ1〉〈q, φ1〉

〈φ1, φ1〉
. (2.59)

This expression corresponds to the definition (2.9) of the covariance of q, when
choosing φ1 as the projection function, we thus have

σ1 = max
φ1

〈Rqqφ1, φ1〉
〈φ1, φ1〉

(2.60)

where R is the covariance of q. This expression is similar as to (1.20) when
optimizing for the initial condition that yields the largest growth. We thus have
that σ1 is the largest eigenvalue of the covariance Rqq, and φ1 is the correspond-
ing eigenvector. Since the covariance is self-adjoint and positive semi-definite,
its eigenvalues are real positive, and its eigenvectors are orthogonal. We can
thus choose for φ2, φ3, . . . the eigenvectors of Rqq .

To investigate the covariance of the random expansion coefficients λi we
replace q by the sum (2.58) in the definition of its covariance

∀x, y, 〈Rx, y〉 = E〈
∑

i

λiφi, x〉〈
∑

j

λjφj , y〉

=
∑

i

∑

j

Eλiλj〈φi, x〉〈φj , y〉.
(2.61)

Choosing the test functions x = φk and y = φl we have

〈Rφk, φl〉 =
∑

i

∑

j

Eλiλj 〈φi, φk〉︸ ︷︷ ︸
δik

〈φj , φl〉︸ ︷︷ ︸
δjl

= Eλkλl,
(2.62)

and since φk is an eigenvector of R with eigenvalue σk,

〈Rqqφk, φl〉 = 〈σkφk, φl〉 = σkδkl, (2.63)

which imply Eλkλl = σkδkl. The expansion coefficients λk are thus uncorre-
lated to each other, and their variance are the eigenvalues of Rqq.

As a result, we have built a deterministic set of vectors that spans the
random flow field, where the energy is mostly carried by the first vector, then
the second and so on. Each vector represent a coherent process of the flow
field, since the expansion coefficients are uncorrelated to each other and the
vectors are orthogonal.

We have seen that the mean energy of the flow field is the trace of the
covariance, it is thus also the sum of the eigenvalues of Rqq. In this sense, when
Rqq is defined using the energy inner product, each one of the eigenvalues is
the energy carried by the corresponding coherent process.

We saw that covariance operators are positive semi-definite, i.e. the eigen-
values are positive or zero. The number of nonzero eigenvalues determine the
number of coherent processes in the flow field, in other words, the stochastic
dimension of the flow field, or the number of stochastic degrees of freedom. In
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function [pod,pode]=mypod(R,Q,n);

% compute n first POD modes of covariance matrix

% inputs:

% R: pointwise covariance matrix

% Q: inner product matrix

% n: number of desired POD modes

% outputs:

% pod: matrix of first n POD modes (as columns)

% pode: vector of variance of POD amplitude

%%%% eigenmode decomposition of R*Q

[pod,pode]=eig(R*Q);

pode=abs(diag(pode));

%%%% sort in decreasing mean energy and select n first

[t,o]=sort(-real(pode));

pode=pode(o(1:n));

pod=pod(:,o(1:n));

Table 2.2. A Matlab function mypod.m for proper orthog-
onal decomposition, using an eigenmode decomposition of the
weighted covariance matrix. The resulting POD modes are
orthogonal with respect to the inner product defined by Q.
The inner product matrix for Orr–Sommerfeld/Squire system
is built by enermat.m in table 2.1.

the case of a numerical simulation with a finite number of spatial degrees of
freedom, the covariance matrix will be positive definite if there are as many
stochastic degrees of freedom as spatial degrees of freedom.

In the case where the covariance Rqq is defined for an unweighted inner
product, and W is the weight describing for instance the energy inner product,
the POD modes are the eigenvectors of RW . This is the expression that we
will use for numerical computations. See for instance table 2.2 for a Matlab

function for POD decomposition.

2.4.2. To build a random forcing

We can use this decomposition approach to build simple stochastic forcing
f(y, t) for flow systems. For instance considering the boundary layer flow, we
would like to excite the flow close to the wall to analyse the receptivity to
wall-roughness. We can build a set of forcing functions fi with support close
to the wall

f(y, t) =
∑

i

λi(t)fi(y). (2.64)
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The uncorrelated expansion coefficients vary in time, and we can choose their
variance σi. The corresponding pointwise covariance of f is

Rff (y, y′) =
∑

i

σifi(y)fi(y′). (2.65)

2.5. Procedure for computation of state covariance

We have seen in the previous section how to obtain the covariance of the state of
a linear dynamic system when the covariance of the excitations and initial con-
dition are known . We will now describe a procedure to compute it, especially
how to choose the inner product at the different steps of the procedure.

Here is the pointwise definition of the covariance

cov(f(x), f(x′)) = Rff (x, x′) = Ef(x)f(x′). (2.66)

We have emphasized the central role of the definition of the inner product. We
will now give a simple guideline on how to choose it, when solving numerically
the Lyapunov equation. For numerical computation, one is free to choose the
inner products, as long as the adjoints and covariance operators are defined
accordingly.

Consider for instance two inner products in discrete space

〈f , g〉 , gHf ,

〈f , g〉Q , gHQf ,
(2.67)

with self-adjoint (Hermitian) nonnegative weighting matrix Q. If M and P

are the pointwise covariances of the excitations and the state, we denote M̆ =

MQ, P̆ = PQ the covariances in the weighted inner product. Similarly, A+ =
Q−1AHQ is the adjoint of A for the weighted inner product. We have the
Lyapunov equation

0 = AP̆ + P̆A+ + M̆

= APQ + PQQ−1AHQ + MQ

⇒ AP + PAH + M = 0.

(2.68)

As a consequence, we can choose whatever inner product that we find con-
venient for the computations, and extract afterward the covariance for the
desired inner product. For computation with matrices, it is preferable to use
the unweighted inner product, for which the adjoint of a matrix is the matrix
Hermitian transpose.

It is necessary to recover the definition of the covariance of the kinetic
energy inner product, when computing the mean kinetic energy:

E‖q‖2 = TrP̆ = Tr(PQ). (2.69)

the other closely related situation where the inner product is important is when
computing the POD modes (see §2.4). The decomposition should be performed

on P̆ = PQ so that the basis vectors are orthonormal for the inner product
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based on kinetic energy. In addition, the eigenvalues will be the mean kinetic
energy of the coherent processes corresponding to the eigenmodes.

Here is a procedure for the computation, as a summary of this section.

Choice of inner product First decide on a physically meaningful norm and
corresponding inner product. For example the norm and inner product
based on kinetic energy.

Discretized weight matrix Build the discretized weight matrix Q represent-
ing the inner product in the discretized setting. This will be for instance
the discretized version of the differential operator (2.27), including as
well the integration weights. A Matlab function is available in table
2.1 to build the inner product weight for the Orr–Sommerfeld and Squire
equations.

Computation of the Lyapunov equation Compute the solution of the dis-
cretized Lyapunov equation, using the complex conjugate of A as adjoint
for the dynamic operator

AP + PAH + M = 0. (2.70)

Extract the energy The covariance matrix P obtained as a solution of the
Lyapunov equation is the pointwise covariance of the state. To extract
the mean energy and for orthogonal decompositions, use the covariance

transformed to the energy inner product P̆ = PQ.

2.6. Numerical solution of the Lyapunov equation

Once the flow system modeled, with input and output defined, the statistics
of the input built, and these discretized, the last step before analysis of the
results is to solve the equations. We present in this section methods for the
computation of the solution to the Lyapunov equation, both in the steady state
case (algebraic Lyapunov equation), and in the time varying case (differential
Lyapunov equation).

2.6.1. Steady state covariance

The Lyapunov equation, after initial transient due to initial conditions is

0 = AX + XAH + M . (2.71)

We aim at computing X given A and M .

There exist an unique positive semi-definite solution X of (2.71) whenever
M is positive semi-definite and all eigenvalues of A have a strictly negative
real part. The first condition is satisfied if M is a covariance matrix, and the
second condition is satisfied if the system is stable. If on the other hand, A

is not stable, the state will grow to infinity. In the more general case of the
Sylvester equation

0 = AX + XB + M , (2.72)
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a solution exist and is unique if the eigenvalues λk
A and λh

B of A and B satisfy
λk

A + λh
B 6= 0, ∀k, h. The Lyapunov equation is a particular case of Sylvester

equation.

A solution to (2.71) or (2.72) can be obtained using an eigenmode decompo-
sition of A, but this method is unstable when the eigensystem is ill conditioned,
which is often the case in shear flows. An alternative method based on Schur
decomposition that is most widely used, for instance in the Matlab control
toolbox, is due to Bartels & Stewart (1972). We outline here the algorithm.
Note that efficiently implemented functions in Matlab and Fortran77 are
available from the open source software library Slicot (see the Slicot home
page on the web, presently www.slicot.de).

We will treat for generality the Sylvester equation. Consider the complex
Schur decomposition of A and BH

A = UA′UH , BH = VB ′V H (2.73)

where A′ and B ′ are upper diagonal and U and V are orthogonal similarity
transformations, i.e. UUH = UHU = VV H = V HV = I the identity matrix.
Injecting these factorizations in the Sylvester equation, we obtain

A′X ′ + X ′B ′H + M ′, X = UX ′V H ,M ′ = UHMV . (2.74)

We now use the properties of the Kronecker matrix multiplication ⊗, and
the vec operator defined as follow. For matrices A and B of arbitrary dimensions

A ⊗ B ,





A11B A12B . . . A1mB

A21B A22B . . . A2mB
...

...
. . .

...
An1B An2B . . . AnmB




(2.75)

with Aij the element (i, j) of matrix A. In particular I ⊗ B where I is the
identity matrix, is a large matrix with B as repeated block diagonal element.
The operation vec(A) transforms A into a long vector build by stacking the
column of A on top of each other.

The property of interest of ⊗ and vec is: for any matrices A,B,C ,X of
compatible dimensions,

AXB = C ⇔ (BT ⊗ A)vec(X ) = vec(C ), (2.76)

see for instance Kailath (1980).

Applying the vec operator on (2.72), we have

vec(A′X ′ + X ′B ′H + M ′) = (I ⊗ A′ + B
′ ⊗ I )︸ ︷︷ ︸

F

vec(X ′) + vec(M ′) = 0 (2.77)

where I ⊗ A′ is block diagonal composed of repeated upper-triangular A′, and
+B′ ⊗ I is upper-triangular composed of diagonal matrices of elements of B ′.
Since F is upper triangular, we can proceed by backward substitution to recover
X ′ and then transform it back X = UX ′V H to recover the solution. This can be
done efficiently using the particular structure of F . A simple Matlab function
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function X=mylyap(A,B,M);

% solve the Sylvester/Lyapunov equation AX+XB+M=0

% using Schur decomposition

n=size(A,1);

%%%% upper schur diagonal form

[u,a]=schur(A,’complex’); %now A=u*a*u’, a is upper diagonal

[v,b]=schur(B’,’complex’); %now B’=v*b*v’, b is upper diagonal

m=u’*M*v; % projected excitation covariance

%%%% backward matrix substitution

x=zeros(n,n);

I=eye(n);

for ind=n:-1:1

x(:,ind)=(a+b(ind,ind)’*I)\(-m(:,ind)-x(:,ind+1:n)*b(ind,ind+1:n)’);

end

X=u*x*v’; %project back the solution

Table 2.3. A simple Matlab function mylyap.m to solve the
Sylvester/Lyapunov equation AX+XP +M = 0, using Schur
factorization and backward substitution

implementing this algorithm is available in table 2.3. In case of Lyapunov
equation, only one Schur decomposition is necessary, and it is possible to speed
up the algorithm using symmetry, see Bartels & Stewart (1972).

2.6.2. Time evolution of the covariance

When one is interested in the initial transient behaviour due to stochastic
initial condition, or in the way a system evolves from rest to steady state when
exposed to stochastic input, one has to compute the solution of the differential
Lyapunov equation

Ẋ = AX + XAH + M , X (0) = X0 (2.78)

where the time derivative of the state covariance matrix Ẋ appears on the left
hand side, and with the covariance matrix of the initial conditions X0.

When the matrices A and M are not varying in time, we can use an explicit
form of the solution, provided we can afford the computation of the exponential
matrix exp(At) and the steady state covariance matrix X∞. In this section, we
denote X∞ the solution of the algebraic Lyapunov equation, to distinguish from
the time varying solution. For a linear system with initial condition x0, the
explicit solution is

q(t) = eAtq0. (2.79)
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Similarly, the solution of the Lyapunov equation without forcing (M = 0) is

X (t) = eAtX0e
AH t. (2.80)

This result can be verified a posteriori by differentiating (2.80) with respect to
time

Ẋ = A eAtX0e
AH t

︸ ︷︷ ︸
X (t)

+ eAtX0e
AHt

︸ ︷︷ ︸
X (t)

AH . (2.81)

With forcing M 6= 0, assuming that A is stable, and considering for the moment
zero initial condition, we obtain, using the steady state covariance matrix X∞

computed from (2.71)

X (t) = X∞ − eAtX∞eAH t. (2.82)

From this relation, one sees that X (0) = 0 since e0 = I and

lim
t→∞

eAt = 0 ⇒ lim
t→∞

X (t) = X∞ (2.83)

since A is asymptotically stable. Combining (2.82) and (2.80), we obtain the
general solution

X (t) = X∞ + eAt(X0 − X∞)eAHt. (2.84)

This method is implemented in a Matlab function in table 2.4.

Depending on the spatial discretization technique used, it might not be
possible to assemble explicitly the dynamic matrix A. Also, A and M can be
varying in time. In these case, it is preferable to use a time marching algorithm,
see Söderström (2002).

2.7. Summary of the results

For a function q(x) depending on a spatial coordinate x, the pointwise covari-
ance of q at two locations x and x′ is

Rqq(x, x
′) = cov(q(x), q(x′)) = Eq(x)q(x′) (2.85)

where E denote the expectation operator. In terms of statistical analysis, E can
be interpreted as averaging operator. When manipulating differential opera-
tors, it is necessary to generalize this definition, introducing the inner product.
The covariance of q with respect to the inner product 〈·, ·〉 is Rqq such that

∀x, y, 〈Rqqx, y〉 = 〈q, x〉〈q, y〉. (2.86)

The covariance depend on the choice of the inner product, for instance
consider the usual inner product 〈·, ·〉 and the weighted inner product 〈·, ·〉W =

〈W ·, ·〉 = 〈·,W ·〉, with weight W , and denoting Rqq and R̆qq the covariances of
q in the original and weighted inner products, we have

R̆qq = RqqW. (2.87)

The mean value of the norm of a random variable q can be directly ex-
tracted from its covariance operator

E‖q‖2
W = TrR̆qq (2.88)
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where Tr denote the trace operator.

The covariance of a linear transformation g = Lq of a random variable is

Rgg = LRqqL
+ (2.89)

where L+ is the adjoint of L.

For a linear system with state q and dynamic operator A, excited by sto-
chastic input w with covariance W ,

q̇ = Aq +Bw, (2.90)

the state q of the system is a random variable that can be described by its
covariance P , solution of the Lyapunov equation

0 = AP + PA+ +BWB+. (2.91)

When the system has stochastic initial condition q(0) = q0 with covariance P0,
we have a time varying state covariance described by the differential Lyapunov
equation

Ṗ = AP + PA+ +BWB+, P (0) = P0. (2.92)

A spatio-temporal random variable can be decomposed into an orthonormal
set of spatial functions with uncorrelated amplitudes, varying randomly in time.
This is the POD decomposition,

q(x, t) =
∑

i

λi(t)φi(x) (2.93)

where the λi(t) are uncorrelated random processes. The φi are eigenvectors of
the covariance matrix of q, and the eigenvalues are the variances of the λi. Of
course, the φi will be orthonormal with respect to the inner product for which
the covariance is defined.

2.8. An example: forced Orr–Sommerfeld/Squire

To illustrate the results and methods of this chapter, we compute the covariance
of a Blasius boundary layer exposed to a random forcing. We consider Re =
1000, α = 0, β = 0.7, about the wavenumber pair that has the highest transient
energy growth. We force the system with a volume force on the wall normal
velocity

f(y, t) = exp

[
−
(
y − yf

sf

)2
]

︸ ︷︷ ︸
Bf

w(t), (2.94)

where yf is a parameter that specifies the location of the localized forcing,
sf = 0.7 specifies the width of the forcing, and w(t) is a white noise process
with zero mean and unit variance.

The pointwise covariance matrix M of the discretized forcing function f is

M = Eff H = Bf B
H
f Eww = Bf B

H
f . (2.95)
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Figure 2.2. a): Time evolution of ûrms for the Blasius
boundary layer, at Re = 1000, α = 0, β = 0.7, when forced by
random excitations, and b): maximum over the wall-normal
direction of the steady state ûrms when varying the location
yf of the random forcing.

We compute the evolution in time from zero initial condition of the state covari-
ance, using the Matlab script in table 2.5. The computation of the differential
Lyapunov equation is performed using the Matlab function difflyap.m in ta-
ble 2.4.

The evolution in time of the rms of the streamwise velocity is depicted in
figure 2.2a). Initially there is no energy due to the choice of initial condition.
The rms increases progressively in time due to the forcing, until it reaches
a steady value at about time 3000. Figure 2.2b) shows the variation of the
maximum ûrms with the forcing location yf ∈ [0, 8].

2.9. Deterministic versus stochastic

After presenting these results and the stochastic tools, we can conclude by com-
paring the deterministic and the stochastic approach. The method of analysis
presented in §1.2.3, 1.2.4 describes deterministic method for analysis: asymp-
totic stability and optimal initial conditions. What does a stochastic analysis
add to these?

The interest of stochastic analysis relies on realistic statistics of the inputs.
In this case, by computing the statistics of the state of the system, one can
obtain realistic information about how the system will respond. It is thus
possible to consider the stochastic approach as an experimental approach to
computational fluid dynamics, and this because real systems are often exposed
to complex excitations, for which a statistical description is more relevant.
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Finally, stochastic input play an central role for control. The derivation of
optimal control and estimation feedback gain can be done without considera-
tion on covariances, but several weighting operators appear in the estimation
problem, that yield rich interpretations when interpreted as covariances.
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function [PP,rms,tvec]=difflyap(A,B,C,M,P0,Q,nt,tmax);

% Solve differential Lyapunov equation,

% using double exponential

% inputs:

% A, B, C: state space operators

% M, P0: covariance of external excitations and initial condition

% Q: energy measure matrix

% nt, tmax: number of times and last time

% outputs:

% PP: state covariance matrix at times tvec

% rms: state rms at times tvec

% tvec: time vector

%%%% compute exponential matrix for dt

tvec=linspace(0,tmax,nt);

dt=tvec(2)-tvec(1); % smallest time interval

expmat=expm(A*dt); % state transition from 0 to dt

%%%% solve for steady state covariance

Pinf=mylyap(A,A’,B*M*B’);

%%%% march in time

n=size(A,1);

PP=zeros(n,n,nt); % for saving of covariance matrices

PP(:,:,1)=P0; % save the initial covariance

rms=zeros(size(C,1),nt); % for saving of the rms

rms(:,1)=sqrt(abs(diag(C*P0*C’)));% rms of initial time

H=eye(n); % initial state transition matrix

for ind=2:nt;

%%%% compute using double exponential

H=H*expmat; % compute state transition matrix

P=Pinf+H*(P0-Pinf)*H’; % march the covariance

%%%% save results

rms(:,ind)=sqrt(abs(diag(C*P*C’)));

PP(:,:,ind)=P;

e=abs(trace(P*Q)); % mean kinetic energy at that time

fprintf(’%% it %3.0f / %3.0f %8.3f || %8.3f\n’,ind,nt,tvec(ind),e);

end

Table 2.4. A Matlab function difflyap.m for computation

of the differential Lyapunov equation Ẋ = AX + XAH + M ,
using the double exponential method. This function is used
by the script in table 2.5.
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%%%% parameters

N=100; % number of points in y

Re=1000; % Reynolds number based on deltastar

alpha=0; % streamwise wavenumber

beta=0.7; %spanwise wavenumber

L=15; % box height

%%%% compute blasius profile and interpolate

[ubla,ybla]=blasius(20,150); % compute Blasius profile

if ybla(1)<L; disp([’Error... increase L’]);break;end;

yto =-(1-(L/2*(1-cos((N+1:-1:0)*pi/(N+1))))*2/ybla(1));

u=chebint(ubla,yto); % interpolate to new grid

%%%% compute OSS

[A,B,C,Q,yvec]=oss(N,alpha,beta,Re,L,u);

%%%% Solve differential Lyapunov equation

f=[zeros(N,1);exp(-((yvec-2)/0.7).^2);zeros(N,1)];% forcing function

M=f*f’;% covariance of random forcing

P0=zeros(2*N,2*N);% covariance of initial condition

tmax=5000;nt=20;% time vector

[PP,rms,tvec]=difflyap(A,B,C,M,P0,Q,nt,tmax);% time evolution of P

mesh(tvec,yvec,rms(1:N));%plot rms

Table 2.5. A Matlab script to compute the time evolution
of the state covariance of the forced Orr–Sommerfeld/Squire
system. First compute the Blasius base flow using blasius.m

from table 3.5, and the Orr–Sommerfeld/Squire system with
input and output, using oss.m from table 1.1, and compute
the time evolution of the state covariance from zero initial
condition, using difflyap.m from table 2.4.



CHAPTER 3

Control

In the preceding chapters, we have introduced tools to model the stability of
shear flows. We have also seen the linear dynamical system formalism with
definitions of inputs and outputs. We then have introduced the description
of stochastic variables, and the equations that describe how a linear system
responds to stochastic excitations. We thus have all the elements to develop
the last chapter of this thesis. We will now see what can be done using feedback
control, and how to formulate the problem so that we can look for optimal
solutions.

We have seen in §1.3.3 that the definition of input and output can be used
in a convenient way to describe system interconnection. In fact feedback control
is the interconnection of on one hand the flow system with input excitations
and actuators, and output the sensors, with on the other hand the controller
that have the measurement as input and the actuator signal as output. We
have seen a simple example of control using PID controller, with proportional
derivative and integral action. We will see in this chapter a general method-
ology to build the controller. This framework of optimal control is known as
Linear, Quadratic, Gaussian (LQG), because the system is linear, the objective
is quadratic, and the random excitations are Gaussian.

We adopt a stochastic approach. The control objective will be to minimize
the flow mean kinetic energy. The Lyapunov equation will thus be a central
element in the derivations. See §2.7 for a summary of the stochastic section.

Consider a linear system describing the time evolution of a flow state q

{
q̇ = Aq +B1w +B2u

y = Cq + g.
(3.1)

In this form, as opposed to (1.24) we have explicitly decomposed the input into
two terms, B1w describing the effect of external sources of excitations, and
B2u being the control input. The general feedback control problem is to find
a transformation T coupling the sensor measurement to the actuator

u = T y (3.2)

such that the flow system is stable, and with low kinetic energy as a response
to the stochastic excitations. This transfer function can be represented in state

48
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space form {
q̇c = Acqc +Bcy

u = Ccqc +Dcy.
(3.3)

The problem is now to find the operators Ac, Bc, Cc, Dc.

Instead of solving the problem in this most general setting, we will consider
two different problems, the full information control where we assume that the
flow state q is known and we want to control it, and the estimation problem,
where we estimate the flow state based on the measurements. We will study
these two problems because they are interesting on their own, and because we
will see that the general control problem can be solved by combining the full
information controller and the estimator, i.e using the estimated state to apply
the control.

3.1. Control, Estimation, Compensation

We now formulate the two problems. In the full information control problem,
we assume that the flow state q is known exactly. In this situation, the best
control is the simple (memoryless) linear law u = Kq, with control gain K.
The system dynamics with this feedback is changed to

q̇ = (A+B2K)q +B1w, (3.4)

where stability and rejection of the excitations B1w will depend on the proper-
ties of the closed-loop system dynamic operator A+B2K. We would like now
to find the “best” K. It is natural to minimize the mean kinetic energy of the
flow state, when excited by w. To achieve this goal while maintaining a low
actuator effort, we will as well try to keep the norm of u small. We thus have
the control objective function

J = E(‖q‖2 + ‖u‖2) (3.5)

where ‖q‖2 denote the flow kinetic energy, and ‖u‖ is an actuation penalization
term.

In the estimation problem on the other hand, one aims at recovering the
flow state q from sensor information. For instance assume that there is no
external excitations w, that we have a good model A for the flow dynamics,
and that the initial condition q0 is known exactly. In this case, we can build
an estimator

˙̂q = Aq̂, q̂(0) = q0. (3.6)

with estimated state q̂ evolving in time in parallel to q according to the same
dynamics. Now, if the initial condition is not known, we can use the sensor
measurement to progressively build a flow state estimate,

{
˙̂q = Aq̂ − L(y − ŷ)

ŷ = Cq̂
(3.7)

where we compare the measurement from the flow y and the measurement
from the estimated flow ŷ, and feed back this measurement mismatch using
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the estimator gain L. If q(0) = q̂(0), we come back to the previous case with
known initial condition, and the feedback term L(y − ŷ) is inactive.

To consider the estimation problem with unknown initial condition and
both sensor noise g and external excitations w, we can derive the dynamics of
the estimation error q̃ = q − q̂. Combining (3.1) and (3.7), we obtain

˙̃q = Aq̃ +B1w + L(y − ŷ). (3.8)

Writing explicitly the dependence of the measurements on the state q and
estimated state q̂, using C we obtain

˙̃q = (A+ LC)q̃ +B1w + Lg, (3.9)

where it appears that the estimation error has dynamics A+LC and is exposed
to two sources of excitations: the external excitation w and the sensor noise
g. The estimation feedback gain L should be chosen such that this system is
stable, and is not sensitive to the excitation term B1w + Lg.

We can now formulate the optimal estimation problem: find L such that
the mean kinetic energy of the estimation error q̃ is small when the system is
exposed to sensor noise g with covariance G and external excitations w with
covariance W .

The full information controller and the estimator can now be put together,
using the estimated state q̂ instead of q for the control

{
q̇ = Aq +B1w +B2u

y = Cq + g
,






˙̂q =

Ac︷ ︸︸ ︷
(A+B2K + LC) q̂ +

Bc︷︸︸︷
L y

u = K︸︷︷︸
Cc

q̂
(3.10)

where we have added the control term B2K in the estimator as well, for con-
sistency. The system on the left is the flow system, with control u and mea-
surement y (sometimes called the plant) and the system on the right is the
controller, sometimes called the compensator, or output feedback controller to
emphasize that we do not assume exact knowledge of the state. We have iden-
tified the control operators

Ac = A+B2K + LC

Bc = L

Cc = K

Dc = 0

(3.11)

introduced in (1.32). The dynamics of the closed-loop system can be written
in matrix form

(
q̇
˙̂q

)

︸︷︷︸
Q̇

=

(
A B2K

−LC A+B2K + LC

)

︸ ︷︷ ︸
A

(
q
q̂

)

︸︷︷︸
Q

+

(
B1 0
0 −LC

)

︸ ︷︷ ︸
B

(
w
g

)

︸ ︷︷ ︸
U

. (3.12)
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The system is governed by a new closed-loop dynamics, A. It is excited by
two sources of excitations, w and g. The controller built by combination of
the optimal estimator and the optimal full information controller is optimal for
the Gaussian excitation and the quadratic objective. This is the well-known
separation principle, see Skogestad & Postlethwaite (2005).

3.2. Scalar case

To gain insight into the optimization procedure, we now solve the full infor-
mation control and the estimation problem in the scalar case. In this simple
setting, the optimality condition can be expressed as a derivative, and explicit
solutions are quick to derive.

We have the dynamics A = a ∈ R, the control feedback gain k ∈ R, the
estimation feedback gain l ∈ R we choose ‖q‖2 = rq2 and ‖u‖2 = `2u2. For
simplicity we assume B1 = B2 = C = 1. We will denote m ∈ R+ the covariance
of w and α2 the covariance of g. For simplicity we consider the steady state
control case, where the state statistics are described by the algebraic Lyapunov
equation.

3.2.1. Full information control

We thus have the system and objective function, using u = kq,

q̇ = (a+ k)q + w, J = E(rq2 + `2k2q2) = (r + `2k2)p (3.13)

where we have denoted by p the variance of q.

Note that the first obvious requirement is that a + k < 0 so that the
system is stable. This imply the restriction k < −a. On the other hand, a can
be negative or positive (original system stable or unstable).

We can now express the covariance of the state as a function of the covari-
ance m of the excitation w using the Lyapunov equation

(a+ k)p+ p(a+ k) +m = 0. (3.14)

Since a and k are real scalars, we write explicitly

p = − m

2(a+ k)
, (3.15)

where p > 0 since we have imposed a + k < 0. Introducing this expression in
the objective function (3.13), we obtain the expression for the objective

J = −m (r + `2k2)

2(a+ k)
. (3.16)

The variation of J as a function of the control gain k is depicted in figure
3.1. One observes two extrema: a local minimum k+ and a local maximum k−.
The extremum k+ is not admissible since it leads to an unstable closed-loop
system a+ k+ > 0.
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Figure 3.1. Variation of the objective function J as a func-
tion of the control gain k in the scalar case of the full infor-
mation control, with a = 0.1, ` = 1, 2, 3, m = 1, r = 1. The
objective J has two extrema, at k+ (square) and k− (circle),
only k− leads to a stable closed-loop. The amplitude of the
optimal k is shown as a function of `; k reaches large amplitude
for small penalization.

The expressions for k+ and k− can be obtained by considering local extrema
of J , corresponding to points with zero derivative. We obtain

∂J

∂k
= −m4`2k(a+ k) + 2(r + `2k2)

4(a+ k)2
= 0, (3.17)

where we already can see that the covariancem of the excitation does not affect
the optimal k. We obtain two solutions for k

k± = −a±
√
a2 +

r

`2
. (3.18)

We can see that the solution depends on the ratio r/`2. If `2 is large compared
to r, the control amplitude is highly penalized in the objective function, and k
will be small (low control effort). As seen on figure 3.1, k− is the unique mini-
mum, leading to a stable system. This is thus the solution of our optimization
problem.

To anticipate the matrix case, we rewrite the optimality condition (3.17)

2`2k?a− `2k?2 + r = 0. (3.19)

Introducing λ? = −k?`2, we obtain the quadratic equation
{
aλ? + λ?a− λ?2/`2 + r = 0,

k? = −λ?/`2,
(3.20)

similar to the Riccati equation obtained from Lagrange multiplier technique in
the matrix case.
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Figure 3.2. Variation of the mean energy of the estimation
error p̃ as a function of the estimation gain l with a = 0.1,
α = 1, 2, 3, m = 1. The objective J has two extrema, at l+

(square) and l− (circle), only l− leads to a stable closed-loop.
The amplitude of the optimal l is shown as a function of α; l
reaches large amplitude for low sensor noise.

3.2.2. Estimation

Consider the scalar system for the estimation error

˙̃q = (a+ l)q̃ + w + lg, (3.21)

where we aim at finding the l that minimizes the variance p̃ of the estimation
error. Assuming that w and g are uncorrelated, we have

cov(w + lg) = cov(w) + l2cov(g) = m+ l2α2. (3.22)

We can use the Lyapunov equation to relate the variance of the excitation terms
to the variance of the estimation error

(a+ l)p̃+ p̃(a+ l) +m+ l2α2 = 0, (3.23)

in other words

p̃ = −m+ l2α2

2(a+ l)
, (3.24)

which in fact is our objective function. The dependence of p̃ on l is depicted
in figure 3.2.

Extrema for p̃ can be derived similarly to the control problem, to obtain

l± = −a±
√
a2 +

m

α2
. (3.25)

Only l− is a minimum leading to a stable system, we thus disregard l+. This
solution is similar to the optimal solution for the control problem. We thus
have the optimal estimation gain l? = l−. The optimal solution depends on
the ratio m/α2, so the sensor noise play a role similar to the control penalty.



54 3. CONTROL

Injecting the expression for l∗ in the Lyapunov equation, we obtain the
optimal estimation error variance

p̃? =

(
a+

√
a2 +

m

α2

)
α2 = −l?α2. (3.26)

Expressing l? as a function of p̃? in the Lyapunov equation, we obtain the
solution to the optimization problem in the form of an equation for p̃

{
ap̃? + p̃?a− p̃?2/α2 +m = 0,

l? = −p̃?/α2,
(3.27)

similar to the Riccati equation obtained in the matrix case in §3.3.4.

3.3. Matrix case

We will now derive the optimality conditions for the control and estimation
in the general case. The derivation is presented here for finite dimensional
systems, where the operators can be represented by matrices. The derivation
can in this case be done step by step using Lagrange multiplier technique. See
Balakrishnan (1976) for the demonstration in the operator case.

3.3.1. Gradient of the trace

To express the optimality condition, we will differentiate the objective function
with respect to matrices. The gradient of a scalar function f of the vector x is
defined

∇xf =





∂f
∂x1
...

∂f
∂xn



 (3.28)

where x1, . . . , xn are the elements of x . The generalisation of this definition to
the case with matrix variable X is simply

∇Xf =





∂f
∂X11

. . . ∂f
∂X1n

...
. . .

...
∂f

∂Xnn
. . . ∂f

∂Xnn



 (3.29)

where Xij is the entry (i, j) of X .

Consider now three matrices A,B,X with compatible dimensions, and with
transpose AT ,BT ,XT . Using the properties of the trace operator

TrAB = TrBA = TrAT BT (3.30)

and the definition of the gradient, we can show (see Skelton et al. (1998))

∇XTr(XA) = AH . (3.31)
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By repeated application of these relations, we obtain four useful formulas for
differentiation of trace expressions






∇XTr(AXB) = AHBH ,

∇XTr(AXHB) = BA,

∇XTr(AXBX ) = AT XHBH + BHXHAH ,

∇XTr(AXBXH) = AHXBH + AXB.

(3.32)

3.3.2. Lagrange multipliers

In the previous section for the scalar case, we could derive directly the op-
timality conditions. The optimal solution corresponds to an extrema of the
objective function, and this is how we found the optimal k and l. In the ma-
trix case, we can not solve explicitly the Lyapunov equations, so we have a
constrained minimization problem. We can thus use the Lagrange multiplier
technique to replace a constrained minimisation of the objective function, to
the unconstrained search for extrema of the Lagrangian. For instance consider
the general problem with equality constraints,

{
minimize f0(x)

subject to hi(x) = 0, i = 1, . . . ,m
(3.33)

with f0 ∈ R, x ∈ Rn, hi ∈ R. This problem is equivalent to

Find extrema of L (x , λ1, . . . , λm) = f0(x) +

m∑

i=1

λihi(x) (3.34)

where L is the Lagrangian and the λi ∈ R are the Lagrange multipliers. At
an extrema (x?, λ?

1, . . . , λ
?
m) of L , we have






∇λi
L = 0 ⇒ hi(x

?) = 0, i = 1, . . . ,m

∇xL = 0 = ∇xf0(x
?) +

m∑

i=1

λ?
i ∇xhi(x

?).
(3.35)

See Boyd & Vandenberghe (2004) for a in-depth reference on convex optimiza-
tion and Lagrange multiplier technique.

In the case of matrix equation constraints, we use the definition of the gra-
dient with respect to matrices, combined with the trace operator to transform

{
minimize F0(X )

subject to H(X ) = 0,
(3.36)

with constraint H(X ) ∈ Rn×n, to the unconstrained search for extrema of the
Lagrangian

Find extrema of L (X ,Λ) = F0(X ) + Tr(ΛH(X )), (3.37)
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since ∇ΛTr(ΛH(X )) = H(X )H , we have
{
∇ΛL = 0 ⇒ H(X ?) = 0

∇XL = 0 = ∇XF0(X
?) + Λ?∇XH(X ?),

(3.38)

3.3.3. Full information control

The covariance matrix P of the flow state is solution of the Lyapunov equation

0 = (A+B2K)P + P (A+B2K)+ + B1WB+
1︸ ︷︷ ︸

M

, (3.39)

where we denote by M the covariance of the forcing due to B1w. We want to
minimize a weighted sum of the mean value of the flow energy and the control
effort

J = E(‖q‖2
Q + ‖u‖2

R), (3.40)

where ‖q‖2
Q denote for instance the kinetic energy, with discrete space repre-

sentation using the matrix weight Q. The term ‖u‖2
R accounts for the control

effort in the objective function. It is represented using the matrix weight R .
Expressing u as a function of the state, we obtain the objective function in
terms of discretized state covariance matrix P

J = Tr(PQ + KPKHR). (3.41)

We have seen in §2.6 that it is convenient to use the unweighted inner product
for discrete operations, we thus consider the Lyapunov equation

0 = (A + B2K )P + P(A + B2K )H + M . (3.42)

We aim at minimizing the objective function, with P satisfying the Lya-
punov equation (3.42). We can thus consider this as a constrained minimization
problem. We define the Lagrangian

L = Tr(PQ + KPKHR) + Tr[Λ((A + B2K )P + P(A + B2K )H + M)]

= Tr(PQ + KPKHR + ΛAP + ΛB2KP + ΛPAH + ΛPKHBH
2 + ΛM)

(3.43)

where Λ is a matrix Lagrange multiplier. At its extrema, L is stationary with
respect to Λ, P, and K . The gradient of L with respect to Λ gives back the
Lyapunov equation

∇ΛL = 0 = (A + B2K )P + P(A + B2K )H + M . (3.44)

For the gradient with respect to P we have used (3.32), and using the fact that
weights and covariances are self-adjoint (RH = R ,QH = Q). We have

∇P L = 0 = Q + KHRK + AHΛH + KHBH
2 ΛH + ΛHA + ΛHB2K

= (A + B2K )HΛH + ΛH(A + B2K ) + KHRK + Q.
(3.45)
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This is a Lyapunov equation for Λ, where A + B2K is stable and Q + KHRK is
self-adjoint, so Λ is self-adjoint (ΛH = Λ). The last condition at an extrema is

∇KL = 0 = RHKPH + RKP + BH
2 ΛHPH + BH

2 ΛP

= [RK + BH
2 (ΛH + Λ)]P

⇒ (RK + 2BH
2 Λ)P = 0.

(3.46)

This last equality does not constrain RK + 2BH
2 Λ in the null space NP of P

(recall that a covariance matrix is not necessarily definite). As a consequence,
the projection of K on NP is arbitrary. For simplicity, we enforce RK +2BH

2 Λ =
0 also in NP . We thus have

K = −R−1BH
2 Λ, (3.47)

where R−1 is well defined since R is positive definite. This relation can be used
to express K as a function of the Lagrange multiplier Λ in (3.45). We thus have
the solution to the optimal control in the form of a Riccati equation for Λ

{
0 = AHΛ + ΛA − ΛB2R

−1BH
2 Λ + Q,

K = −R−1BH
2 Λ.

(3.48)

3.3.4. Estimation

We now derive the solution of the estimation problem using the same steps as
for the control. We shall call P̃ the covariance matrix of the estimation error
q̃. It is solution of the Lyapunov equation

0 = (A+ LC)P̃ + P̃ (A+ LC)+ + LGL+ +M (3.49)

where M is the covariance matrix of B1w as in the previous section, and G
is the covariance matrix of the sensor noise g. We seek to minimize the mean
value of the norm of the estimation error, we choose

J = E‖q̃‖2
Q, (3.50)

where ‖q̂‖2
Q can be chosen as the kinetic energy of the estimation error. We

represent the objective function in term of the pointwise covariance matrix P̃

of the estimation error

Je = TrP̃Q. (3.51)

Similarly to the control problem, we use the discrete version of the Lyapunov
equation, in terms of pointwise covariance matrices

0 = (A + LC )P̃ + P̃(A + LC )H + LGLH + M . (3.52)

We want to minimize the objective function J subject to the constraint
(3.52). We can for this define the Lagrangian

L = Tr(P̃Q) + Tr[Λ((A + LC )P̃ + P̃(A + LC )H + LGLH + M)]

= Tr(P̃Q + ΛAP̃ + ΛLCP̃ + ΛP̃AH + ΛP̃CHLH + ΛLGLH + ΛM)
(3.53)
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where Λ is a matrix Lagrange multiplier. At an extremum, the gradients of L
with respect to Λ, P̃ , L vanish. The gradient with respect to Λ gives back the
Lyapunov equation

∇ΛL = 0 = (A + LC )P̃ + P̃(A + LC )H + LGLH + M . (3.54)

Considering the gradient with respect to P̃ we have

∇P̃L = 0 = Q + AHΛH + CHLHΛH + ΛHA + ΛHLC

= (A + LC )HΛ + ΛH(A + LC ) + Q.
(3.55)

This is a Lyapunov equation with Q self-adjoint and A + LC stable, Λ is thus
self-adjoint (ΛH = Λ). The gradient with respect to L gives

∇LL = 0 = ΛH P̃CH + ΛP̃CH + ΛHLGH + ΛLG

= 2Λ(P̃CH + LG)

⇒ L = −P̃CHG−1

(3.56)

where we have used the same argument as in (3.47) for the equation on L in
the null space of Λ. The inverse G−1 is well defined since G is positive definite.
This relation can be used to express L as a function of the covariance matrix
of the estimation error in (3.54), we thus have the solution to the optimization

problem in the form of a Riccati equation for P̃
{

0 = AP̃ + P̃AH − P̃CHG−1CP̃ + M

L = −P̃CHG−1.
(3.57)

3.3.5. The finite horizon case

We have derived the optimal control and estimation feedback gains K and L in
the infinite horizon case, i.e. when there is no influence of the initial condition
and no final control time. In the finite horizon case on the other hand, we
consider the system with initial condition q0 with covariance matrix P0, and
with an additional state penalization at final time T . The objective function
for control is then

J = E(‖q‖2
Q + ‖u‖2

R + ‖q(T )‖2
QT

). (3.58)

In terms of discretized quantities we have

J = Tr(PQ + KPKHR + P(T )QT ) (3.59)

where the covariance matrix P is time varying. Due to the initial and final
conditions, the two Lyapunov equations (3.39) and (3.49) are now differential

Lyapunov equation with time varying solutions P(t) and P̃(t)

Ṗ = (A + B2K )P + P(A + B2K )H + B1WBH
1 , P(0) = P0

˙̃
P = (A + LC )P̃ + P̃(A + LC )H + LGLH + B1WBH

1 , P̃(0) = P0.
(3.60)
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Deriving the optimal solutions as before, accounting for the time derivatives in
the constraints, we obtain the time varying Riccati equations for Λ(t) and P̃(t)






−Λ̇ = AHΛ + ΛA − ΛB2R
−1BH

2 Λ + Q, Λ(T ) = QT ,

K = −R−1BH
2 Λ,

˙̃
P = AP̃ + P̃AH − P̃CHG−1CP̃ + B1WBH

1 , P̃(0) = P0,

L = −P̃CHG−1.

(3.61)

The initial condition for P̃ is P0 since we assume zero initial condition in the
estimator, and the final condition for Λ(T ) is QT . It is worth noting that the es-
timation Riccati equation propagates initial condition forward in time, whereas
the control Riccati equation for Λ propagates the final condition Λ(T ) = QT

backward in time. We will comment on this property in the next section.

3.3.6. Remarks on the optimal solutions

Here comes several remarks on the optimal solutions:

Functional gains: To specify that the feedback operators K and L have a
meaning as well in the setting of the partial differential equations, they
can be referred to as functional gains. This semantical distinction might
be useful to remember that infinite dimensional objects have to be ma-
nipulated with care.

Choice of the inner products: We have chosen to derive the control in dis-
crete space, using unweighted inner product, as discussed in §2.6. This
choice does not affect the result of the optimization, as long as the con-
trol objective function targets the norm of interest, and the definition
of the covariance operators are consistent.

For instance, the infinite dimensional version of the algebraic Riccati
equations are (see Balakrishnan (1976))

0 = AP̆ + P̆A+ − P̆C+G−1CP̆ +B1WB+
1 , L = −P̆C+G−1

0 = Λ̆A+A+Λ̆ − Λ̆B2R
−1B+

2 Λ̆ + I, K = −R−1B+
2 Λ̆,

(3.62)

where P̆ and Λ̆ are the covariance matrix of the estimation error and
the Lagrange multiplier in the weighted inner product. Replacing co-
variance matrices and adjoint operators by their discrete counterparts,
accounting explicitly for the inner product weighting Q as in §2.2.2,

P̆ = PQ,

Λ̆ = Q−1Λ,

A+ = Q−1AHQ,

C+ = Q−1CH ,

B+
2 = BH

2 Q

(3.63)
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we recover the discrete Riccati equations that we derived.

Action and information: The solution of the control problem is indepen-
dent on the covariance of the excitation M , but the optimal control gain
depends explicitly on the objective function weight Q. In contrast, the
estimation problem does not depend on the objective function weight Q,
but depends on the covariances M and G of the excitations and sensor
noise. We can thus say that the full information control is a determinis-
tic problem, where the definition of the goal to attain is central for the
formulation, whereas the estimation is a stochastic problem where the
central point is to describe the excitations correctly. In other word, the
control depends on what we want to achieve, whereas the estimation
depends on the excitations. One of the consequences for estimation is
that if the excitation and sensor noise covariances are known, there is
no design parameter to tune the estimation. The control is an “action”
problem, whereas the estimation is an “information” problem.

Multiplicity of solutions: We saw in (3.47) that the projection of the control
gain onto the null space of the state covariance matrix P was arbitrary.
This null space is spanned by the eigenvectors of P that have “zero
eigenvalue”, i.e. degrees of freedom with no energy. It is natural that
these elements of K be arbitrary, since they have nothing to feed back.
The argument is similar for the estimation gain L.

Time varying gains: We saw that for the estimation problem, the feedback
gain L is directly extracted from the covariance matrix of the estima-
tion error P̃ . When considering the covariance of initial conditions in
the estimation problem, there is an initial transient in the evolution of
P̃ , and thus a transient in the time evolution of L. After the initial
transient, the estimation gain tends asymptotically to her steady state
value. The steady state value can be obtained directly by solving the

algebraic Riccati equation, setting ˙̃P = 0 in (3.61).
On the other hand, the control feedback gain is extracted directly for

the Lagrange multiplier Λ. The differential Riccati equation describes
the evolution of Λ backward in time, and its “final” condition is the final
state penalization QT . The control gain K thus follows a transient from
the final time backward, and tends asymptotically to his steady state
value backward in time.

These remarks once more illustrate that the estimation problem
is dependent on the excitations, both P0 and W , whereas the control
problem depends on the definition of the objective, both final time QT

and state penalization Q.

Scaling independence: For control and estimation in the scalar case, the
optimal solutions depend on the ratio between state penalization and
actuator penalization for the control, and between covariance of the
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excitation and covariance of the sensor noise for the estimation. This
property is still valid in the matrix case, where the solutions are un-
changed whenever R−1Q and MG−1 are kept constant. For instance it
is reasonable to have same variance α2 for all sensor noises, and to have
the same penalization ` for all actuators. If we assume as well that the
sensor noises are uncorrelated to each other and that we penalize the
actuator independently, we have R = `2I,G = α2I. In this case, scaling
the state penalization or the excitation covariance while keeping Q/`2

and M/α2 will not affect the solution.
This is a direct consequence of the fact that the controller seeks

a balance between actuation effect and actuation effort, whereas the
estimator seeks a balance between sensor signal and sensor noise.

It appears from this list of comments a remarkable symmetry between
control and estimation. In fact one can show that they are dual problems.
Consider an arbitrary linear system

{
q̇ = Aq + Bu

y = Cq +Du,
(3.64)

with state q, input u and output y, i.e. the primal system. The corresponding
dual system is defined {

˙̂q = A+q̂ + C+y,

u = B+q̂ +D+y.
(3.65)

In the dual system (or the adjoint system), the input and output are switched.
One can show that the optimal control problem for the primal system, with
state penalization Q, final state penalization QT , and actuator penalization R,
is the same problem as the estimation for the dual system, with Q as excitation
covariance, QT as initial condition covariance, and R as sensor noise covariance.
We thus did not need derive the optimal solution twice. . .

3.4. Numerical solution of the Riccati equation

The optimal control and estimation gains L and K can be obtained through
the solution of two independent matrix Riccati equations. The general form of
the Riccati equation with variable X (t) is

Ẋ = AX + XAH − XBBHXH + Q. (3.66)

In the infinite horizon control problem, the variable X reaches steady state,
and its time derivative vanishes

0 = AX + XAH − XBBHXH + Q. (3.67)

Similarly as for the Lyapunov equation, we refer to these two equation as
differential and algebraic Riccati equations. We will now present method for
numerical computation of their solution.
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3.4.1. Algebraic Riccati equation

The algebraic Riccati equation (3.67) as a unique self-adjoint solution X when
the pair (A,B) is stabilizable and the pair (A,Q) is detectable. For control,
this means that the unstable modes can be controlled, and are penalized in
the objective function, and for the estimation, that the unstable modes can be
measured, and are excited by the random input. These are reasonable demands
for a system that we want to control. We outline here the derivation of the
solution, more details can be found in Laub (1991).

The simplest method is based on an eigenmode decomposition of the Hamil-
tonian matrix of size twice that of A,

H =

(
A BBH

−Q −AH

)
(3.68)

but this method is unstable when the eigenmode system is ill conditioned.
A wildly used alternative method is based on the Schur decomposition the
Hamiltonian matrix. Consider the decomposition

H = USUH , (3.69)

where U is orthogonal, and S is upper-triangular. In addition, the diagonal of
S is composed of the eigenvalues of H . The matrices U and S can be reordered
and partitioned

U =

(
U11 U12

U21 U22

)
, S =

(
S11 S12

0 S22

)
(3.70)

where S11 and S22 are upper triangular, S11 contains the eigenvalues with
negative real part, and S22 contains the eigenvalues with positive real part.
The Schur vectors (

U11

U21

)
(3.71)

thus span the stable invariant subspace of H , and the solution of (3.67) is given
by

X = U21U
−1
11 . (3.72)

The computation of the solution amounts to assembling the Hamiltonian ma-
trix, compute the Schur decomposition, order the Schur decomposition to sep-
arate stable and antistable subspaces, and then extract the solution (3.72) by
solving a linear system. A simple Matlab function is provided in table 3.1.

3.4.2. Differential Riccati equation

When the operators do not vary in time, it might be preferable to solve the
Riccati equation using the Chandrasekhar method. The idea is to compute
the evolution in time of a factorized form of the time derivative of the solution
of the Riccati equation. We will derive the Chandrasekhar equations for the
estimation problem, see Kailath (1973).
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function X=myric(A,G,M);

% compute the solution to the Riccati equation

% A’*X+X*A-X*G*X+M=0

% using Schur decomposition of the Hamiltonian

n=size(A,1);

h=[A -G;-M -A’]; % build the Hamiltonian matrix

[u,h]=schur(h,’complex’); % Schur decomposition of hamiltonian

[us,hs] = ordschur(u,h,’lhp’);% Sort the Schur decomposition

X=us(n+1:2*n,1:n)/us(1:n,1:n); % solve for solution

Table 3.1. A Matlab function myric.m for the computa-
tion of the solution of the algebraic Riccati equation 0 =
AX + XAH −XBBHXH + Q using Schur decomposition of the
Hamiltonian matrix. This function is used in §3.6 for compu-
tation of the optimal control of the Ginzburg–Landau equa-
tion.

Consider the estimation Riccati equation
{ ˙̃

P = AP̃ + P̃AH − P̃CHG−1CP + B1WBH
1 ,

L = −P̃CHG−1.
(3.73)

The equation for the time derivative of P̃ is





¨̃
P = A

˙̃
P +

˙̃
PAH −

−L̇︷ ︸︸ ︷
˙̃
PCHG−1 CP̃ − P̃CH

−L̇H

︷ ︸︸ ︷
G−1C

˙̃
P ,

L̇ = − ˙̃
PCHG−1,

(3.74)

we thus have
¨̃
P = (A + LC )

˙̃
P +

˙̃
P(A + LC )H . (3.75)

We now factorize the Hermitian
˙̃
P in the form
˙̃
P = YSY H (3.76)

with S diagonal, using for instance an eigenmode decomposition. Injecting the
time derivative

¨̃
P = Ẏ SY H + YSẎ H (3.77)

of this factorized form in (3.75), we obtain the evolution equation for Y :

Ẏ = (A + LC )Y , Y (0) = Y0, (3.78)

where the initial condition is obtained from the factorized form of
˙̃
P0. We thus

have the Chandrasekhar equations for the estimation problem:
{

Ẏ = (A + LC )Y

L̇ = −YSY HCHG−1
, Y0SY H

0 =
˙̃
P0, L(0) = P0C

HG−1. (3.79)
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In case with zero initial condition P̃0 = 0, we have
˙̃
P0 = B1WBH

1 , that
is positive semidefinite. It is easy to factorize W in the form (3.76) using an
eigenvalue decomposition. The rank of Y will thus be at most that of B1.
In cases with a low rank B1, Y has as well low rank, and equations (3.79)
manipulates a variable with much lower dimensionality than the covariance
matrix P̃ .

The factorization can be interpreted in terms of POD modes. If the exci-
tation term B1w as a low number of stochastic degrees of freedom (see §2.4),
then the Chandrasekhar method is faster and requires less memory than the

original Riccati equation. In case with nonzero initial condition P̃0 6= 0,
˙̃
P0 is

not positive semi-definite, so the diagonal S will have both positive and neg-
ative entries. In this case, it is not assured that the rank of Y is low. See
Antoulas et al. (2002) for a discussion on the number of stochastic degrees of
freedom for a large scale system excited by random input.

A shortcoming of the Chandrasekhar method is that it is sensitive to the
time marching algorithm. One must use an accurate scheme to avoid errors in
the steady state value. In addition, the final convergence to steady state might
be slow. A numerical algorithm to march (3.79) in time can be found in Banks
& Ito (1991).

3.5. Summary of the results

Given a linear system {
q̇ = Aq +B1w +B2u

y = Cq + g
(3.80)

with excitation covariance cov(w) = W , sensor noise covariance cov(g) = G,
and initial state covariance cov(q0) = P0. The feedback control that minimizes
the objective function

J = E(‖q‖2
Q + ‖u‖2

R) (3.81)

with state penalization with weightingQ and actuator penalization with weight-
ing R, is realized by the linear system (controller)

{
˙̂q = Acq̂ +Bcy

u = Ccq̂
, (3.82)

with input the sensor measurement y and output the actuation u, where

Ac = A+B2K + LC,

Bc = −L,
Cc = K.

(3.83)

The closed-loop dynamics, once the system and controller are interconnected
can be written in matrix form:(

q̇
˙̂q

)

︸︷︷︸
Q̇

=

(
A B2K

−LC A+B2K + LC

)

︸ ︷︷ ︸
A

(
q
q̂

)

︸︷︷︸
Q

+

(
B1 0
0 −LC

)

︸ ︷︷ ︸
B

(
w
g

)

︸ ︷︷ ︸
U

. (3.84)
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The discrete counterparts K and L of the control and estimation feedback
gains K and L are obtained by solving two independent algebraic Riccati equa-
tions 





0 = ΛA + AHΛ − ΛB2R
−1BH

2 Λ + Q,

K = −R−1BH
2 Λ,

0 = AP̃ + P̃AH − P̃CHG−1CP̃ + B1WBH
1 ,

L = −P̃CHG−1.

(3.85)

For control on a finite time interval, the covariance of the initial condition
P0 and the final state penalization QT appear in the objective functions, thus
leading to the two differential Riccati equations






−Λ̇ = ΛA + AHΛ − ΛB2R
−1BH

2 Λ + Q, Λ(T ) = QT

K = −R−1BH
2 Λ,

˙̃
P = AP̃ + P̃AH − P̃CHG−1CP̃ + B1WBH

1 , P̃(0) = P0

L = −P̃CHG−1,

(3.86)

such that K and L are time varying.

The solution of the algebraic Riccati equation can be computed by an
eigenmode decomposition or a Schur decomposition of the Hamiltonian matrix
of size twice that of the dynamic operator A. For Time marching of the differ-
ential Riccati equation, it is possible to use the Chandrasekhar method, even
for fairly large systems.

3.6. An example: controlled Ginzburg–Landau

As an illustration for control and estimation, we apply feedback control to the
Ginzburg–Landau equation (already seen in §1.2.3.1)

∂tq + U∂xq = γ∂xxq + µq.

The parameter setting is similar to Cossu & Chomaz (1997), the destabilizing
parameter µ now has a quadratic variation with x

µ(x) = µ0 + µ2x
2/2, (3.87)

where µ0 is the maximum value of µ(x), and µ2 ≤ 0 parameterizes the degree
of nonparrallelity. The system is locally convectively unstable where µ(x) > 0
and is globally unstable for µ0 larger than a critical value µ0c. For further
discussions, see Cossu & Chomaz (1997). We choose a parameter case for
which the system is stable (µ0 < µ0c), but with a zone of local instability. The
parameters are U = 1, γ = 1 + i0.1, µ0 = 0.3, µ2 = −0.01. The dashed line
of figure 3.3 represent 10 × µ(x), the locally unstable region is approximately
in x ∈ [−8, 8]. By analogy with the local region of instability of the Tollmien-
Schlichting waves in the boundary layer, we denote branch I and branch II the
upstream and downstream limits of the unstable region.
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The system is subject to a random forcing

fw = exp

[
−
(
x− xw

s

)2
]
w(t) (3.88)

just upstream of branch I, with spatial location xw = −9, and width parameter
s = 0.7. There is a sensor located slightly downstream of branch I

y(t) =

∫ ∞

−∞

exp

[
−
(
x− xs

s

)2
]
q(x, t)dx (3.89)

extracting the integrated value of the state on a small region about xy = −4,
and an actuator applying a local forcing

fu = exp

[
−
(
x− xu

s

)2
]
u(t) (3.90)

about xu = 0. See figure 3.3 for a view of the excitation, sensor, and actuator
locations.

We discretize the dynamic operator using Hermite collocation, using dif-
ferentiation matrices from Weideman & Reddy (2000). By default, the state
is assumed to tend to zero at infinity, so there is no need to enforce boundary
conditions. The integration weights are built using the trapezoidal rule on the
Hermite collocation points.

The control and estimation gains are computed by solving two algebraic
Riccati equations using the function myric.m from table 3.1. The control
penalty is R = 50. We then build the closed-loop system by coupling the
Ginzburg–Landau equation to the controller, and compute the covariance ma-
trices of the controlled and uncontrolled state by solving two Lyapunov equa-
tions, using function mylyap.m from table 2.3. The uncontrolled system is
exposed to the random forcing fw with unit amplitude variance, whereas the
controlled system is exposed both to this excitation and the sensor noise g of
variance 0.1, i.e. 10% of the variance of the excitation input. See table 3.2 for a
Matlab script for the set-up of the system, and table 3.3 for the computation
of control and estimation, and for the computation of the state covariances.

The rms of the uncontrolled and controlled flow (the square root of the
diagonal of the covariance matrices) is shown in figure 3.3. For the uncontrolled
case (thin solid), the rms generated by the random forcing at x = −9 increases
all along the locally unstable region, until branch II where it begins to decrease.
The rms of the controlled state (thick solid) follows the same trends until the
actuator location, where the rms is greatly reduced. Due to dispersion effects,
the actuator influence extends slightly upstream. Downstream of the actuator,
the rms resumes growth, but from a low amplitude. With the present actuation
penalization R = 50, the rms of the actuator signal u2 is about unity, i.e. same
as the excitation forcing, despite the growth of state fluctuations due to local
instability.
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%%%% system parameters

u=1; % mean flow

g=1+i*0.1; % diffusion/dispersion

mu0=0.3; % bifurcation parameter

mu2=-0.01; % parrallelity parameter

N=100; % number of grid points

sss=0.7; % width parameter

xw=-9; % excitation location

xu=0; % actuator location

xy=-4; % sensor location

%%%% differentiation matrices and Ginzburg-Landau

[x, DM] = herdif(N, 2,0.6); % Hermite differentiation matrices

D1=DM(:,:,1); % first order differentiation

D2=DM(:,:,2); % second order differentiation

mu=mu0+mu2*x.^2/2; % destabilization term

A=-u*D1+diag(mu)+g*D2;% build dynamics

%%%% trapezoidal integration weights

w=([diff(x);0]+[0;diff(x)])/2; % integration weights

Q=diag(w); % inner product matrix

%%%% control operators

fw=exp(-((x-xw)/sss).^2); B1=fw;%excitations

fu=exp(-((x-xu)/sss).^2); B2=fu;% actuation

fy=exp(-((x-xy)/sss).^2);C=(fy.*w).’;%sensor

Table 3.2. A Matlab script for control of the Ginzburg–
Landau system: part I, set-up of the system. The differen-
tiation matrices for the Hermite collocation are built using
herdiff.m from Weideman & Reddy (2000), see §1.4.

The effect of varying sensor noise is illustrated in 3.3b), where the rms of
the controlled state is depicted for several sensor noise variancesG = 0.01, . . . , 1.
The sensor noise does not affects directly the flow state. Instead, it deteriorates
the estimation performance (higher variance of the estimation error). The ac-
tuation based on this state estimate is less effective when sensor noise is high.
Note that G = 1 means same variance for the excitations and for the sensor
noise.

3.7. Model reduction

Spatially Discretized systems describing partial differential equations are typ-
ically of large order, especially in two or three spatial dimensions, like the
Navier–Stokes equations. For spatially invariant system (with homogeneous
directions), it is possible to decouple the linear dynamic equations in Fourier
space. For instance, we have shown how to obtain the Orr–Sommerfeld/Squire
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%%%% control parameters

G=0.1;% sensor noise variance

R=50;% control penalty

%%%% compute control and estimation gains

Pc=myric(A,B2*inv(R)*B2’,Q); % solve control

K=-inv(R)*B2’*Pc; % extract control gain K

Pe=myric(A’,C’*inv(G)*C,B1*B1’); % solve estimation

L=-Pe*C’*inv(G); % extract estimation gain L

%%%% build closed-loop system

AA=[A B2*K;-L*C A+B2*K+L*C]; % closed-loop dynamic matrix

BB=[B1,zeros(N,1);zeros(N,1),-L]; % input for dist and sensor noise

%%%% compute state covariances

H=[1,0;0,G]; % covariance of excitations and sensor noise

P=mylyap(A,A’,B1*B1’);% state covariance, no control

Pc=mylyap(AA,AA’,BB*H*BB’);% state covariance, controlled

%%%% compute rms, and plot results

rms_u=sqrt(real(K*Pc(1:N,1:N)*K’)); % actuation rms

rms_nocont=sqrt(real(diag(P))); % no control, state rms

rms_cont=sqrt(real(diag(Pc(1:N,1:N)))); % controlled, state rms

plot(x,fw,’k’,x,fy,’m’,x,fu*rms_u,’c’, ...

x,mu,’k--’,x,rms_nocont,’b’,x,rms_cont,’r’);

legend(’excitations’,’sensor’,’actuator’, ...

’mu’,’rms, no control’,’rms, control’);

Table 3.3. A Matlab script for control of the Ginzburg–
Landau system: part II, optimization and plotting. The Ric-
cati equations for control and estimation are solved using
myric.m from table 3.1, and the covariance matrices for con-
trolled and uncontrolled state are computed as solution of two
Lyapunov equations, using the function mylyap.m from table
2.3

equations from the Navier–Stokes equations in the flat plate boundary layer,
by assuming that the flow is parallel. The control and estimation optimization
can be performed independently for each wavenumber pair and combined af-
terward into control and estimation kernels. This was the approach adopted
in papers 1,2,3 and 6 of this thesis.

There are two shortcomings for this approach. The first one is that one
cannot describe spatially localized actuators and sensors. Instead, we must
assume continuous wall actuation and sensing. A solution was proposed in
Högberg et al. (2003c), Högberg & Henningson (2002) and paper 3 of this
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Figure 3.3. A numerical example of control: Ginzburg-
landau. a): State rms without control (thin solid), with
control (thick solid), and location of excitation w, sensor y
and actuator u. The system parameters are U = 1, γ =
1 + i0.1, µ0 = 0.3, µ2 = −0.01, and the control parameters
are G = 0.1, R = 50, xw = −9, xy = −4, xu = 0. b): Variation
of the controlled state rms with sensor noise variance G =
0.01, . . . , 1.

thesis, applying a spatial cut-off in physical space both on measurement and
actuation at run time. This was possible due to the localized nature of the
feedback kernels. The second limitation is that using decoupling, the system
dimensionality is reduced. When controller has to be run (simulated) in parallel
to the real flow to be controlled, a low order dynamic model is preferable.

The systematic answer to these shortcoming is model reduction. From
an original high dimensional linear system, we can build a reduced version.
We assume that this model represents the dynamics of the flow of interest for
control, and we design the controller for this reduced model. We then couple
the full flow system (the real flow, or a high dimensional spatial discretization)
to the reduced controller. If the model reduction was successful, and if the
control design was careful, one can expect good performance.

The usual procedure for model order reduction is to choose a subspace in
which to project the high order model, i.e. projection on a set of vectors that
span the chosen subspace, and then truncation. The critical part is to choose a
basis in which to truncate the system. The simplest choice is to project on the
set of eigenmodes and then discard the most damped ones, assuming that they
do not play a significant role in the dynamics to be controlled. An other choice
of basis for projection are the POD modes extracted from a statistical analysis
of the flow subject to excitations. One can then truncate the POD modes
with low mean kinetic energy, assuming that they do not play a significant role
in the dynamics to be controlled. A systematic way to choose the basis for



70 3. CONTROL

truncation is a set of vectors that are equally controllable and observable, this
is the balanced truncation. See Moore (1981), Safonov & Chiang (1989), or
Skogestad & Postlethwaite (2005). This method is attractive because it provide
guaranties in the “quality” of the reduction, and can be done by solving two
Lyapunov equations.

When the system is originally of large order, the solution of Lyapunov
equations is a computational challenge. On the other hand, it is possible to
compute eigenmodes for fairly large systems by using iterative procedure as for
instance the Arnoldi/Krylov method (see paper 4 and reference therein) . In
paper 4, we have applied model order truncation in the basis of the eigenmodes.
We will first present the method, and then show some results of control and
estimation of a two dimensional flow open cavity flow.

3.7.1. Projection/truncation

The set of the eigenvectors of a linear operator is not orthogonal if the system
is nonnormal, so for projection, we need a set of vectors biorthogonal to the
set of eigenvectors. We can use for this the eigenvectors of the adjoint system.
Given A the dynamic operator of a system, by definition of the adjoint A+ we
have

〈Ax, y〉 = 〈x,A+y〉 (3.91)

this is true for any x, y so this is true as well for the eigenvectors φl of A and
ψk of A+

λl = Aφl, σk = A+ψk. (3.92)

We thus have
∀l, k, 〈Aφl, ψk〉 = 〈φl, A

+ψk〉
⇒ 〈λlφl, ψk〉 = 〈φl, σkψk〉
⇒ λl〈φl, ψk〉 = σk〈φl, ψk〉.

(3.93)

From this last equality, if 〈φl, ψk〉 6= 0, then λl = σk. Now assuming that

〈φl, ψk〉 6= 0 and 〈φl, ψk′〉 6= 0 for k 6= k′ (3.94)

we obtain σk = σk′ , which imply ψk = ψk′ . To avoid this situation, we discard
eigenmodes such as to have multiplicity one for all of the eigenmodes. This
does not affects the span of the family. Ordering the remaining eigenmodes
such that λl = σl, and normalizing the eigenvectors such that 〈φl, ψl〉 = 1, we
have

〈φl, ψk〉 = δlk, (3.95)

which is the biorthonormality condition (biorthogonal and normalized).

We now project the dynamic system, with input and output, on the set
of eigenvectors, using the biorthonormality condition. Assume we are given a
large linear system {

q̇ = Aq +Bu,

y = Cq +Du.
(3.96)
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We expand the state in the set of eigenvectors

q =
∑

φlql, qk = 〈
∑

l

φlql, φk〉 = 〈q, ψk〉 (3.97)

where qk is the expansion coefficient of q on eigenvector φk. Introducing this
expansion in (3.96) and taking the inner product with the adjoint eigenvectors,
we obtain

〈
∑

φlq̇l, ψk〉 = 〈A
∑

φlql, ψk〉 + 〈Bu,ψk〉

⇒
∑

l

〈φl, ψk〉︸ ︷︷ ︸
δlk

q̇l =
∑

l

〈Aφl, ψk〉︸ ︷︷ ︸
δlkλk

ql + 〈B,ψk〉︸ ︷︷ ︸
BM

k

u,

⇒ q̇k = λkqk + BM
k u.

(3.98)

Similarly for the output

y = C
∑

l

φlql +Du =
∑

l

Cφl︸︷︷︸
CM

l

ql +Du. (3.99)

We thus obtain the state space description for the vector q of expansion coef-
ficients {

q̇ = AMq + BMu

y = CMq +Du
(3.100)

where AM = diag(λ1, . . . , λN ) denotes the diagonal matrix of the eigenvalues
of A.

The last step to the reduced order model is to discard eigenvectors that
we judge unimportant for the dynamics. A straightforward choice is to discard
highly damped eigenmodes. We can as well account for the controllability and
observability of individual eigenmodes. For instance, if for a given k, the modal
residuals BM

k or CM
k are zero, then the eigenvector φk will not be an active

element of the input-output response. Eigenvectors with relatively low modal
residuals can be discarded.

3.7.2. Control of the open cavity flow

We now consider as an example the cavity-driven boundary layer separation
case of paper 4, see figure 3.4 for a sketch of the flow geometry. The wall
curvature induces a recirculating zone in the cavity, with a shear layer strongly
unstable to Kelvin–Helmholtz vortices. The Reynolds number is 350, based on
displacement thickness at the inflow of the computational domain.

We analyse the dynamics of this flow using direct numerical simulation
(finite difference in streamwise direction, Chebyshev in cross-stream direc-
tion), and by computing eigenmodes, using a Chebyshev/Chebyshev spatial
discretization. The eigenmodes are computed by means of a Krylov/Arnoldi
iterative method. The domain sizes and resolution are described in table 3.4.
The eigenmode computation is performed on a smaller domain centred about
the cavity, and the use of spectral method in both spatial directions allows to
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x
y

Figure 3.4. Sketch of the geometry, with Blasius boundary
layers upstream and downstream of the cavity, with recircula-
tion inside the cavity. The recirculating region is isolated from
the free-stream by a strongly unstable shear layer.

Lx Ly Nx Ny

DNS 409 80 2048 97
Eigenmodes 268 75 280 65

Table 3.4. Computational domains and resolutions for the
direct numerical simulation and for the eigenmode computa-
tion.

reduce significantly the number of grid points. There are 60000 degrees of free-
dom in the spatial discretization for the eigenmodes. The dynamic matrix A
assembled for the eigenmode computation has thus 600002 elements. Clearly,
it is difficult to directly solve the resulting Riccati equations.

We compute about 600 eigenmodes. See figure 3.5 for a subset of the com-
puted spectra1. The branch of least stable eigenvalues roughly corresponds to
eigenvectors spanning the shear layer. For the chosen Reynolds number/cavity
length we observe two unstable eigenmodes. By performing optimal initial con-
dition analysis, as shown in §1.2.4, we observed a global oscillatory behaviour,
due to propagation of a wave-packet along the shear layer, reflection into a
pressure perturbation at the downstream cavity lip, and regeneration of the
wave-packet by a receptivity mechanism at the upstream cavity lip.

We set a shear stress sensor at the downstream cavity lip, where flow
fluctuations are largest, and an actuator applying a localized volume force on
the cross-stream velocity close to the wall. The actuator is located at the
upstream cavity lip, where sensitivity is largest. We test the performance in
the direct numerical simulation, using the computed optimal wave packet as
an initial condition.

1Using the fluid mechanics convention, the unstable eigenvalues are in the upper half complex
plane
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Figure 3.5. Spectra of the cavity-driven separated boundary
layer, there are two unstable modes (with positive imaginary
part of the eigenvalue), denoted m1 and m2.

To compute the control and estimation gains, we then select the 50 least
stable modes, for use as a reduced system (3.100). We perform the optimiza-
tion using this model, and finally apply the controller in the direct numerical
simulation. The amplitude for the initial condition was chosen such that the
flow evolution is linear.

See figure 3.6 for the performance analysis of the reduced order controller
applied to the DNS. In figure 3.6a) The flow energy evolution (thin solid)
presents the characteristic oscillations of the global cycle, as a result of the
initial condition. The controlled flow (thick solid) follows the same energy
evolution for the first peak. When the wave packet is about to generate a
pressure disturbance, the controller acts to effectively reduce the reflection,
which result in stabilization. One sees the time evolution of the actuator signal,
and the measurement signal for the controlled and uncontrolled case in figure
3.6b) and c). The actuator is inactive until the wave packet first reaches the
downstream cavity lip. It then starts acting on the regeneration. The actuation
amplitude then decreases at the rate of the controlled flow energy. In figure
3.6 c), we compare the sensor measurement for the uncontrolled (thin solid)
and controlled (thick solid) cases. The sensor signal for the uncontrolled case
shows the typical oscillatory behaviour due to the reflection cycle, whereas the
measured signal progressively decreases for the controlled case.

Figure 3.7 shows x/t diagrams of the cross-stream velocity and pressure
at a plane at y = 3 and y = 10. The cavity is located approximatively in
the interval x ∈ [50, 125]. One can see how the wave packet initially in the
upstream region of the shear layer grows in amplitude at the same time that
it is convected along the shear layer. The pressure diagram shows vertical rays
of pressure perturbation when the wave packet having reached large amplitude
reaches the downstream cavity lip. Ones sees as well how these rays regener-
ate a wave packet that in turn is convected, thus closing the cycle. The same
velocity and pressure diagrams are presented for the case with control. The
first growth and convection is unaffected, as expected from the actuator lo-
cation, but the reflection/receptivity stage is quenched, resulting in decay of
perturbation amplitude.
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Figure 3.6. a): Time evolution of the uncontrolled (thin
solid) and controlled (thick solid) flow energy. b): Actuator
signal evolution in time. c): Sensor signal from the uncon-
trolled (thin solid) and controlled (thick solid) flow cases.

In paper 4, we present control and estimation results for the system ex-
panded in eigenmodes of the cavity flow. These DNS results confirm the ability
of the reduced order controller to stabilize the system, even using a drastically
reduced model.
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Figure 3.7. Spatio-temporal diagrams for the cross-stream
velocity and pressure at constant y location, with and without
control, from the direct numerical simulation. From top to
bottom: v at y = 3, no control then controlled, p at y = 10,
no control then controlled.
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3.8. Additional material

The Matlab function blasius.m for computation of the Blasius profile can
be found here:

function [u,y]=blasius(L,N);

% a script to compute the blasius profile, using

% newton solver fsolve, and Chebyshev collocation.

% input:

% L: box height

% N: number of gauss-Lobatto points

% output:

% u: blasius profile, normalized to deltastar=1

% y: collocation points

%%%% differentiation matrices, scaling from [-1,1] to [0,L]

[yvec,DM] = chebdif(N,3);

scale=-2/L;

D1=DM(:,:,1)*scale;

D2=DM(:,:,2)*scale^2;

D3=DM(:,:,3)*scale^3;

%%%% prepare boundary conditions

d=[N]; % indices with Dirichlet condition

n=[1 N];% indices with neuman condition, wall is at indice N

r=2:N-2;% remaining degrees of freedom

s=[1 N-1];%removed degree of freedom, due to Neuman

b=[1;0]; % values of neuman conditions

a=[0]; % values of dirichlet conditions

DN=-D1(n,s)\D1(n,r);% dynamic term

DF=D1(n,s)\(b-D1(n,d)*a); % forcing term

%%%% implement boundary conditions

DD1=D1(r,r)+D1(r,s)*DN; D1F=D1(r,d)*a+D1(r,s)*DF;

DD2=D2(r,r)+D2(r,s)*DN; D2F=D2(r,d)*a+D2(r,s)*DF;

DD3=D3(r,r)+D3(r,s)*DN; D3F=D3(r,d)*a+D3(r,s)*DF;

%%%% initial guess and solution

f0=-(2*yvec(r)-2)*L/4-1.21.*(1-exp((yvec(r)-1)*L/2));

f=fsolve(@(f)DD3*f+D3F+f.*(DD2*f+D2F),f0,[0,1e-14,1e-14]);

%%%% recover full solution

ff=zeros(N,1);

ff(r)=f; % kept degrees of freedom

ff(s)=DN*f+DF; % removed points

ff(d)=a; % dirichlet points
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%%%% integration weigths

nW=0:1:N-1;

jW=0:1:N-1;

bW=ones(1,N);

bW(1)=0.5;

bW(N)=0.5;

cW=2*bW;

bW=bW/(N-1);

S=cos(nW(3:N)’*jW*(pi/(N-1)));

IW=L/2*diag(bW.*[(2+(cW(3:N).*((1+(-1).^nW(3:N))./(1-nW(3:N).^2)))*S)]);

iw=diag(IW);

%%%% normalise to deltastar=1

u=D1*ff;

deltastar=iw’*(1-u);

y=L*0.5*(yvec+1)/deltastar;

L=L/deltastar;

Table 3.5. A Matlab function blasius.m to compute the
Blasius flow profile, using Chebyshev collocation for the spatial
discretization, and a Matlab Newton solver fsolve.m to solve
the nonlinear Blasius equation.



CHAPTER 4

Quick guide to papers and author contributions

Paper 1
State estimation in wall-bounded flow systems: part I. Perturbed laminar flows.
Jérôme Hœpffner, Mattias Chevalier, Thomas Bewley, Dan Hen-

ningson.

In this paper we introduce the stochastic methods for description of the initial
conditions and excitations in a Poiseuille flow. We compute the estimation
gains for individual wavenumber pairs, both finite horizon and steady state .
We argue that better estimation performance can be expected when the ex-
citation are properly described. In addition, we found that excitation sources
uncorelated in space are difficult to represent in numerical simulations, and
propose a simple type of spatial correlation for which we could compute well-
behaved estimation kernels for three wall measurements.

The writing of the paper was done by JH, TB and DH with feedback
from MC. The estimation gains were computed by JH and MC, using a code
originally developed by Markus Högberg.

J. Fluid Mech., vol. 534, 2005, pages 263–294.

Paper 2
State estimation in wall-bounded flow systems: part II. Turbulent flows.
Mattias Chevalier, Jérôme Hœpffner, Thomas Bewley, Dan Hen-

ningson.

This paper is devoted to state estimation in a fully turbulent Channel flow.
We consider that the nonlinear terms are stochastic excitations to the linear
dynamics described by the Orr-Sommerfeld/Squire equations. We thus gather
the covariance matrices of the nonlinear terms for each wave number pairs using
direct numerical simulations of the turbulent flow, and optimize for the esti-
mation feedback gain using this statistical data. We show that the flow state
can be estimated in the region close to the wall, where most of the turbulence
production takes place.

The writing of the paper was done by MC with DH and TB and feed-
back from JH. The DNS simulations were performed by MC, with a computer
program developed by TB.

J. Fluid Mech., vol. 552, 2006, pages 167–187.
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Paper 3
Linear feedback control and estimation applied to instabilities in spatially de-
veloping boundary layers.
Mattias Chevalier, Jérôme Hœpffner, Espen Åkervik, Dan Hen-

ningson.

The method to build covariance of the stochastic sources of excitation presented
in paper 1 is applied to control and estimation in spatially develloping bound-
ary layer flow. Several cases of fundamental interest are considered: unstable
Tollmien–Schlichting waves, unstable cross-flow vortices, transient growth and
streaks. This paper is the follow up of Högberg & Henningson (2002) that
focused on the control part.

The writing of the paper was done by MC, with feedback from JH, DH
and EÅ. The computation of the control and estimation gains were performed
by MC with a computer program developed by JH. The direct numerical sim-
ulation was performed by MC and EÅ using a code originally developed at the
department of mechanics.

J. Fluid Mech., submitted.

Paper 4
Control of cavity-driven separated boundary layer.
Jérôme Hœpffner, Espen Åkervik, Uwe Ehrenstein, Dan Henning-

son.

This paper consider the control and estimation of a boundary layer flow with a
recirculation zone due to wall curvature. A reduced dynamic model is built us-
ing the flow eigenmodes, and is used for control and estimation. By computing
worst-case initial conditions, we observed a global oscillatory behaviour of the
flow, due to propagation of a wave-packet along the shear layer, reflection into
a pressure perturbation at the downstream cavity lip, and regeneration of the
wave-packet by a receptivity mechanism at the upstream cavity lip. Despite
the large sensitivity of the eigenmodes to the numerical discretization, the con-
trol and estimation based on the reduced model was found successfull in the
direct numerical simulation.

The writing of the paper was done by JH in collaboration with UE, with
feedback from EÅ and DH. The controller optimizations were done by JH and
EÅ with a code developed by JH. The eigenmode computations were performed
by EÅ and UE with a code developed by UE. Implementations and computa-
tions of the steady base flow was done by EÅ with a direct numerical simulation
code developped by Matthieu Marquillie and UE.

Proceedings of the Conference on active flow control, Berlin, September
2006.

Paper 5
Transient growth on boundary layer streaks.
Jérôme Hœpffner, Luca Brandt, Dan Henningson.



80 4. QUICK GUIDE TO PAPERS AND AUTHOR CONTRIBUTIONS

Previous study of secondary instability of boundary layer streaks found that
secondary instability occurs at streaks amplitude on the order of 36% of the
free-stream velocity. In this paper we examine the possibility of a breakdown
mechanism based on transient growth on top of the streaks. We found indeed
potentiality for large transient energy growth, both for sinuous and varicose
perturbations, well before onset of instability.

The writing of the paper was done by LB, with feedback from JH and DH.
The computations were performed by JH with a code originally based on a
code by Satish Reddy.

J. Fluid Mech., vol. 537, 2005, pages 91-100.

Paper 6
Modeling flow statistics using convex optimization.
Jérôme Hœpffner.

Estimation performance can be improved when a good stochastic model for
the sources of excitations is available. In paper 2, we ran direct numerical
simulation of a turbulent flow to gather statistics of the nonlinear forcing.
In this paper we adopt a related approach, using the Lyapunov equation to
reconstruct the covariance of the excitation sources from knowledge of the flow
statistics, and a linear model of the dynamics. We found that it was not allways
possible to construct a forcing generating a given flow covariance, and present
a method to circumvent this limitation using convex projection techniques.

The writing and computations were performed by the author.

Proceeding of the joint Conference on Decision and Control (CDC) and
European Control Conference (ECC), 2005, Seville.

Paper 7
Steady solutions of the Navier-Stokes equations by selective frequency damping.
Espen Åkervik, Luca Brandt, Dan Henningson, Jérôme Hœpffner,

Olaf Marxen, Philip Schlatter.

A highly accurate numerical description of the base flow is necessary for stabil-
ity analysis. Previously, in case without symmetries, the Newton method was
used to solve for steady solutions of the Navier–Stokes equations. We propose
a method based on selective frequency damping, easy to implement in exist-
ing direct numerical simulation codes to stabilize steady states solution, and
thus reach them by time marching. The method was used in paper 4 for the
computation of the globally unstable base flow in the separated boundary layer
flow.

The writing of the paper was done by LB abd PS, with feedback from all
authors. The computations of the cavity flow was done by EÅ, and by OM
for the recirculation bubble. The analysis of the stabilization and choice of the
design parameters was done by JH.

Phys. Fluids, submitted.



CHAPTER 5

Conclusion and outlook

We have introduced the basic tools of shear flow stability analysis, the state-
space formalism for linear systems, with input and output, and presented the
Lyapunov equation, describing the covariance of the state of a linear system
subject to random excitations. We have then introduced the two problems of
full-information control and estimation, and combined them into an optimal
controller: the Linear-Quadratic-Gaussian controller. The two Riccati equa-
tions for the optimal feedback gains were derived from the Lyapunov equation,
thus casting both control and estimation problems in the stochastic framework.

Using these methods, we have analysed and applied control and estimation
to numerical simulations of several of the most common aerodynamical flows:
3D laminar and turbulent channel flows, transition scenarios in 3D spatially
developing boundary layers, and 2D cavity-driven separated boundary layer
using model reduction.

The work presented in this thesis suggests several research directions.
Firstly, discretized models for flow systems derived from partial differential
equations typically have large number of degrees of freedom. This is a challenge
for optimization and implementation. We have presented a model reduction
technique based on the computation of a subset of the flow eigenmodes. The
success of this simple method is encouraging for the use of systematic model re-
duction technique, such as balanced truncation and related methods. There is
presently a growing interest for the numerical solution of large-scale Lyapunov
equation that should prove beneficial for flow control. Secondly, for control of
real flows, actuators should be devised that both can affect the relevant sta-
bility mechanism, and can be modelled in linear dynamic systems. The wide
spectrum of spatial and time scales typical of fluid flows, and the associated
large sensitivity is a challenge for application of feedback control strategies.
Thirdly, controller robustness should be accounted for. Dynamic uncertainty
occurs at every step of the design process: actuator and sensor uncertainty,
flow geometry imperfections, linearization, spatial discretization of partial dif-
ferential equations, boundary conditions, model reduction, time discretization
of the digital controller, time delay due to on-line computation. Finally, when
model reduction reaches its limit, for instance in cases involving many actu-
ators/many sensors, one should decentralize the task of the controller. For
instance, letting sensors communicate only with neighbouring actuators, with
feedback processed locally.
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Högberg, M., Chevalier, M. & Henningson, D. S. 2003b Linear compensator
control of a pointsource induced perturbation in a falker–skan–cooke boundary
layer. Phys. Fluids Accepted.
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Söderström, T. 2002 Discrete-time stochastic systems. Springer.



86 BIBLIOGRAPHY

Weideman, J. A. C. & Reddy, S. C. 2000 A matlab differentiation matrix suite.
ACM Transaction of Mathematical Software 26 (4), 465–519.

Yoshino, T., Suzuki, Y. & Kasagi, N. 2003 Evaluation of ga-based feedback con-
trol system for drag reduction in wall turbulence. In Proc. 3rd Int. Symp. on
Turbulence and Shear Flow Phenomena, pp. 179–184.



Part 2

Papers





Paper 1

1





State estimation in wall-bounded flow systems.

Part I : Laminar flows

By J. Hœpffner1, M. Chevalier1,2, T. R. Bewley3 & D. S.
Henningson1

1KTH Mechanics, S-100 44 Stockholm, Sweden.
2The Swedish Defense Research Agency (FOI), SE-172 90, Stockholm, Sweden.

3Flow Control Lab, Department of MAE, UC San Diego, La Jolla, CA 92093-0411,
USA.

J. Fluid Mech., vol. 534, 2005, pages 263-294.

In applications involving the model-based control of transitional wall-bounded
flow systems, one often desires to estimate the interior flow state based on a
history of noisy measurements from an array of flush-mounted skin-friction and
pressure sensors on the wall. This paper considers this estimation problem,
using a Kalman filter based on the linearised Navier–Stokes equations and
appropriate stochastic models for the relevant statistics of the initial conditions,
sensor noise, and external disturbances acting on the system. We show that a
physically relevant parameterisation of these statistics is key to obtaining well
resolved feedback kernels with appropriate spatial extent for all three types
of flow measurements available on the wall. The effectiveness of the resulting
Kalman and extended Kalman filters that implement this feedback is verified
for both infinitesimal and finite-amplitude disturbances in direct numerical
simulations of a perturbed laminar channel flow. The consideration of time-
varying feedback kernels is shown to be particularly advantageous to accelerate
the convergence of the estimator from unknown initial conditions. A companion
paper (Part 2) considers the extension of such estimators to the case of fully-
developed turbulence.

1. Introduction

The feedback control of fluid flow systems is a problem that has received grow-
ing attention in recent years and has been approached in a number of different
manners. One approach is to design controls based on physical insight of domi-
nant flow mechanisms, as by the wave superposition principle (see, e.g. Thomas
(1990)). Another approach is to use adaptive or genetic techniques to attempt
to learn an effective control strategy by trial and error (see, e.g. Lee et al.
(1997)). It is also possible to leverage linear control theory, basing the control
algorithm on the linearised Navier–Stokes equations governing small perturba-
tions to the flow system, a mathematical statement of the control objective,
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and a mathematical model of the relevant statistical properties of the unknown
initial conditions, sensor noise, and external disturbances acting on the system.
The present paper follows this latter approach. Recent reviews of related flow
control efforts can be found in, for instance, Bewley (2001), Gunzberger (1996),
and Kim (2003).

The problem of linear model-based feedback control based on noisy mea-
surements can be decomposed into two independent subproblems: first, the
state-feedback (a.k.a. full-information) control problem, in which full state in-
formation is used to determine effective control feedback, and, second, the state
estimation problem, in which measurements are continuously used to “nudge”
a real-time calculation of the flow system in an appropriate manner such that
the calculated flow state eventually approximates the actual flow state.

Once both subproblems are solved, one can synthesize them to control a
flow based on limited noisy measurements of the flow system. The overall
performance of the resulting linear feedback control scheme is limited by the
individual performance of the two subproblems upon which it is based. For the
application of linear control theory to wall-bounded flows, though encouraging
results have been obtained previously on the state-feedback control problem
(see, for example, Bewley & Liu (1998) and Högberg et al. (2003b)), the devel-
opment of effective state estimation strategies remained, until now, largely an
open problem. In the present paper, we therefore focus on the state estimation
problem exclusively.

One of the primary challenges of the state estimation problem is that its
framing is based centrally on quantities which are challenging to model, namely,
the expected statistics of the initial conditions, the sensor noise, and the ex-
ternal disturbances acting on the system. The state estimation problem may
actually be thought of as a filtering problem; that is, the estimator uses the
governing equation itself as a filter to extract, from the available noisy mea-
surements of a small portion of the dynamic system, that component of the
measurements which is most consistent with the dynamic equation itself. In
other words, the estimator uses the governing equation to extract the signal
from the noise, and in the process builds up an estimate of the entire state of
the system. The purpose of the estimator at time t is to filter the measure-
ments gathered prior to time t to estimate the instantaneous state of the flow
field. The purpose of the state-feedback controller at time t, on the other hand,
is to apply forcing to the flow such that the subsequent evolution of the flow,
after time t, exhibits favourable characteristics. Thus, the controller is based
on a metric defining these favourable characteristics (the objective function),
whereas the estimator is based on a model describing, to the extent that they
are known, the statistical properties of the unknown quantities affecting the
system.

Some attention has been paid in the literature to the creative choice of
objective functions for the control problem. Kim & Lim (2000), for exam-
ple, performed a numerical experiment which applied body forcing via linear
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feedback everywhere on the interior of a turbulent channel flow. This linear
feedback was constructed to exactly cancel the linear coupling term [C in (2)] in
the nonlinear simulation, with the result that the turbulent flow relaminarized.
This result lends credibility to the idea of using a more sophisticated objective
function which targets this linear coupling (more precisely, one which targets
the non-normality of the system eigenvectors) rather than using an objective
function which simply targets the energy of the flow perturbations directly.
The appropriate selection of the objective function is thus seen to be not a
trivial problem, and is closely linked to our understanding of the relevant flow
physics. The problem of disturbance modeling for the state estimation prob-
lem, which is also inherently linked to our understanding of the relevant flow
physics, is perhaps even more subtle.

The importance of appropriate disturbance modeling was previously inves-
tigated by Jovanović & Bamieh (2001). In this work, a stochastic disturbance
model was proposed which, when used to force the linearized Navier–Stokes
equation, led to a simulated flow state with certain second-order statistics
(specifically, urms, vrms, wrms, and the Reynolds stress −uv) that mimicked,
with varying degrees of precision, the statistics from a full DNS of a turbulent
flow at Reτ = 180.

The present work represents the next natural step in this vein, that is, the
development of appropriate disturbance parameterizations that facilitate the
calculation of well-resolved feedback kernels for the flow estimation problem
that both converge upon grid refinement and eventually decay exponentially
with distance from the origin (that is, from the corresponding sensor loca-
tion). These feedback kernels, in turn, facilitate accurate estimation of the
state itself when a simulation of the state estimate is coordinated with wall
measurements from an actual flow (or a separate direct numerical simulation
thereof). Further, the tuning of this disturbance parameterization allows for
the tuning of the spatial extent of the resulting feedback convolution kernels
in order to modify the communication architecture required in an “overlapping
decentralized” implementation of the resulting estimator in hardware (that is,
large-scale implementation via an interconnected array of identical tiles, each
with actuators, sensors, and control logic incorporated, that communicate only
with their neighbors, as described in detail in Bewley (2001)).

It appears as if little has been accomplished to date in terms of the inves-
tigation of appropriate disturbance models for specifically the flow estimation
problem in the published literature. Bewley & Liu (1998), Joshi, Speyer &
Kim (1999), and Högberg et al. (2003b) all modeled the covariance of the ex-
ternal disturbances at a single wavenumber pair {kx, kz} in a channel flow with
a simple identity matrix after the problem was discretized in the wall-normal
direction. This assumption effectively implies a constant variance of distur-
bances at each gridpoint in the wall-normal direction and zero correlation of
the disturbances at different gridpoints above the wall. Unfortunately, this co-
variance model does not converge to a resolved covariance distribution as the
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wall-normal grid is refined. We now understand that, as a consequence, this
model was responsible for restricting the effectiveness of the resulting estima-
tors in our previous work, and also led to realization problems that required us
to limit the number of wall measurements that we could account for while still
obtaining convergence of the feedback kernels upon refinement of the numerical
grid.

In the present paper, we propose an improved parameterization of the
external disturbances (that is, random volume forcing on the interior of the
flow domain) that may be used to model the effects of wall roughness, acoustic
waves, and neglected dynamics, as well as appropriate parameterizations of
the unknown initial conditions and sensor noise. This improved disturbance
parameterization converges to a continuous function upon grid refinement, and
allows us to account for all three flow measurements available at the wall (that
is, streamwise and spanwise wall skin friction and wall pressure).

In previous studies, only time-constant feedback kernels have been con-
sidered in the estimator. By introducing time-varying feedback kernels into
the estimator, the present paper incorporates plausible models of the statistics
of the unknown initial conditions on the flow in order to maximize the speed
of convergence of the estimator from unknown initial conditions. As a conse-
quence, the initial transients in the estimation error are shown to be greatly
diminished.

In the present paper, we design and test an estimator for the early stages
of transition in a laminar three dimensional plane channel flow (again, see Part
2 of this study for the case of fully-developed turbulence). After describing the
system of interest, we propose a stochastic model for the flow’s initial condi-
tions, external disturbances, and sensor noise in §2.4. An appropriate Kalman
filter is designed in §2.5 in order to determine suitable estimator feedback. Af-
ter a discussion of the numerical methods employed, we test the estimator in
numerical simulations of the linearized system at isolated wavenumber pairs
in §3. We then inverse Fourier transform the estimator feedback rules deter-
mined on a large array of wavenumber pairs to obtain well resolved, spatially
localized feedback convolution kernels in physical space for all three of the mea-
surable quantities on the wall (streamwise and spanwise wall skin friction and
wall pressure), as discussed in §4.1. The resulting Kalman filter for the entire
three dimensional channel, and an extended Kalman filter that additionally
incorporates the nonlinearity of the full system, are tested in direct numerical
simulations of the full nonlinear Navier–Stokes system for both infinitesimal
and finite-amplitude perturbations of a laminar channel flow in §4.2 and 4.3.

2. Formulation

2.1. Flow configuration and governing equations

This paper considers the three dimensional flow between two infinite flat plates
(at y = ±1) driven by a pressure gradient in the streamwise (x) direction.
Scaling the time variable appropriately, the mean velocity profile is given by
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U(y) = 1 − y2. For computational efficiency, we model the flow as being pe-
riodic in the horizontal directions x and z, using a computational domain of
sufficient extent in these directions that this nonphysical assumption does not
significantly affect the statistics of the flow. This approach allows all vari-
ables with spatial variation to be expanded in Fourier series. Thus, the state
vector describing the wall-normal velocity v̂mn(y, t) and wall-normal vorticity
η̂mn(y, t) on the interior of the domain at each wavenumber pair {kx, kz}mn

may be denoted by

q̂mn(y, t) =

(
v̂mn(y, t)
η̂mn(y, t)

)
.

The evolution of the flow can then be written with the linear terms, M and
L, on the left-hand side and the nonlinear terms, N , on the right-hand side,
in addition to an external forcing term êmn to account for unmodeled effects,
yielding

d

dt
Mq̂mn + Lq̂mn

︸ ︷︷ ︸
Linear dynamics

=
∑

k+i=m
l+j=n

N(q̂kl, q̂ij)

︸ ︷︷ ︸
Nonlinear coupling

+ êmn(y, t)︸ ︷︷ ︸
External forcing

, (1)

where

M =

(
−∆ 0
0 I

)
and L =

(
L 0
C S

)
. (2)

For the remainder of this paper (Part 1), the entire derivation is done in Fourier
space, so the accent (̂·) and subscript (·mn) will be dropped for notational clar-
ity. The operators L, S, and C relate to the Orr–Sommerfeld/Squire equations
and are defined as






L = −ikxU∆ + ikxU
′′ + ∆2/Re,

S = ikxU − ∆/Re,

C = ikzU
′.

The Laplacian operator is denoted ∆ = D2 − k2, where D and D2 represent
first- and second-order differentiation operators in the wall-normal direction,
and k2 = k2

x + k2
z . The Reynolds number Re is based on the centreline velocity

and channel half-width. The double convolution sum in (1) represents the
nonlinear “triad” interactions. The boundary conditions on v and η correspond
to no-slip solid walls

v = Dv = η = 0 at y = ±1.

In the following, the right hand side of (1) will be lumped into a forcing
function f(y, t), thereby restricting the flow model to the linear terms, account-
ing for both the nonlinear terms and the external disturbances with a stochastic
model. The resulting flow model can be written as

d

dt
Mq + Lq = Tf(y, t), (3)
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where the operator

T =

(
ikxD k2 ikzD
ikz 0 −ikx

)

transforms the forcing f = (f1, f2, f3)
T on the evolution equation for the ve-

locity vector (u, v, w)T into an equivalent forcing on the (v, η)T system (see,
e.g. Jovanović & Bamieh (2001b) for derivation of this transformation).

2.2. Measurements

The choice of the measurements to be taken in order to obtain the state estimate
(without knowledge of the initial conditions of the flow) is ultimately a matter
of practicality. In the present work, we will consider an idealised problem in
which the continuous distributions of streamwise and spanwise skin friction and
pressure on the wall are available as measurements in order to estimate the state
of the flow away from the wall. This information is mathematically complete in
the following sense: if this information is uncorrupted by noise and the external
forcing on the system is known exactly, the entire state of the flow (even in the
fully turbulent regime, and at any Reynolds number) is uniquely determined by
these measurements at the wall in an arbitrarily small neighbourhood of time
t (without knowledge of the initial conditions), as shown by Bewley & Protas
(2004). However, in any practical problem, the measurements are corrupted
by noise, the modeling of the system is not precise, and there are external
disturbances on the system which are not accounted for. Thus, in the practical
setting, it is essential to filter the measurements appropriately to reconcile the
noisy measurements of the system with an approximate dynamic model of the
system. The Kalman filter used in the present paper is a mathematically-
rigorous tool to achieve this reconciliation.

In our previous formulations of the estimator problem, as discussed in
Högberg et al. (2003b), only the feedback gains using the measurement ηy, the
first wall-normal derivative of η, were used. In §2.4, we develop an improved
formulation based on a more realistic model of the statistics of the external
disturbances such that we may now compute well-behaved feedback kernels
that converge upon grid refinement for any measurement constructed as a linear
combination of the state variables and their derivatives. In particular, the
three available measurements at the wall, the streamwise and spanwise wall
skin friction and the wall pressure, are related to the quantities v and η in the
state model as follows






τx = τxy|wall =
1

Re
uy

∣∣
wall

=
i

Re k2
(kxD2v − kzDη)

∣∣
wall

,

τz = τzy|wall =
1

Re
wy

∣∣
wall

=
i

Re k2
(kzD

2v + kxDη)
∣∣
wall

,

p = p|wall =
1

Re k2
vyyy

∣∣
wall

=
1

Re k2
D3v

∣∣
wall

.

Note that these equations are easily verified using the Taylor series expansions
for v(y) and η(y) near a solid wall, as written out in, e.g. §2.2 of Bewley &
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Protas (2004). In the formulation shown in the remainder of §2, for clarity, we
focus on the feedback rules related to measurements made at the lower wall
only. The extension of this formulation to the case in which measurements are
taken at both walls of the channel, as considered in the simulations reported
in §3 and §4, is straightforward.

2.3. Stochastic setting

As described earlier, the modeling of the relevant statistical properties of the
stochastic forcing function f in (3), which accounts for the effects of external
disturbances on the system, is one of the key steps in the framing of the present
estimation problem.

In the present stochastic framework, the mean of any quantity of interest
may be obtained using the expectation operator E[·], defined as the average
over all possible realizations of the stochastic inputs. In particular, the mean
of f is modeled as zero, that is, E[f ] = 0.

In the present formulation, it is the covariance of f that needs to be mod-
eled carefully. Since f is a continuous function of the spatial coordinate y, the
appropriate definition of the covariance in this problem is somewhat abstract, as
discussed in detail in Balakrishnan (1976). As shown in Balakrishnan (1976),
once this abstraction is made, the resulting Kalman filter in this spatially-
continuous formulation is found to be analogous to its well-known counterpart
in the finite-dimensional setting. In order to proceed with the modeling of
the statistics of f , it is necessary to have a clear understanding of what the
covariance means in the spatially-continuous setting.

In the spatially-discrete setting, if u and v are two zero-mean, random
vectors of length n1 and n2 respectively, their covariance Ruv is defined as a
matrix of size n1 × n2 such that Ruv = E[uv∗], where the symbol ∗ applied to
a vector or scalar denotes conjugate transpose. The covariance of a zero-mean
random vector u is defined as Ruu = E[uu∗].

To extrapolate these definitions to the spatially-continuous setting (see,
e.g. Balakrishnan 1976, p. 267), we make use of inner products with arbitrary
test functions chosen from the same Hilbert spaces as the random functions
we are considering. That is, if ξ and η are two zero-mean random functions
in Hilbert spaces H1 and H2 respectively, then their covariance Rξη is defined
such that

〈x,Rξηy〉1 = E[〈x, ξ〉1〈y, η〉∗2] ∀(x, y) ∈ H1 ×H2 , (4)

where 〈·, ·〉1 and 〈·, ·〉2 denote appropriate inner products in the Hilbert spaces
H1 andH2 respectively. Thus, the covarianceRξη is seen to be a linear operator
from H2 to H1; this is analogous to the spatially-discrete setting, in which the
covariance is a matrix which when multiplied by a rank n2 vector results in a
rank n1 vector. Further, if ξ and η are taken to be simple vectors u and v in
the above expression, the inner products may be defined using the simple form
〈x , y〉 = x∗y , and the spatially-continuous definition of the covariance reduces
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immediately to the usual definition given in the spatially-discrete setting:

〈x , Ruvy〉 = x∗Ruvy

〈x , Ruvy〉 = E[(x∗u) (v∗y)] = x∗E[uv∗]y

}
⇒ Ruv = E[uv∗].

We will subsequently need to express the covariance of a linear transforma-
tion of a random process f of known covariance Rff . Letting g = Hf where
H is a linear differential operator, it follows from (4) that

〈x,Rggy〉 = E[〈x, g〉〈y, g〉∗] = E[〈x,Hf〉〈y,Hf〉∗]
= E[〈H∗x, f〉〈H∗y, f〉∗] = 〈H∗x,RffH∗y〉
= 〈x,HRffH∗y〉





⇒ Rgg = HRffH∗,

(5)
where H∗ denotes the adjoint of H; note that the adjoint of a linear operator
H : H1 → H2 with inner products 〈·, ·〉1 and 〈·, ·〉2 on H1 and H2 respectively
is defined by the equality

〈y,Hx〉2 = 〈H∗y, x〉1 ∀{x, y} ∈ H1 ×H2 .

A significant feature of the definition of the covariance is its relation to
the expected value of the energy. In the spatially-discrete setting, defining the
energy using an unweighted inner product, we may define the trace such that

tr(Ruu) ,
∑

i

〈δji, (Ruu)jk δki〉 =
∑

i

(Ruu)ii

= E[u1u
∗
1 + u2u

∗
2 + . . .+ unu∗

n] = E[E(u)],

where E(u) denotes the energy of the vector u. In the spatially-continuous
setting, the corresponding definition is

tr(Rξξ) ,

∫

Ω

〈δ(x − x′), Rξξδ(x − x′)〉dx′ =

∫

Ω

E
[
〈δ(x − x′), ξ(x)〉 〈δ(x − x′), ξ(x)〉∗

]
dx′

= E
[ ∫

Ω

ξ(x′)ξ∗(x′)dx′
]

= E[E(ξ)].

Accounting for a weighting function in the definition of the energy in these
relations is straightforward.

2.4. Models for the stochastic inputs

The flow system that we desire to estimate is affected by its unknown initial
conditions, the unknown external disturbances that disrupt the evolution of the
state, and the unknown sensor noise that corrupts the measurements. Since the
estimator is intended to converge effectively over a large number of different
realizations, a statistical description (mean and covariance) of these unknown
quantities may be used to tune the feedback in the estimator design. The
estimator which we will design, also known as a Kalman filter, will be optimal
in the sense of obtaining the most accurate estimate possible over a large set of
realizations of the system in which the initial conditions, external disturbances,
and sensor noise have the assumed statistical properties.
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2.4.1. Modeling of the initial conditions

For the purpose of the present work, we will model the mean of the unknown
initial condition as zero (that is, we assume there is no preferred phase in the
initial flow structures) and its covariance as S0. Since the initial condition
in the estimator is always zero, S0 also represents the covariance of the state
estimation error at t = 0.

We want to design an estimator that performs well over a large range of
possible initial conditions. It is natural to assume that the initial conditions are
completely “random”, however, we know from our understanding of the flow
physics that there is a tendency for some specific types of flow disturbances to
be present in any given flow. For example, Tollmien–Schlichting (TS) waves
are likely to be present if the environment is characterised by acoustic waves,
streaks are likely to be present if the environment is characterised by high levels
of free-stream turbulence, and streamwise vortices are likely to be present if the
environment is characterised by wall roughness. The specific initial conditions
which we expect to see at each wavenumber pair in a particular problem (though
at an unknown phase and amplitude), and for which we would like to tune the
estimator to be particularly efficient at capturing, will be denoted here by
s = smn(y).

We will model the initial conditions q0 at each wavenumber pair as a lin-
ear combination of a component qs of a specified profile s (but with random
magnitude and phase) and a component qr constructed by a random linear
combination of the first p eigenmodes ξj = ξj

mn(y), normalised to unit energy,
of the system matrix M−1L in (3) such that

qs = θ0 s , qr =
1

p

p∑

j=1

θjξ
j ,

where the coefficients θj , j ∈ {0, . . . , p} are uncorrelated complex scalar random
variables with zero mean and unit variance. The initial condition q0 is then
modeled as a linear combination of these two components such that

q0 = c1 (c2qs + (1 − c2)qr) .

The design parameter c1 > 0 is used to specify the expected amplitude of
the initial conditions at this wavenumber pair, and the design parameter c2 ∈
[0, 1] is used to specify the relative importance of the components qs and qr
in the initial conditions. The corresponding covariance of the unknown initial
conditions is given by

S0 = Rq0q0
= c1



c2Rss + (1 − c2)

p∑

j=1

Rξjξj



 . (6)

Note that we expect the energy of the initial conditions at both large wavenum-
ber pairs and small wavenumber pairs to be small. We may account for
this in the present model of the initial conditions by allowing c1 to vary in
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a wavenumber-dependent fashion. In the present work, we will model this
dependence with the function

c1(kx, kz) = ca k
2
c e−k2

c with k2
c = (kx/cx)2 + (kz/cz)

2,

where the design parameters cx and cz may be tuned to select the peak of the
expected energy of the initial condition in wavenumber space and the design
parameter ca scales the overall amplitude of the initial conditions. Many other
assumed forms for c1(kx, kz) are of course also possible, and may be experi-
mented with in future work.

2.4.2. Modeling of the external disturbances

We will assume the external disturbance forcing f = (f1, f2, f3)
T in (3) to

be a zero-mean (E[fj(x, y, z, t)] = 0) stationary white Gaussian process with
auto-correlation

E[fj(x, y, z, t)fk(x+ rx, y
′, z + rz , t

′)] = δ(t− t′)
︸ ︷︷ ︸
Temporal

Qfjfk
(y, y′, rx, rz)︸ ︷︷ ︸
Spatial

,

where δ(·) denotes the Dirac δ-function. The assumption of a “white” time cor-
relation eases the derivation of the equations for the covariance of the state, and
is appropriate when the characteristic time scales of the external disturbances
are short as compared with the characteristic time scales of the flow system.
When this is not the case, the approach developed herein may be extended to
incorporate an additional filter in order to “colour” the external disturbances
with appropriate self-correlation time scales (see, e.g. Lewis & Syrmos (1995)).

The remaining property to be described is the spatial extent of the two-
point, one-time, auto-correlation of f over the whole domain

Qfjfk
(y, y′, rx, rz) = E[fj(x, y, z, t)fk(x + rx, y

′, z + rz , t)].

The corresponding quantity in Fourier space is a covariance operator of the form
discussed in §2.3, obtained for any wavenumber pair {kx, kz} via the following
integration over the homogeneous directions

Rfjfk
(y, y′, kx, kz) =

∫ ∫
Qfjfk

(y, y′, rx, rz)e
−i(kxrx+kzrz)drx drz .

Our model for the covariance of f assumes that the disturbance has a localised
structure in space (i.e. the two-point correlation of the disturbance decays
exponentially with distance) and that the correlations between forcing terms
on different velocity components are zero. Note that the presence of the wall
will introduce correlation between the forcing terms in the streamwise and
spanwise directions. Such a correlation can be found in part 2. In the present
work, we assume a model for the covariance of the external forcing f which is
of a similar form to that assumed for the covariance of the initial conditions by
taking

Rfjfk
(y, y′, kx, kz) = d1 δjkMy(y, y′),
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Figure 1. Sketch of the assumed covariance of the unknown
external disturbance f in Fourier space at a single wavenumber
pair {kx, kz}, taking dy = 0.1 (left), and the variation of the
amplitude of this forcing with wavenumbers kx and kz , taking
dx = 0.5 and dz = 3 (right).

where

d1(kx, kz) = da k
2
d e−k2

d with k2
d = (kx/dx)2 + (kz/dz)

2

and the y variation of Rfjfk
is given by the function

My(y, y′) = e−(y−y′)2/(2 dy). (7)

Note that we will denote R = Rff = diag(Rf1f1
, Rf2f2

, Rf3f3
) in the sections

that follow. The design parameters dx and dz may be tuned to select the
peak of the expected energy of the disturbance forcing in wavenumber space,
the design parameter dy governs the width of the two-point correlation of the
disturbance in the wall-normal direction, and the design parameter da scales
the overall amplitude of the disturbance forcing. The variation of δjkMy(y, y′)
as a function of y and y′, for the three different values of j and the three
different values of k, is depicted graphically in figure 1(a), and the variation

of k2
de−k2

d as a function of kx and kz is depicted graphically in Figure 1(b).
As with the modeling of the covariance of the initial conditions, many other
assumed forms for d1(kx, kz) are also possible, and may be experimented with
in future work.

2.4.3. Modeling of the sensor noise

Each of the three measurements is assumed to be corrupted by sensor noise,
modeled as independent, white (in both space and time), random processes, the
amplitude of which is determined by the assumed quality of the sensors. The
covariance of the sensor noise vector g can thus be described in Fourier space
by a diagonal 3 × 3 matrix G whose diagonal elements α2

ι are the variances of
the sensor noise assumed to be associated with each individual sensor

Rgι(t),gκ(t′) = δικδ(t− t′)α2
ι ,



102 J. Hœpffner, M. Chevalier, T. R. Bewley & D. S. Henningson

where δικ denotes the Kronecker delta. Thus, in the present work, we assume
that the sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed
back only gently into the estimator, lest the sensor noise disrupt the estimator.
When the signal-to-noise ratio is high, the measured signal may be fed back
more aggressively into the estimator, as the fidelity of the measurements can
be better trusted. For a given covariance of the initial conditions and external
disturbances, the tuning of the assumed overall magnitude of the sensor noise
in the Kalman filter design thus provides a natural “knob” to regulate the mag-
nitude of the feedback into the estimator. Note that an intermediate amount
of feedback is desired in the estimator design: if the feedback is too weak, the
estimator will not converge very quickly or very accurately, and if the feedback
is too strong, it may knock the estimated flow out of the small perturbation
neighbourhood assumed in the linear model used in its design.

2.5. The Kalman filter

Noting that the Laplacian ∆ in the operator M in the forced linear equation
(3) may be inverted by enforcement of the homogeneous boundary conditions
on Dv, we may write

q̇ = −M−1L
︸ ︷︷ ︸

A

q +M−1T
︸ ︷︷ ︸

B

f,

and thus the general state-space formulation for the evolution of the flow state
q = qmn(y, t) at each wavenumber pair {kx, kz}mn may be written

{
q̇ = Aq +Bf, q(0) = q0,

r = Cq + g;
(8)

note that q is a continuous function of both the wall-normal coordinate y and
time t in this formulation. The measurement vector r is constructed using the
matrix C, defined here as

C =
1

Re k2




ikxD2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0



 .

This matrix extracts the two components of wall skin friction and the wall
pressure from q.

We now build an estimator of the analogous form
{

˙̌q = Aq̌ − v, q̌(0) = 0,

ř = Cq̌,
(9)

with feedback
v = Lr̃ = L(r − ř). (10)

Kalman filter theory, combined with the models outlined in §2.4 for the
relevant statistics of the unknown initial conditions q0, the unknown exter-
nal forcing f , and the unknown sensor noise g, provides a convenient and
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mathematically-rigorous tool for computing the feedback operator L in the es-
timator described above such that q̌ converges to an accurate approximation of
q. Note that the volume forcing v used to apply corrections to the estimator is
proportional to the “innovation process” r̃ = r − ř, that is, the difference be-
tween the measurements of the actual system and the corresponding quantity
in the estimator model.

The solution of the Kalman filter problem in the classical, finite-dimensional
setting is well known (for a succinct presentation, see, e.g. Lewis & Syrmos
(1995) p. 463-470). The corresponding operator equations applicable here,
though more involved to derive, are completely analogous (see Balakrishnan
1976). Thus, we will not rederive these equations here. The main results, in
both the finite-dimensional and infinite-dimensional settings, are:

1. the covariance S(t) = Rqq(t) of the flow state q(t) is governed by the
Lyapunov equation

Ṡ(t) = AS(t) + S(t)A∗ +BRB∗, S(0) = S0, (11)

2. for a given L(t), the covariance P (t) = Rq̃q̃(t) of the state estimation
error q̃(t) = q(t) − q̌(t) is governed by the Lyapunov equation

Ṗ (t) = A0(t)P (t) + P (t)A∗
0(t) +BRB∗ + L(t)GL∗(t), P (0) = S0, (12)

where A0(t) = A+ L(t)C, and
3. the value of L(t) which minimizes the expected energy of the state es-

timation error (that is, which minimizes the trace of P (t)) is given by
the solution of the differential Riccati equation (DRE)

Ṗ (t) = AP (t) + P (t)A∗ +BRB∗ − P (t)C∗G−1CP (t), P (0) = S0, (13a)

L(t) = −P (t)C∗G−1. (13b)

Note that, for a linear, time-invariant (LTI) system (that is, for A, B, C,
R, G independent of time), the covariance of the estimation error, P (t), and
the corresponding feedback which minimizes its trace, L(t), follow a transient
near t = 0 due to the effect of the initial condition S0, eventually reaching a
steady state for large t in which Ṗ (t) = 0 and L̇(t) = 0. In order to minimize
the magnitude of the transient of the trace of P (t), it is necessary to solve
the differential Riccati equation given above. If one is only interested in min-
imizing the trace of P (t) at statistical steady state, it is sufficient to compute
time-independent feedback L by solving the algebraic Riccati equation (ARE)

formed by setting Ṗ (t) = 0 in (13a).

2.6. Numerical issues

2.6.1. Spatial discretization

In order to actually compute the feedback in this problem, it is necessary to
discretize the DRE given in operator form in (13) and solve this equation in
the finite-dimensional setting. However, in order to be relevant for the PDE



104 J. Hœpffner, M. Chevalier, T. R. Bewley & D. S. Henningson

problem of interest, the resulting feedback gains must converge to continuous
functions as the numerical grid is refined.

Thus, to proceed, we first need to build the discrete counterparts of the
system operators A, B, C, and their respective adjoints as well as the distur-
bance covariances R, G, and S0. In the present work, the discrete operators are
obtained through enforcement of the Orr–Sommerfeld/Squire equations at each
point of a Gauss–Lobatto grid using a Chebyshev collocation scheme, taking

fi = f(yi), yi = cos
iπ

N
, i = 0, . . . , N,

where N +1 is the number of gridpoints in the wall-normal direction. The dis-
crete operators and differentiation matrices are determined using the spectral
Matlab Differentiation Matrix Suite of Weideman & Reddy (2000). In partic-
ular, this suite provides fourth-order differentiation matrices invoking clamped
boundary conditions (f(±1) = f ′(±1) = 0), using the procedure suggested by
Huang & Sloan (1993), to give an Orr–Sommerfeld matrix with satisfactory nu-
merical properties, avoiding unstable or lightly-damped spurious eigenmodes.
The first-order, second-order, and third-order differentiation matrices so ob-
tained, denoted D1, D2, and D3 respectively, are combined according to the
equations given previously to compute the discrete matrices A, B, and C in
a straightforward fashion. The calculations reported in this paper use, where
needed, the discrete definition for the adjoint of a matrix, that is, its conju-
gate transpose. The integration weights W (yj ) for the Chebyshev grid with
the Gauss–Lobatto collocation points are computed using the algorithm from
Hanifi, Schmid & Henningson (1996). These weights provide spectral accuracy
in the numerical integration used to assemble the energy measure matrix Q.

2.6.2. Solution of the DRE

The calculation of the differential Riccati equation (DRE) is accomplished in
this work using the Chandrasekhar algorithm developed by Kailath (1973).
This elegant algorithm solves a factored form of the DRE at the heart of the
Kalman filter as given by the spatial discretization of the operator equations
in (13a)-(13b). It is particularly efficient when these factors are of low rank,
which happens to be the case in the present study.

The main idea in the Chandrasekhar algorithm is to solve an evolution
equation for a factored form of the time derivative of the estimation error
covariance matrix, Ṗ(t). Since it is symmetric, Ṗ(t) can be factored as

Ṗ = L1L
∗
1 − L2L

∗
2 = YHY ∗, Y =

(
L1 L2

)
, H =

(
I 0
0 −I

)
, (14)

where the rank of L1L
∗
1 is the number of positive eigenvalues of Ṗ and the rank

of L2L
∗
2 is the number of negative eigenvalues of Ṗ .

By spatial discretization of (13a), differentiation of both sides, and substi-
tution of the factorisation given above, assuming the system is LTI (that is,
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that A, B, C , R , and G are independent of time), it is straightforward to verify
that (13a)-(13b) is equivalent to the solution of the following system:

{
L̇(t) = −Y (t)HY ∗(t)C∗G−1 , L(0) = −P(0)C∗G−1 ,

Ẏ (t) = (A + L(t)C )Y (t) , Y (0)HY ∗(0) = Ṗ(0),
(15)

where Ṗ(0) is easily determined from the spatial discretization of (12) evaluated
at t = 0.

The key to the efficiency of this scheme is to exploit the possibility for an
accurate low-rank approximation of Y . After an eigenvalue decomposition of
Ṗ(0) to determine L1 and L2, we can perform a singular value decomposition
of the matrices L1L

∗
1 and L2L

∗
2 and discard the singular vectors associated with

small singular values, constructing an approximation of Y with the remaining
singular vectors. In §4, singular values less than 0.01% of the initial Ṗ matrix
norm were discarded, resulting in a reduction of the rank of Y by approximately
75%.

In the present work, time integration of the DRE is performed using a stan-
dard explicit fourth-order Runge–Kutta scheme. When only constant feedback
gains are to be used, we can either march the DRE to steady state using the
Chandrasekhar algorithm or solve directly the ARE via standard techniques
based on Schur factorization (see Laub (1991)).

2.6.3. Computation of the expected energy

In the discretized setting, the expected energy of the state q can be extracted
from the discrete covariance matrix S by use of the energy measure matrix
Q such that E[E(q(t))] = tr(QS(t)), where E(q(t)) denotes the instantaneous
energy of the state q at time t. The expected energy of the state estimation
error q̃ can be found in a similar manner, E[E(q̃(t))] = tr(QP(t)).

The time evolution of the expected energy may be computed using the
Chandrasekhar method. For example, the expected energy of the state q can
be marched forward in time from E[E(q(0))] = tr(QS0), its value at t = 0, via

time integration of d
dtE[E(q)] = tr(QṠ(t)), where Ṡ = YHY ∗, and where the

evolution equation for Y (t) is simply d
dtY (t) = AY (t), with Y (0) determined

by the factorization Y (0)HY ∗(0) = Ṡ(0) and Ṡ(0) determined by evaluation of
(11) at t = 0. The expected energy of the state estimation error q̃ can be found
in a similar manner, marching forward in time from E[E(q̃(0))] = tr(QS0) at

t = 0 via time integration of d
dtE[E(q̃)] = tr(QṖ(t)), where Ṗ = YHY ∗ with,

for L(t) specified, Y (t) evolving according to d
dtY (t) = (A + L(t)C )Y (t) with

Y (0) determined by the factorization of Ṗ(0), which itself is determined by
evaluation of (12) at t = 0.
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3. Fourier-space characterization

By Fourier transforming in the x- and z-directions all variables with spatial
variation (that is, the state, the disturbances, the measurements, and the con-
trol), the linearized three dimensional estimation and control problems com-
pletely decouple at each wavenumber pair {kx, kz}, as observed in Bewley & Liu
(1998). Thus, the present section characterizes the performance of the estima-
tor derived in the previous section on the linearized system in Fourier space at
three individual wavenumber pairs {kx, kz} = {0, 2}, {1, 0}, and {1, 1}, where
this performance is characterized most clearly. In §4, we inverse transform a
large array of such feedback gains to physical space, obtaining more readily
implementable spatially-localized three dimensional convolution kernels, and
consider their effect on direct numerical simulations of the full nonlinear sys-
tem.

Unless stated otherwise, the results reported are computed for R = 3000,
a subcritical Reynolds number characterized by transient growth phenomena.
The design parameters for the stochastic model for the initial conditions (see
§2.4.1) are chosen to be c2 = 0.5, ca = 10.9, and cx = cz = 1.7. The design
parameters for the stochastic model for the external disturbances (see §2.4.2)
are chosen to be da = 0.09, dx = 0.5, dz = 3, and dy = 0.1. The design
parameters for the stochastic model for the sensor noise (see §2.4.3) are chosen
to be α2

1 = α2
2 = 0.002 (for the shear-stress measurements) and α2

3 = 20 (for
the pressure measurements).

These choices for the design parameters of the stochastic models of the
initial conditions, external disturbances, and sensor noise are the result of a
combination of parametric tuning and physical arguments. For example, the
choice c2 = 0.5 reflects a 50% confidence in the “specific form” of the assumed
statistics of the of the initial conditions. Figure 2 compares the variation with
wavenumber of the expected covariance of the initial conditions and disturbance
forcing in the model used in this work; these variations excite the wavenumber
ranges of interest for the estimation of localized disturbances and the account-
ing for the early effects of nonlinearity in the transition problem, as studied
in §4.2 and §4.3. The amplitude parameters for the initial condition, ca, and
the external forcing, da, are chosen such that the flow energy initially grows
and then slightly decays to statistical steady state, for the wavenumber pair
showing the greatest potential for transient growth, {kx, kz} = {0, 2}.

The initial conditions used for the tests at isolated wavenumber pairs are
the “worst-case” initial conditions at these wavenumber pairs, i.e. the initial
conditions that, leveraging the non-normality of the dynamic operator A to the
maximum extent possible, lead to the largest possible transient energy growth.
Such initial conditions are of particular concern in a flow transition scenario,
as described in, e.g. Schmid & Henningson (2001).

The plots in this section show the evolution of the expected value of the
energy of both the flow state and the state estimation error for initial condi-
tions, sensor noise, and external disturbances distributed as described in the
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Figure 2. Contour plot of the variation of amplitude of the
initial conditions, taking cx = cz = 1.7 (dashed) and external
disturbance forcing, taking dx = 0.5, and dz = 3 (solid), as a
function of the wavenumbers kx and kz . Note that the peak
amplitudes are near the design values of kc and kd, as defined
in §2.4.1 and 2.4.2, with reduced amplitudes for smaller and
larger values of kc and kd. The expected covariance of the ini-
tial condition is modelled with equal extent in the streamwise
and spanwise directions, while the expected covariance of the
disturbance forcing is tuned for structures that are elongated
in the streamwise direction.

stochastic models presented in §2.4. Thus, these plots can be interpreted as
an average over a large number of realizations of these stochastic inputs. They
illustrate the effectiveness of the estimator feedback in the presence of the types
of disturbances for which the estimator feedback was designed, namely, uncor-
related, zero-mean, random Gaussian distributions of the same covariance as
specified in the estimator design.

3.1. Evolution of the expected energy of the flow state and the state estimation
error

Figure 3 shows the evolution of both the expected energy of the flow state and
the expected energy of the state estimation error using time-varying feedback
gains for three cases, each of which including the effect of sensor noise:

1) Nonzero initial conditions with zero external disturbances (dot-dashed curves):
the expected energy of the state estimation error follows an initial transient,
eventually tending exponentially to zero at the decay rate of the least-stable
eigenmode of A + LC since there is no additional excitation. In all flows con-
sidered, the expected energy of the state estimation error is rapidly reduced to
over two orders of magnitude below the expected energy of the flow state.

2) Nonzero external disturbances with zero initial conditions (dashed curves):
the expected energy of the estimation error monotonically increases towards a
statistical steady state. In the flow considered at wavenumber pair {0, 2}, the
expected energy of the state estimation error rapidly approaches a value close to
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Figure 3. Evolution of the expected energy versus time for
three flows of interest at three representative wavenumber
pairs: (top) {0, 2}, (centre) {1, 1}, and (bottom) {1, 0}. The
stochastic inputs driving each simulation are: (solid) initial
conditions plus external disturbances, (dashed) external dist-
urbances only, (dot-dashed) initial conditions only; note that
each simulation accounts for the effect of sensor noise corrupt-
ing the measurements. Thick lines represent the expected en-
ergy of the flow disturbance and thin lines represent the ex-
pected energy of the estimation error. Note that for {1, 1}and
{1, 0}the thin dashed lines lie under the thick dashed lines.

two orders of magnitude below the expected energy of the flow state, indicating
effective estimator convergence. In the flows considered at wavenumber pairs
{1, 1} and {1, 0}, however, the expected energy of the state estimation error is
nearly as large as the expected energy of the flow state itself, indicating poor
convergence of the estimator in these particular flows. This issue is discussed
in §3.2.
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Figure 4. Maximum (thick lines) and statistical steady state
(thin lines) of the total expected energy of the flow (solid)
and the estimation error (dashed) over a range of wavenumber
pairs for (a) kx = 0 with varying kz , and (b) kz = 1 with
varying kx.

3) Both nonzero initial conditions and nonzero external disturbances (solid
curves): as expected, due to the linearity of the system and the additive effects
of the stochastic inputs on the expected energy of the system, this case is given
precisely by the sum of cases (1) and (2).

It is also worth noting that the transient in the expected energy of the
state estimation error is not only of lower amplitude, but is typically much
faster than the transient in the expected energy of the flow state.

Figure 4 shows how the peak and statistical steady state of the expected
energy of the flow state and state estimation error depend on the wavenumber
pair, quantifying the effects seen in figure 1 for a range of different wavenum-
bers.

3.2. The difficulty of detecting structures in the centre of the channel with
wall sensors

The reason the estimator discussed in the previous section fails to converge
effectively in the flows at wavenumber pairs {1, 1} and {1, 0} when external
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disturbances are present is interesting. Bewley & Liu (1998), hereafter referred
to as BL98, studied extensively the Kalman filter problem in the present flow
system for the following two cases:

case (i): Re = 10000, {kx, kz} = {1, 0},
case (ii): Re = 5000, {kx, kz} = {0, 2}.

As shown in figure 1(b) of BL98, the leading eigenvectors of A in the {1, 0} case
include several “centre” modes with nearly zero support near the wall1. These
modes, which are absent in the {0, 2} case, would be continuously excited
by the external disturbances, and are nearly impossible to detect with wall
measurements even if the sensor noise is very low. To quantify this notion, the
corresponding “modal observation residuals” gκ are tabulated for both cases in
tables 1 and 2 of BL98.

Because of the presence of these nearly-unobservable centre modes, the
estimation problem is inherently difficult at certain wavenumber pairs when
both external disturbances and sensor noise are present. Thus, the failure of
the Kalman filter developed here to converge accurately for the externally-
disturbed flows in the {1, 0} case and the {1, 1} case, which is characterized by
similar unobservable centre modes, is a reflection of the fundamental difficulty
of this estimation problem when only wall measurements are employed, and is
not a shortcoming of the estimation strategy applied in the present work.

To investigate the excitation of the flow by external disturbances which do
not significantly excite such centre modes, we may augment the definition of
My in (7), which models the wall-normal distribution of the covariance of the
external disturbances f , as

My
augmented = C(p)

(
y + y′

2

)2p

My.

The parameter p may be chosen to tune the profile of the external disturbances,
with uniform intensity in y if p = 0 or with intensity increasing near the walls
if p > 0, as shown in figure 5. In the simulations reported here, the coefficient
C(p) is selected such that the total expected energy of the flow is identical in
each case.

The effect of this biasing of the external disturbances towards the walls is
plotted in figure 6. For the three wavenumber pairs tested, figure 6 illustrates
the wall-normal distribution of the expected energy of both the flow and the
estimation error at statistical steady state. The flow is forced both with the
external disturbance with p = 0 (solid lines) and p = 5 (dashed lines).

For the wavenumber pair {0, 2}, the biasing of the external disturbance
towards the walls has relatively little effect. In both cases tested, most of the
energy of the resulting flow perturbation is located in the region of high shear,
as explained by the lift-up effect. This perturbation is easily detected by the

1Note that the shapes of these modes are only weak functions of Reynolds number, so the
same general comments hold true for the Re = 3000 case studied here.
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Figure 5. The wall-normal distribution of the variance in the
augmented form of the external disturbance parameterization.
Four cases are shown, corresponding to p = 0, 1, 3, 5.

sensors on the walls, so the corresponding expected energy of the estimation
error is relatively small.

For the wavenumber pair {1, 0}, on the other hand, the biasing of the
external disturbance towards the walls has a relatively strong influence on where
the expected energy of the flow is located. When excitation is present in the
centre of the channel (for p = 0), it is seen that the expected energy of the flow
is relatively large near the centre of the channel. In this case, the estimator
performance is poor, and the value of the expected energy of the estimation
error is relatively large, especially near the centre of the channel. On the other
hand, when the excitation is focused near the walls of the channel (for p = 5),
the so-called “centre modes” are not excited, and the estimator performance is
very substantially improved, with the expected energy of the estimation error
in this case being almost zero.

The characteristics of the case at wavenumber pair {1, 1} are essentially
intermediate between the two other cases, at {1, 0} and {0, 2}.

These results are further reinforced in table 1, where the total expected
energy of the estimation error is tabulated for p = 0, 1, 3, and 5. When the
external disturbances are uniformly distributed across the channel (for p = 0),
the estimator performance is substantially degraded for the {1, 0} and, to a
lesser extent, the {1, 1} cases as compared to the {0, 2} case, as already seen
in figure 6. As the excitation is focused closer to the walls (that is, as p is
increased), the estimator performance is substantially improved, as the nearly
unobservable centre modes are no longer excited.

The flow structures that typically play the dominant role in the transition
process (and, thus, the flow structures which we are most interested in estimat-
ing accurately in the present work) are elongated in the streamwise direction.
That is, the modes of maximum concern in the transition process are the highly
nonnormal modes in the neighbourhood of {kx, kz} = {0, 2}. Fortunately, this
is the wavenumber regime that is not characterized by the problematical centre
modes that are difficult to estimate based on wall measurements alone. Thus,
the estimator developed and tested here appears to be promising for estimating
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Figure 6. The distribution in y of the expected energy at
statistical steady state of the flow (thick lines) and the esti-
mation error (thin lines) for three wavenumber pairs: (top)
{0, 2}, (centre) {1, 1}, and (bottom) {1, 0}, and for two dif-
ferent wall-normal distributions of the external perturbations:
p = 0 (solid) and p = 5 (dashed).

{kx, kz} {0, 2} {1, 1} {1, 0}
p = 0 28.8 289.5 548.4
p = 1 26.4 112.0 178.4
p = 3 16.3 38.3 43.8
p = 5 12.4 17.9 16.7

Table 1. The total expected energy of the estimation error
at statistical steady state for three wavenumber pairs and four
wall-normal distributions of the variance of the external dist-
urbances. For each case, the magnitude of the external dist-
urbances was scaled so that the total expected energy of the
flow was 1000.

the components of the state that are most relevant to the transition problem
even though this estimator is incapable of detecting the so-called centre modes.
It is also significant to point out that, to model the effects of wall roughness in
linearized Navier–Stokes models, it is common practice to tune the parameter-
ization of the external disturbances to focus them near the wall, as done here
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Figure 7. Comparison of the expected energy of the esti-
mation error using the time-varying gains (thick lines) and
constant gains (thin lines) for three wavenumber pairs: {0, 2}
solid, {1, 1} dash-dot and {1, 0} dash.

for large values of p. In this setting, the resulting flow disturbances are well
estimated at all wavenumber pairs, as reflected in table 1.

3.3. The utility of time-varying gains in the estimator

The feedback gains L determined by the Kalman filter, computed according
to (13a)-(13b), are inherently a function of time. Thus, as stated previously,
in order to minimize the trace of P (t) during the transient which ensues after
the estimator is turned on, it is necessary to use time-varying feedback gains.
However, for large times, P (t) and L(t) eventually approach constants as the
estimation error approaches statistical steady state. Thus, if one is not in-
terested in minimizing this transient, one can simply apply constant feedback
gains designed to minimize the expected energy of the state estimation error
at statistical steady state.

It is interesting to compare the possible utility of time-varying gains for
the control and estimation problems. Consider first the problems of optimal
control and optimal estimation over the finite time horizon [0, T ]. As already
seen, the optimal estimation (Kalman filter) problem is solved by a DRE that
marches forward in time from t = 0 to t = T . On the other hand, the optimal
control problem is solved by a (closely-related) DRE that marches backward in
time, from t = T to t = 0. For time invariant systems over a long time horizon
(that is, for large T ), the resulting feedback gains for the estimation problem
exhibit a transient near t = 0 and approach a constant for the remainder
of the march towards t = T , whereas the resulting feedback gains for the
control problem exhibit a transient near t = T and approach a constant for
the remainder of the march towards t = 0. In the limit that T → ∞, the
transient in the gains in the control problem becomes unimportant; however,
the transient in the gains in the estimation problem is still significant, especially
if one is concerned with how rapidly the estimator converges after the estimator
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is turned on. Failure to appreciate this point can lead to the implementation of
constant-gain estimators which do not converge as rapidly as one might desire.

In our previous research on dynamic compensation (Högberg et al. (2003b)),
constant feedback gains for both the control and estimation problems were used,
taking no account of the transient due to the initial condition in the estima-
tor. The full-state feedback control problem was found to be solved successfully
with this approach for a large number of relevant flow cases. However, the state
estimation problem was not found to be solved effectively by this approach, and
was left as an important open problem.

It is now clear that we cannot expect optimal estimator performance during
the initial transient when using constant estimation gains if the initial condi-
tion has a significant effect on the flow. This can be seen in figure 7, where
the evolution of the expected energy of the estimation error is plotted for the
case of constant gains (thin lines) and the time-varying gains (thick lines).
Both the constant and the time-varying gains give identical expected energy
of the estimation error at large times, but the peak in the expected energy of
the estimation error at short times is substantially diminished when the time-
varying gains are employed. By taking the covariance of the initial condition
into account, the utilization of the time-varying gains gives us a direct means
to leverage any knowledge we might have about the expected structure of the
initial conditions in the flow case of interest.

3.4. Relative importance of the different measured quantities

As described in the introduction, the new disturbance parameterization pro-
posed in the present work allows us now to feed back into the estimator all three
types of measurements available at the wall, that is, the streamwise skin-friction
τx, the spanwise skin-friction τz, and the wall pressure p. Figure 8 explores the
relative importance of each of these individual measurements in the conver-
gence of the estimator for the three wavenumber pairs studied previously. It is
seen that the measurement of τx is the most significant for the estimator conver-
gence for wavenumber pairs corresponding to streamwise elongated structures;
as mentioned in the last paragraph of §3.2, one might consider these modes as
the ones of maximum concern in the early stages of transition. Physically, one
might say that, in this case, the estimator can leverage the strong streamwise
skin friction footprint associated with the streamwise streaks created be the
lift-up of low momentum fluid by low amplitude streamwise vortices. With the
present parameterization (high expected noise variance for the pressure mea-
surement), the pressure measurement did not contribute as significantly as the
other measurements to the estimation performance.

The evolution in time of the peak amplitudes of the feedback gains for
the three different types of measurements, as well as the variance of the mea-
sured signals (that is, the expected value of the measurement signal squared),
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Figure 8. Expected energy of the flow (solid thick line) and
estimation error when (solid thin line) all measurements are
used, (dashed line) only measurements of τx are used, (dot-
dashed line) only measurements of τz are used, and (dot-
ted line) only measurements of wall pressure are used, at the
wavenumber pairs (top) {0, 2}, (middle) {1, 1}, and (bottom)
{1, 0}. Note that the thin dotted line for {0, 2} lies under the
thick solid line.

is depicted in figure 9 for the wavenumber pair {0, 2}. It is seen that the tran-
sient in the feedback gains due to the effects of the initial conditions is clearly
significant.

3.5. The effectiveness of freezing selected gains based on the unsteady solution
of the DRE

The present section attempts to give some practical insight into the behavior
of selected feedback gains chosen from snapshots of the full solution of the
DRE. To this end, the expected energy of the estimation error when using
constant gains that were determined from snapshots of the unsteady solution
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Figure 9. Time evolution of the peak absolute value of the
gains and the variance of the measurements for the wavenum-
ber pair {0, 2}. (a) Peak absolute value of the gains for the
measurements of (dot-dashed) τx, (dashed) τz , and (dotted)
wall pressure. (b) Variance of the measured signal (thick lines)
and the measurement error (thin lines), with same line types
as in part (a).

to the DRE is illustrated in figure 10. It is seen that, when gains from early
in this time evolution are used, the early stages of the transient are estimated
effectively, but there is increased error in the estimate as statistical steady
state is approached. When gains from later in this time evolution are used, the
estimate of the transient is degraded, but the estimate of the statistical steady
state is significantly improved.

4. Physical-space characterization

In the previous section, the estimator was tested in the linear setting in Fourier
space at individual wavenumber pairs. In this section, we inverse transform
the gains computed on a large array of wavenumber pairs to obtain spatially-
localized convolution kernels in physical space (§4.1). We then investigate
the estimation (in physical space) of two flows of interest, one at very small
amplitude, in which nonlinear effects may be neglected (§4.2), and one at a
finite amplitude, in which nonlinear effects are significant (§4.3).

4.1. Physical-space feedback convolution kernels

The feedback gains for the estimator, as formulated in §2 and tested at in-
dividual wavenumber pairs {kx, kz}mn in §3, are functions of the wall-normal
coordinate y. By computing such feedback gains on a large array of wavenum-
ber pairs and then performing an inverse Fourier transform in x and z, three
dimensional (physical-space) feedback convolution kernels are obtained. Such
convolution kernels relate the measurement at a given sensor location on the
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Figure 10. Energy of the expected estimation error for gains
selected from the time-varying solution to the DRE and ap-
plied as constant-gain feedback, tested at the wavenumber pair
{0, 2}. Gains are selected from times 20, 40, 60, and 80 (solid
lines, with later times in the direction of the arrow), as com-
pared with the (constant) solution of the ARE (◦) and the full
(time-varying) solution of the DRE (+).

wall to the forcing of the estimator model in the vicinity of that point, and
eventually decay exponentially with distance far from the corresponding sen-
sor. For further discussion of the interpretation of such convolution kernels,
the reader is referred to Bewley (2001) and Högberg et al. (2003b).

The results presented in this section were computed with p = 0, i.e. assum-
ing a constant amplitude of the external disturbance forcing in the wall-normal
direction.

4.1.1. Time variation of the kernels

To illustrate the time variation of the kernels computed via solution of the
DRE, the evolution in time of the kernels corresponding to the measurement
of the streamwise skin friction is shown in figure 11. Note that the shape of
this kernel varies rapidly near t = 0, then gradually approaches a steady-state.
Also note that, near t = 0, the kernel is similar in its streamwise and spanwise
extent, but, as time evolves, the kernel becomes elongated in its streamwise
extent. This is consistent with the fact that streamwise elongated structures
are persistent in time and typically dominate such flows.

4.1.2. Steady-state shapes of the kernels

The time-varying kernels computed via the solution of the DRE eventually
converge to steady-state. Figure 12 shows these steady-state shapes for each
of the three measurement and the two evolution equations. Note the close
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Figure 11. The time-varying kernel for times (top to bottom)
t = 0, 15, 30, 45, and 60, relating the streamwise component
of the shear stress measurement at the point {x = 0, y =
−1, z = 0} on the wall to the estimator forcing on the inte-
rior of the domain for the evolution equation for the estimate
of (left) (v) and (right) (eta). Visualised are positive (dark)
and negative (light) isosurfaces with isovalues of ±5% of the
maximum amplitude for each kernel illustrated.
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Figure 12. The steady state kernels relating the τx (left), τz
(centre), and p (right) measurement at the wall to the forcing in
the estimator domain for v (top) and η (bottom). Visualised are
positive (dark) and negative (light) isosurfaces with isovalue
±5% of the maximum amplitude for each kernel.
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Figure 13. Decay of pressure kernel forcing u. (a) integrated
in streamwise and wall normal direction, for sx = sz = 0.2 (–
), 0.7 (dash), 1.3 (dash-dot). (b) integrated in spanwise and
wall-normal directions for three Reynolds number, Re = 3000
(solid), 2000 (dash), 1000 (dash-dot).

correspondence between the steady-state kernels for the τx measurement in
figure 12 and the corresponding kernels at t = 60 in Figure 11.

It is important to note that the spatial extent of the convolution kernels
is related, to some degree, to the correlation length scales chosen during the
disturbance parameterization defining the estimation problem. Specifically,
the parameters dx, dy, and dz parameterizing the correlation length scales
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of the disturbances in §2.4.2 have a direct effect on the spatial extent of the
present kernels. For example, figure 13(a) shows, for three different values of
dz, the spanwise extent of the pressure kernel forcing the streamwise velocity
component of the state estimate, integrated in the streamwise and wall-normal
directions. It is clear that, when designing feedback for disturbances which are
more “spread out” in the spanwise direction (that is, disturbances with greater
two-point correlation length scales in the spanwise direction), the corresponding
convolution kernel has a broader spanwise extent. It is also seen that this
broader kernel has a lower peak amplitude, since the corresponding forcing is
more distributed.

The streamwise extent of the kernel is less sensitive to the streamwise
correlation length scale of the disturbances, but is a strong function of the
Reynolds number. In a flow with a higher Reynolds number, the effect of flow
advection is more pronounced, and information from wall sensors can be related
to the interior flow structures responsible for this wall footprint that have since
advected further downstream. This effect can be clearly seen in figure 13(b),
which shows the same kernel as in figure 13(a) but integrated in the spanwise
and cross-flow directions for three different Reynolds numbers.

4.2. Estimation of an infinitesimal localized flow perturbation

The localised flow perturbation studied by Henningson, Lundbladh & Johans-
son (1993) is now used to test the convergence of the estimator in physical
space. In this section, we will consider the direct numerical simulation of an
infinitesimal flow perturbation, so that nonlinear effects in this section can
effectively be neglected.

Recall that the estimator initializes the state estimate as zero; that is, it
assumes no a priori knowledge of the location of the initial flow perturbation.
In the following, we explore different models for the assumed covariance of the
initial estimation error by varying the design parameter c2 in (6). This param-
eter effectively reflects our level of confidence in our knowledge of the relevant
statistical properties of the initial conditions, ranging from 0.05 (little specific
knowledge of the statistical properties of the initial conditions) to 1 (accurate
knowledge of these statistics, but no knowledge of the actual location of the
initial flow perturbation). For the simulations reported here, the exact initial
condition of the flow perturbation, described below, is used as the “specific”
component s in the parameterization of the initial covariance of the estimation
error, P (0), for the purpose of the computation of the feedback kernels.

The external disturbance forcing of the flow considered in this section is
taken as zero, so the resulting simulation might be characterized as a “de-
terministic” case with no stochastic forcing. The initial condition of the flow
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Figure 14. Energy content (in Fourier space) of the initial
condition for the case studied in §4.2 & §4.3.

considered in this section consists of an axisymmetric disturbance of the form





ψ =
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r
ψr,−

z

r2
ψy).

(16)

Here (x, y, z) are the streamwise, wall-normal, and spanwise coordinates respec-
tively, r2 = x2 + z2, and (u, v, w) are the corresponding velocity components.
The horizontal extent of this perturbation may be adjusted with the parameter
l, which is set equal to 1 for the presented simulations so that the maximum
energy of the initial flow perturbation in Fourier space is at the wavenumber
pairs showing the greatest transient energy growth, as illustrated in figure 14.
The parameter ε scaling the amplitude of the initial flow perturbation is taken
as 0.001.

Five different estimators, as formulated in the previous sections with feed-
back gains computed by selecting c2 = 0.05, 0.1, 0.25, 0.5, and 1 respectively,
were tested on the problem of estimating this flow. It is seen in figure 15 that
the variation of c2 between 1 and 0.25 had a relatively small effect on the re-
sulting estimator performance, and that all four of the estimators tested in this
range significantly outperformed the estimator that used only the steady state
kernels (dashed line), which does not depend on the parameterization of the
statistics of the initial conditions. On the other hand, the estimator in the case
with c2 = 0.05 significantly underperformed the others, indicating that, when
no useful information is available concerning the statistics of the initial condi-
tions, one might be better off simply using the steady-state kernels computed
via solution of the ARE.
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Figure 15. The time evolution of the energy of an infini-
tesimal localised flow perturbation (thick solid line) and the
energy of the estimation error of the same flow using (dashed
line) the steady state kernels determined from the solution of
the ARE as well as (thin solid lines) a gain scheduled set of ker-
nels computed using values of c2 = 0.05, 0.1, 0.25, 0.5, and 1,
increasing in the direction of the arrow. Note that the energy
E has been normalized by energy of the initial flow perturba-
tion.

Figure 16 visualizes the evolution of this flow perturbation (left) as it
evolves from the initial conditions provided, as well as the evolution of the state
estimate (right) as it evolves from the initial condition of zero and is forced by
the feedback of the measurement error term as formulated in (9)-(10). It is seen
that, by time t = 60, all of the major features of the flow are apparently well
reproduced by the state estimate. Additionally, as seen in figure 15, the time
t = 60 is rather early in the evolution of the flow perturbation—the energy of
the flow perturbation is still growing substantially at this point, while the en-
ergy of the state estimation error is by now decaying exponentially, indicating
successful convergence of the estimator.

4.3. Estimation of a finite-amplitude flow perturbation

We now test the same estimator as used previously on the problem of estimating
a flow with the same initial conditions as considered in §4.2, but with an initial
amplitude now almost an order of magnitude larger, such that nonlinear effects
play a significant role. We take ε = 0.00828, which corresponds to a maximum
wall normal velocity of 0.0117 at t = 0 (this is approximately ≈1.2% of the
maximum velocity of the mean flow).

As in §4.2, the direct numerical simulation reported here used the code de-
scribed in Lundbladh et al. (1992), which uses a pseudo-spectral scheme with
Fourier, Chebychev, and Fourier techniques in the streamwise, wall-normal,
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Figure 16. Evolution of a localised disturbance to the state
(left) and the corresponding state estimate (right) at time t = 0
(top), t = 20 (middle), and t = 60 (bottom), computed with
c2 = 0.08. Visualised are positive (light) and negative (dark)
isosurfaces of the streamwise component of the velocity. The
isovalues are ±10% of the maximum streamwise velocity of the
flow during the time interval shown.
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and spanwise directions respectively. The time advancement was a third or-
der Runge–Kutta method for the nonlinear terms and a second order Crank–
Nicolson method for the linear terms. The box size is 48× 2× 24 and the grid
resolution is 96 × 65 × 192.

As mentioned in the third paragraph of §3, the estimator used in this work
has already been designed to handle well the leading-order effects of nonlinear-
ity. Since we know from Henningson et al. (1993) that nonlinear effects will
be most pronounced at wavenumber pairs with lower kx and higher kz than
the initial conditions, we have tuned the covariance of the external disturbance
model upon which the estimator is based to account specifically for unmodeled
dynamics at these wavenumbers, as depicted in figure 2. The model for the
external disturbances accounts here for a forcing of higher amplitude than for
the tests on single wavenumber pairs of §3, with da = 0.68, and located closer
to the walls, with p = 1. With this choice of parameters, the expected flow
energy grows due to the initial condition, and continues to grow due to the
forcing f , in a way similar to the nonlinear evolution of the flow.

The evolution of the energy of the state and the estimation error for both
the moderate-amplitude case (§4.3) and the small-amplitude case (§4.2) are
plotted in figure 17. To facilitate comparison, all curves have been normalized
to unity at t = 0. Note the significant difference in the normalized energy
evolution of the state in the two cases considered (compare the thick solid line
and the thick dashed line); this reflects the significant effects of nonlinearities in
the moderate amplitude case. For both cases, the initial stage of the evolution
(during which nonlinear effects are fairly small in both cases) is well estimated
(thin lines). As the moderate-amplitude perturbation evolves and its amplitude
grows, nonlinear effects become significant, and the performance of the linear
estimator (thin solid line) is degraded as compared with the performance of
the linear estimator in the small-amplitude case (thin dashed line).

The Kalman filter is an “optimal” estimator (in several rigorous respects—
see Anderson & Moore (1979) for a detailed discussion) in the linear setting.
As seen in figure 17 and discussed in the previous paragraph, when a Kalman
filter is applied to a nonlinear system, its performance is typically degraded,
due to the fact that the linear model upon which the Kalman filter is based
does not include all the terms of the (nonlinear) equation governing the actual
system. A common (though somewhat ad hoc) patch which partially accounts
for this deficiency is to reintroduce the system nonlinearity to the estimator
model after the Kalman filter is designed. This approach is called an extended
Kalman filter. This type of estimator is identical to the Kalman filter except for
the presence of the system’s nonlinearity in the estimator model. This addition
makes some sense: if the estimate of the state happens to match the actual
state, no feedback from measurements is required for the extended Kalman
filter to track the actual flow state. This is not the case for the standard
(linear) Kalman filter. As seen clearly in figure 17, the extended Kalman filter
(thin dot-dashed line) enjoys a substantial performance improvement compared
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Figure 17. Evolution of the normalized flow energy (thick
lines) and normalized estimation error energy (thin lines) for
the case with moderate-amplitude initial conditions (solid) and
low-amplitude initial conditions (dashed). The evolution of the
normalized estimation error energy for the extended Kalman
filter in the case with moderate-amplitude initial conditions
is also plotted (thin dot-dashed line), illustrating a significant
improvement as compared with the performance of the cor-
responding Kalman filter (thin solid line) when nonlinearities
are significant.

with its standard Kalman filter counterpart (the thin solid line) for estimating
finite-amplitude flow perturbations when nonlinearities in the system model
are significant.

5. Conclusions

A canonical feedback control problem in fluid mechanics, which undoubtedly
sets the stage for several follow-on flow control problems that incorporate
greater geometric complexity, is the feedback control of a near-wall flow system
based on limited noisy measurements from flush wall-mounted sensors in order
to stabilize the flow and inhibit transition to turbulence. In such problems, it is
natural to apply model-based linear control theory, as the equations of motion
of the system are well known and the linearization of these equations are valid,
at least during the early stages of the transition process when all flow perturba-
tions are small. The mathematical framework for the linear control theory we
have chosen to apply in the present study, commonly called “optimal” or “H2”
control theory, is well known in both the finite- and infinite-dimensional setting.
However, the fact that the flow system is infinite dimensional and that regular-
ity issues play a very subtle role in the well posedness of this control problem
in the infinite-dimensional setting, compounded by the fact that the theory of
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well posedness of the equations of motion of the system of interest (that is, the
three dimensional Navier–Stokes equation) is not yet even complete, leads to
some peculiar challenges in the well-posed framing and subsequent numerical
solution of this challenging flow control problem.

Via the so-called Separation Principle, such linearized flow control prob-
lems in the optimal setting break up into two independent subproblems: control
of the flow with whatever actuators are available based on full state informa-
tion, and estimation of the full flow state with whatever sensors are available.
Once both subproblems are solved effectively, they may be combined to develop
a dynamic compensator to control the flow system using limited actuation au-
thority (with, for example, actuators mounted on the walls) based only on
limited noisy measurements of the flow (with, for example, sensors mounted on
the walls). In previous work, excellent results had been obtained on the full-
state feedback control problem, but certain unresolved difficulties remained
on the estimation problem. The present work thus focused exclusively on the
estimation problem.

The first important development in this work was the introduction of a
physically relevant parameterization of the external disturbances acting on the
system that converges upon refinement of the numerical grid. This disturbance
parameterization is fairly generic, and can easily be used to leverage one’s
physical insight concerning the initial conditions likely to be encountered in a
given flow (for example, Tollmien–Schlichting (TS) waves, streaks, or stream-
wise vortices). Also, the disturbance parameterization can be tuned in order to
modify (at least, to some degree) the spatial extent of the resulting convolution
kernels.

Using this disturbance parameterization, together with appropriate param-
eterizations of the initial conditions and the measurement noise, feedback gains
for the estimation problem were computed (using a efficient Chandrasekhar
method) for the near-wall flow system in Fourier space on a large array of
(decoupled) wavenumber pairs {kx, kz}, then inversed transformed to obtain
physical-space convolution kernels. The improved disturbance parameteriza-
tion proposed in this study facilitated, for the first time, the computation of
measurement feedback gains in the discretized problem that converged upon
grid refinement (and thus are relevant for the infinite-dimensional problem upon
which the numerical problem solved in the computer was derived) for all three
types of measurements that are available on the wall (that is, streamwise and
spanwise wall skin friction and wall pressure).

The second significant development in this work was the recognition that
for the problem of transition control, though time-invariant feedback gains
(computed from a corresponding algebraic Riccati equation) are sufficient for
the full-state feedback control problem, time-varying feedback gains (computed
from a differential Riccati equation) are necessary for the estimation problem
in order to minimize the initial transient in the estimation error when the
estimator is turned on.
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The estimator feedback rules that resulted from these two developments
were tested extensively in both in Fourier space (in the linearized setting) and
in physical space (in direct numerical simulations of both infinitesimal and
finite-amplitude disturbances for which the effects of nonlinearity are signif-
icant). The estimator was shown to perform well for all cases studied ex-
cept when the external disturbances excited centre modes, which can happen
sometimes for wavenumber pairs with relatively large streamwise component
(that is, for modes which are relatively large in their spanwise extent). Fortu-
nately, it was recognized that such cases are not the primary cases of interest
in most transition scenarios. It was also found that, when the flow perturba-
tions were large enough that the nonlinearities of the system were significant,
an extended Kalman filter which incorporated the system nonlinearity in the
estimator model outperformed the standard (linear) Kalman filter.

The reader is referred to Part 2 of this study for a summary of recent
work considering the extension of such estimation strategies to the problem of
fully-developed near-wall turbulence.
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This work extends the estimator developed in Part 1 of this study (Hœpffner
et al., J. Fluid Mech. 534) to the problem of estimating a turbulent chan-
nel flow at Reτ = 100 based on a history of noisy measurements on the wall.
The key advancement enabling this work is the development and implemen-
tation of an efficient technique to extract, from direct numerical simulations,
the relevant statistics of an appropriately-defined “external forcing” term on
the Navier–Stokes equation linearized about the mean turbulent flow profile.
This forcing term is designed to account for the unmodelled (nonlinear) terms
during the computation of the (linear) Kalman filter feedback gains in Fourier
space. Upon inverse transform of the resulting feedback gains computed on an
array of wavenumber pairs to physical space, we obtain, as in Part 1, effec-
tive and well-resolved feedback convolution kernels for the estimation problem.
It is demonstrated that, by applying the feedback so determined, satisfactory
correlation between the actual and estimated flow is obtained in the near-wall
region. As anticipated, extended Kalman filters (with the nonlinearity of the
actual system reintroduced into the estimator model after the feedback gains
are determined) outperform standard (linear) Kalman filters on the full system.

1. Introduction

This paper builds directly on Part 1 of this study (Hœpffner et al. 2005,
hereafter referred to as Part 1). It extends the estimator developed there, for
the case of perturbed laminar channel flow, to the problem of fully-developed
channel-flow turbulence. The reader is referred to Part 1 for related general
references, background information on optimal state estimation (Kalman filter)
theory, and a description of what it takes to apply this theory to a well-resolved
discretization of a fluid system in a manner that is consistent with the contin-
uous PDE system upon which this discretization is based (that is, in a manner
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such that the resulting feedback convolution kernels converge upon refinement
of the numerical grid).

The present paper effectively picks up where Part 1 left off, and treats
specifically the issues involved in extending the estimator developed in Part 1
to the problem of estimating a fully-developed turbulent channel flow based
on wall measurements. Three key steps were identified in obtaining adequate
estimator performance in the near-wall region:

1. linearization the flow system about the mean turbulent flow profile,
accounting for the statistics of the additional forcing term during the
computation of the feedback gains,

2. extraction of these statistics from a direct numerical simulation, and
3. incorporation of the nonlinearity of the actual system into the estimator

model at the final step in the development of the estimator (using an
extended Kalman filter).

Note also that the statistics of the forcing term used in the linear system
description in this work are found to have some similarities to the parameter-
ization of the external disturbances considered in Part 1 of this study, which
dealt with the estimation of the early stages of transition in the same domain.

1.1. Model predictive estimation

There are two natural approaches for model-based estimation of near-wall tur-
bulent flows: model predictive estimation and extended Kalman filtering. Bew-
ley & Protas (2004) discusses the model predictive estimation approach, which
is based on iterative state and adjoint calculations, optimizing the estimate of
the state of the system such that the nonlinear evolution of the system model,
over a finite horizon in time, matches the available measurements to the max-
imum extent possible. This is typically accomplished by optimizing the ini-
tial conditions in the estimator model in order to minimize a cost function
measuring a mean-square “misfit” of the measurements from the correspond-
ing quantities in the estimator model over the time horizon of interest. This
optimization is performed iteratively, using gradient information provided by
calculation of an appropriately-defined adjoint field driven by the measurement
misfits at the wall. The technique provides an optimized estimate of the state
of the system which accounts for the full nonlinear evolution of the system, al-
beit over a finite time horizon and providing only a local optimal which might
be far from the actual flow state sought. The technique is typically expen-
sive computationally, as it requires iterative marches of the state and adjoint
fields over the time horizon of interest in order to obtain the state estimate;
for this reason, this approach is often quickly disqualified from consideration
as being computationally intractable for practical implementation. The model
predictive estimation approach is closely related to the adjoint-based approach
to weather forecasting, commonly known as 4D-var. For further discussion of
model predictive estimation as it applies to near-wall turbulence, the reader is
referred to Bewley & Protas (2004).



Turbulent flow estimation 135

1.2. Extended Kalman filtering

The extended Kalman filter approach, which is the focus of the present paper,
is described in detail in Part 1 of this study. To summarize it briefly, the
estimation problem is first considered in the linearized setting. Define r̂ as
the Fourier transform of the vector of all three measurements available on the
walls in the actual flow system at wavenumber pair {kx, kz}, and define ˇ̂r as
the corresponding quantity in the estimator model. At each wavenumber pair
{kx, kz}, a set of feedback gains L is first computed such that a forcing term
v̂ = L(r̂ − ˇ̂r) on the (linearized) estimator model results in a minimization of
the energy of the estimation error (that is, this feedback minimizes the trace
of the covariance of the estimation error, usually denoted P ), assuming the
flow state itself is also governed by the same linearized model. This is called a
Kalman filter, and the theory for the calculation of the optimal feedback gain
L in the estimator is elegant, mathematically rigorous, and well known1.

Upon inverse transform of the resulting feedback gains computed on an ar-
ray of wavenumber pairs to physical space, we seek (and, indeed, find) well re-
solved feedback convolution kernels for the estimation problem that, far enough
from the origin, decay exponentially with distance from the origin. The reader
is referred to Bewley (2001), Bamieh et al. (2002), and Högberg et al. (2003b)
for further discussion of

1. the technique used to transform feedback gains in Fourier space to feed-
back convolution kernels in physical space,

2. interpretation of what these convolution kernels mean in both the con-
trol and estimation problems, and

3. description of the overlapping decentralized control implementation fa-
cilitated by this approach, which is built from an interconnected array
of identical tiles, each incorporating actuators, sensors, control logic,
and limited communication with neighboring tiles.

Ultimately, the estimator feedback v̂ is applied to a full (nonlinear) model
of the flow system. This final step of reintroducing the nonlinearity of the
system into the estimator model results in what is called an extended Kalman
filter. In practice, the extended Kalman filter has proved to be one of the most
reliable techniques available for estimating the evolution of nonlinear systems.

1.3. On the suitability of linear models of turbulence for state estimation and
control

As described in the previous section, the feedback kernels used in the extended
Kalman filter are calculated based on a linearized model of the fluid system.
Thus, the applicability of the extended Kalman filtering strategy to turbulence

1For a comprehensive presentation in the ODE setting, see Anderson & Moore (1979). For
the corresponding derivation in the spatially-continuous (PDE) setting, see Balakrishnan
(1976).
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is predicated upon the hypothesis that linearized models faithfully represent at
least some of the important dynamic processes in turbulent flow systems.

The fluid dynamics literature of the last decade is replete with articles
aimed at supporting this hypothesis. For example, Farrell & Ioannou (1996)
used these linearized equations in an attempt to explain the mechanism for the
turbulence attenuation that is caused by the closed-loop control strategy now
commonly known as opposition control. Jovanović & Bamieh (2001) proposed
a stochastic disturbance model which, when used to force the linearized open-
loop Navier–Stokes equation, led to a simulated flow state with certain second-
order statistics (specifically, urms, vrms, wrms, and the Reynolds stress −uv)
that mimicked, with varying degrees of precision, the statistics from a full DNS
of a turbulent flow at Reτ = 180.

Clearly, however, the hypothesis concerning the relevance of linearized
models to the turbulence problem can only be taken so far, as linear mod-
els of fluid systems do not capture the nonlinear “scattering” or “cascade” of
energy over a range of length scales and time scales, and thus linear models
fail to capture an essential dynamical effect that endows turbulence with its
inherent “multiscale” characteristics. The key strategy of the present work
(and, indeed, the key idea motivating our application of linear control theory
to turbulence in general), is that the fidelity required of a model for it to be
adequate for control (or estimator) design is in fact much lower than the fi-
delity required of a model for it to be adequate for accurate simulation of the
system. Thus, for the purpose of computing feedback for the control and esti-
mation problems, linear models might well be good enough, even though the
fidelity of linear models as simulation tools to capture the open-loop statistics
of turbulent flows is still the matter of some debate in the fluids literature.
All that the feedback in an extended Kalman filter has to do is to give the
estimator model a “nudge” in approximately the right direction when the state
and the state estimate are diverging. The extended Kalman filter contains the
full nonlinear equations of the actual system in the estimator model, so if the
state and the state estimate are sufficiently close, the estimator will accurately
track the state, for at least a short period of time, with little or no additional
forcing necessary.

Put another way, in the control problem, the model upon which the control
feedback is computed need only include the key terms responsible for the pro-
duction of energy. As the nonlinear terms in the Navier–Stokes equation scatter
energy but do not directly contribute to energy production, we might expect
that a linear model may indeed suffice. For the control Navier–Stokes systems
near solid walls based on full state information, Högberg et al. (2003b) demon-
strated complete relaminarization of low Reynolds number turbulent channel
flow based on actuation at the wall using linear control theory, thereby pro-
viding compelling evidence that this is in fact true, at least for sufficiently low
Reynolds number. The present work on the estimation problem is based on the
related strategy that, in a similar manner, the model upon which the estimator
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feedback is computed might only need to capture the key terms responsible for
the production of energy in the system describing the estimation error.

1.4. The problem of nearly unobservable modes

The problem of estimating the state of a chaotic nonlinear system based on
limited noisy measurements of the system is inherently difficult. When posed
as an optimization problem (for example, in the model predictive estimation
approach described previously), one can expect that, in general, multiple local
minima of such a nonconvex optimization problem will exist, many of which
will be associated with state estimates that are in fact poor. These difficulties
are exacerbated in the case of the estimation of near-wall turbulence by the
fact that turbulence is a multiscale phenomenon (that is, it is characterized
by energetic motions over a broad range of length scales and time scales that
interact in a nonlinear fashion), with significant nonlinear chaotic dynamics
evolving far from where sensors are located (that is, on the walls).

As illustrated in Figure 1b and Table 1 of Bewley & Liu 1998 (hereafter,
BL98) and discussed further in Part 1, even in the laminar case, at kx = 1,
kz = 0 a significant number of the leading eigenmodes of the system are “cen-
ter modes” with little support near the walls, and are thus nearly unobservable
with wall-mounted sensors. As easily shown via similar plots in the turbulent
case at the same and higher bulk Reynolds numbers, an even higher percentage
of the leading eigenmodes of the linearized system are nearly unobservable in
the turbulent case, with the problem getting worse as the Reynolds number is
increased. We thus see that the problem of estimating turbulence is fundamen-
tally harder than the problem of estimating perturbations to a laminar flow
even if the linear model of turbulence is considered as valid, simply due to the
heightened presence of nearly unobservable modes.

In the present work we focus our attention primarily on getting an accurate
state estimate fairly close to the walls, where the sensors are located. This is
done with the idea in mind that, in the problem of turbulence control (which is
our ultimate long-term objective in this effort, and the reason we are pursuing
this line of investigation in the first place), it is the near-wall region only that,
on average, turbulence “production” substantially exceeds “dissipation”, as
pointed out in Jimenez (1999). Thus, we proceed with the objective that, if we
can

1. estimate the fluctuations in the near-wall region with a sufficient degree
of accuracy, then

2. subdue these near-wall fluctuations with appropriate control feedback,

then we will have a net stabilizing effect on the turbulent motions in the en-
tire flow system, even if we don’t completely relaminarize the turbulent flow.
It is thus unnecessary to estimate accurately the motion of the flow far from
the wall in order to realize our ultimate objective in this work. Such flowfield
fluctuations, which will not be estimated accurately in this work, will (through
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nonlinear interactions) act as disturbances to excite continuously the state es-
timation error in the near-wall region, while feedback from the sensors will be
used to subdue continuously this error.

The non-normality of the Orr–Sommerfeld/Squire operator in the laminar
case is most evident by examining it near kx = 0, kz = 2, as illustrated in
Figure 2b of BL98 and quantified by the transfer function norms in Table 4 of
BL98. Similar plots reveal that the degree of non-normality of the eigenvectors
(that is, the fact that, after the first, these eigenvectors come in pairs of almost
exactly the same shape) is not significantly altered when moving from the
laminar case to the turbulent case at the same bulk Reynolds number, though
it is exacerbated gradually as the Reynolds number is increased. Note that, as
opposed to the case at kx = 1, kz = 0 discussed above, all leading modes in
the case kx = 0, kz = 2 have a substantial footprint on the wall. Thus, the
situation is not as bad as it might first appear: even when linearized about the
turbulent flow profile, at the wavenumbers of primary concern (in which the
non-normality of the eigenmodes of the system matrix is most pronounced),
these eigenmodes are easily detected by wall-mounted sensors. Further, the
pairs of eigenmodes with nearly the same shape are easily distinguished during
the dynamic state estimation process, as they are associated with different
eigenvalues characterizing their variation in time.

1.5. Comparison of the estimation and control problems applied to near-wall
turbulence

Another significant difference between the turbulence control and turbulence es-
timation problems is that, in the control problem, once (if) the control becomes
effective, the system approaches a stationary state in which the linearization
of the system is valid. In the estimation problem, on the other hand, even if
the estimate at some time is quite accurate, the system is still moving on its
chaotic attractor, so the linearization of the system about some mean state is
not strictly valid. Thus, in this respect, it is seen that the turbulence esti-
mation problem might be considered as being fundamentally harder than the
turbulence control problem.

1.6. Outline

A brief review of the governing equations and some of the particular properties
of the extended Kalman filter used in this work is given in §2. Section 3 collects
and analyzes the relevant statistics from a direct numerical simulation (DNS)
of a turbulent channel flow at Reτ = 100 in order to build the estimator. The
statistical data from §3 is then used in §4 to compute feedback gains (in Fourier
space) and kernels (in physical space) for the estimator. The performance of the
resulting estimator is evaluated via DNS in §5, and §6 presents some concluding
remarks.
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2. Governing equations

2.1. State equation and identification of terms lumped into the “external
forcing” f

The system model considered in this work is the Navier–Stokes equation for
the three velocity components {U, V,W} and pressure P of an incompressible
channel flow, written as a (nonlinear) perturbation about a base flow profile
ū(y) and bulk pressure variation p̄(x, y, t) such that, defining
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We select the base flow profile ū(y) as the average in x, z, and t of the turbulent
flow,

ū(y) = lim
T→∞

1

T Lx Lz

∫ T

0

∫ Lx

0

∫ Lz

0

U dz dxdt,

and the variation of p̄(x, y, t) in the x direction as the (unsteady) mean pres-
sure gradient sustaining the flow with a constant mass flux in the stream-
wise direction. Note that the (steady) variation of p̄(x, y, t) in the y direction
arises to balance the average in x, z, and t of the v∂v/∂y term in the wall-
normal momentum equation. Note also that we assume no-slip solid walls
(U = V = W = u = v = w = 0 on y = ±1). This facilitates decomposition of
the perturbation problem (1) in the x and z directions using a Fourier series.
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We now apply such a Fourier decomposition to (1), using hat subscripts
(̂ ) to denote the Fourier representation. The system may then be trans-
formed to {v̂, η̂} form in a straightforward fashion. Applying the Laplacian
∆ = ∂2/∂y2−k2, where k2 = k2

x +k2
z , to the Fourier transform of (1b), substi-

tuting for ∆p̂ from the divergence of the Fourier transform of (1), and applying
the Fourier transform of (2) gives the equation for v̂. Subtracting ıkx times the
Fourier transform of (1c) from ıkz times the Fourier transform (1a) gives the
equation for η̂ = ıkzû− ıkxŵ. The result is the linear Orr–Sommerfeld/Squire
equations at each wavenumber pair {kx, kz} with an extra term accounting for
the nonlinearity of the system

d

dt
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S = ıkxū− ∆/Re,

C = ıkzū
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where {n̂1, n̂2, n̂3} are given by the Fourier transform of (3), taking (from the
Fourier transform of (2) and the definition of η̂)
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and where, with the walls located at y = ±1 and the velocities normalized
such that the peak value of ū(y) is 1, Re is the Reynolds number based on
the centerline velocity and channel half-width. Note that, for kx = kz = 0, it
follows immediately from the definition of this system that v̂ = η̂ = 0 for all y.
For all other wavenumber pairs, multiplying (4) by M−1, we obtain

˙̂q = −M−1L︸ ︷︷ ︸
A

q̂ +M−1T︸ ︷︷ ︸
B

n̂. (5)

Note that the terms in this expression depend on the wavenumber pair being
considered, {kx, kz}, and that the state q̂ is a continuous function of both the
wall-normal coordinate y and the time coordinate t. Implementation of this
equation in the computer requires discretization of this system in the wall-
normal direction y and a discrete march in time t.

The present system may be linearized by replacing the exact expression
for n by an appropriate stochastic model, which we will denote f , thereby
obtaining the linear state-space model

˙̂q = Aq̂ +Bf̂. (6)
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As the mean of n is everywhere zero, it is logical to select this stochastic
model such that E[f ] = 0, where the expectation operator E[·] is defined as
the average over many realizations of the stochastic quantity in brackets. The
covariance of f will be modeled carefully based on the covariance of n observed
in DNS, as discussed further in §2.3.

2.2. Measurements

The present work attempts to develop the best possible estimate of the state
based on measurements of the flow on the walls. As discussed in Part 1, and in
greater detail in Bewley & Protas (2004), the three independent measurements
available on the walls are the distributions of the streamwise and spanwise wall
skin friction and the wall pressure.

In the present paper, we have chosen to transform these measurements to
a slightly different form such that their effects on the estimation of the system
(6), which is in {v̂, η̂} form, is a bit more transparent. There is a bit of flexibility
here; in the present work, we have chosen to define this transformed measure-
ment vector r̂ to contain scaled versions of the wall values of the wall-normal
derivative of the wall-normal vorticity, η̂y/Re, the second wall-normal deriva-
tive of the wall-normal velocity, v̂yy/Re, and the pressure, p̂. Note that we can
easily relate this transformed measurement vector to the raw measurements of
τ̂x = Dû/Re, τ̂z = Dŵ/Re, and p̂ on the walls, which might be available from
a lab experiment, via the relation (in Fourier space)
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and we may relate the transformed measurement vector r̂ to the state q̂ via the
simple relation

r̂ = Cq̂ + ĝ with C =
1

Re




0 D|wall
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 , (8)

where ĝ accounts for the measurement noise. The last row of the above relation
is easily verified by taking ∂/∂x of the x-momentum equation plus ∂/∂z of the
z-momentum equation, then applying continuity and the boundary conditions.

For the purpose of posing the present state estimation problem, the mea-
surements are assumed to be corrupted by uncorrelated, zero-mean, white
Gaussian noise processes, which are assembled into the vector ĝ with an as-
sumed covariance (in Fourier space) of

G =




α2

η 0 0
0 α2

v 0
0 0 α2

p



 . (9)
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Note that such an assumption of uncorrelated, white (in space and time) noise
is in fact a fairly realistic model for electrical noise in the sensors. The role of
G in tuning the strength of the estimator feedback is discussed in greater detail
in Part 1.

A different parameterization for the noise covariance that might be of in-
terest in a practical implementation, in which the physical sensors measure τ̂x,
τ̂y, and p̂, is

G = K
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τx
0 0

0 α2
τy

0

0 0 α2
p



K∗, (10)

where K is defined in (7) and the convenient relation given in (2.5) of Part 1
has been used to relate the covariance of the noise on the raw measurements
to the present formulation. This parameterization should also be explored
numerically in future work.

2.3. Extracting the relevant statistics for state estimation from resolved
simulations

The performance of the estimator may be tuned by accurate parameterization
of the relevant statistical properties of the forcing term f in the linearized
state model, in addition to adjusting the parameterization of the statistical
properties of the measurement noise ĝ. These statistics play an essential role
in the computation of the Kalman filter feedback gains.

In the present work, we will assume that f is effectively uncorrelated from
one time step to the next (that is, we assume that f is “white” in time) in order
to simplify the design of the estimator. Subject to this central assumption, we
proceed by developing an accurate model for the assumed spatial correlations of
f . As the system under consideration is statistically homogeneous in the x and
z directions, the covariance of the stochastic forcing f may be parameterized
in physical space as

E[fj(x, y, z, t)fk(x+ rx, y
′, z + rz, t

′)] = δ(t− t′)Qfjfk
(y, y′, rx, rz),

where δ(t) denotes the Dirac delta and where the covarianceQfjfk
is determined

by calculating the statistics of the actual nonlinear forcing term n in a DNS,
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(11)
As the system under consideration is statistically homogeneous, or “spatially
invariant”, in the x and z directions, it is more convenient to work with the
Fourier transform of the two-point correlation Qfjfk

rather than working with
Qfjfk

itself, as the calculation of Qfjfk
in physical space involves a convolution

sum, which reduces to a simple multiplication in Fourier space. The Fourier
transform of Qfjfk

, which we identify as the spectral density function Rf̂j f̂k
, is



Turbulent flow estimation 143

defined as

Rf̂j f̂k
(y, y′, kx, kz) =

1
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(12)
Note that, due to the statistical homogeneity of the system in x and z, the spec-
tral density function Rf̂j f̂k

is a decoupled at each wavenumber pair {kx, kz},
and thus may be determined from the DNS according to
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T→∞

1

T

∫ T

0

n̂j(y, kx, kz)n̂
∗
k(y′, kx, kz) dt. (13)

Certain symmetries may be applied to accelerate the convergence of the
statistics determined from the DNS and to reduce the amount of covariance
data that needs to be stored, which is in fact quite large. Since Qfjfk

is a
real-valued function, Rf̂j f̂k

is Hermitian, so
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By (13), it follows immediately that
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Due to the up/down and left/right statistical symmetry in the flow, it also
follows that

Rf̂j f̂k
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f̂j f̂k
(−y,−y′, kx, kz), (16a)

Rf̂j f̂k
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(y, y′, kx,−kz), (16b)

Rf̂1f̂3
(y, y′, kx, kz) = Rf̂2f̂3

(y, y′, kx, kz) = 0, (16c)

where, in (16a), the minus sign is used for the cases {j = 2, k 6= 2} and
{j 6= 2, k = 2}, and the positive sign is used for all other cases and, in (16b),
the minus sign is used for the cases {j = 3, k 6= 3} and {j 6= 3, k = 3}, and the
positive sign is used for all other cases. The reader is referred to, e.g., Moin
& Moser (1989) for similar computations. Finally, for later use, the individual
components of the spectral density function Rf̂ f̂ at each wavenumber pair

{kx, kz} are denoted by

Rf̂ f̂ (y, y′, kx, kz) =




Rf̂1f̂1

Rf̂1f̂2
Rf̂1f̂3

Rf̂2f̂1
Rf̂2f̂2

Rf̂2f̂3

Rf̂3f̂1
Rf̂3f̂2

Rf̂3f̂3



 .

3. Statistics of the nonlinear term n

We now perform a direct numerical simulation of the nonlinear Navier–Stokes
equations in a turbulent channel flow at Reτ = 100, gathering the statistics of
the nonlinear term n identified in (3), which combines all those terms which will
be supplanted by the stochastic forcing f in the linearized model (6) upon which
the Kalman filter will be based. Note that the Reynolds number Reτ = uτδ/ν
is based on the mean skin friction velocity uτ , the channel half-width δ, and
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the kinematic viscosity ν; Reτ = 100 corresponds to Recl = uclδ/ν = 1712,
where ucl is the mean centerline velocity.

All DNS calculations performed in this work used the code of Bewley, Moin
& Temam (2001). For the spatial discretization, this code uses dealiased pseu-
dospectral techniques in the streamwise and spanwise directions and an energy-
conserving second-order finite difference technique in the wall-normal direction.
For the time march, the code uses a fractional step implementation of a hybrid
second-order Crank–Nicolson / third-order Runge–Kutta–Wray method. The
overall pressure gradient is adjusted at each time step in order to maintain a
constant mass flux in the flow, and a computational domain of size 4π×2×4π/3
in the x× y× z directions is used. The resolution is 42× 64× 42 Fourier, finite
difference, Fourier modes (that is, 64 × 64 × 64 dealiased collocation points).
The numerical scheme used to discretize the Orr–Sommerfeld/Squire equations
in this work is the spectral Differentiation Matrix Suite of Weideman & Reddy
(2000); for further discussion of this discretization, see Högberg et al. (2003b).

The covariance of the forcing term n = (n1, n2, n3)
T identified in (3) was

sampled during a DNS long enough to obtain statistical convergence. During
the simulation, the full covariance matrices were computed at each wavenum-
ber pair, creating a large, four-dimensional data set. The size of the covariance
data is Nx × Nz × N2

y for each correlation component of the forcing vector
(before exploiting any symmetries), where Nx, Ny, and Nz denote the resolu-
tion in the corresponding directions2. The symmetries mentioned in §2.3 were
then applied in post processing to improve the statistical convergence. These
statistics are subsequently used in §4, where the optimal estimation feedback
gains are computed. In §5, the feedback gains so determined are used in order
to estimate a fully-developed turbulent flow based on wall measurements alone.
Both Kalman filters and extended Kalman filters are investigated.

In Figure 3 the magnitude of the spectral density function at four repre-
sentative wavenumber pairs {kx, kz} are plotted. As seen in the figure (plot-
ted along the main diagonal), the variance of the forcing terms is stronger in
the high shear regions near the walls, as expected. Note also that there is a
pronounced cross-correlation between f1 and f2, accounting for the Reynolds
stresses in the flow, with the other cross-correlations converging towards zero
as the statistical basis is increased. Figure 3a shows the corresponding varia-
tion of the maximum magnitude of the spectral density function as a function
of the wavenumbers kx and kz . As expected, the stochastic forcing is stronger
for lower wavenumber pairs.

In Figure 3, a corresponding plot of the magnitude of the spectral density
function of the stochastic forcing model defined in Part 1 is given. Note that the

2As resolution requirements of turbulence simulations increase quickly with increasing Rey-
nolds number, at higher Reynolds numbers (to be explored in future work) it will thus be
necessary to represent only the most significant components of these correlations via an
approximate strategy, accounting only for the leading singular values of these correlation
matrices at each wavenumber pair.
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Figure 1. The magnitude of the spectral density function

Rf̂ f̂ (y, y′, kx, kz) of f̂ , computed from the DNS of a turbulent

channel flow at Reτ = 100, at wavenumber pairs {kx, kz} of
(a) {1.0, 3.0}, (b) {3.0, 1.5}, (c) {0.0, 1.5}, and (d) {4.0, 4.5}.
The nine “squares” correspond to the correlation between the
various components of the forcing vector; from furthest to the
viewer to closest to the viewer, the squares correspond to the

f̂1, f̂2, and f̂3 components on each axis. The width of each
side of each square represents the width of the channel, [−1, 1].
The variance is plotted along the diagonal of each square.

shape of this covariance model is invariant with {kx, kz}. It is only the overall
magnitude of this covariance model that varies with {kx, kz}, in contrast with
the covariance data determined from the DNS data, as reported in Figure 3.
Figure 3b shows the corresponding variation of the maximum magnitude of the
spectral density function as a function of the wavenumbers kx and kz.
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Figure 2. The magnitude of the spectral density function

Rf̂ f̂ (y, y′, kx, kz) of f̂ , as parameterized in the laminar model

proposed in Part 1 of this study, taking p = 0 (left) and p = 3
(right); see Figure 3 for further explanation of the plot.

4. Estimator gains and the corresponding physical-space
kernels

In Högberg et al. (2003b), the covarianceQ was modeled with a spatially uncor-
related stochastic forcing, Q = I. With that model, it proved to be impossible
to obtain well-resolved estimation gains for more than one measurement (of
ηy), essentially because the problem defined did not converge as the grid was
refined. Part 1 of this study fixed this problem, where it was shown that, using
approriately smooth models for the covariance functions, well-resolved estima-
tion kernels could be obtained for all three measurements available at the wall
[specifically, ηy and vyy (equivalently, τx and τz) and p]. The present study
takes this approach one step further, obtaining the covariance of the stochastic
forcing terms directly from data obtained via DNS. Basing the stochastic model
on the turbulent statistics, we again obtain well-resolved gains that converge
upon grid refinement for all three measurements available at the wall. The
definition and solution procedure for the state estimation problem in order to
solve for the Kalman filter gains in the estimator in the present work is identi-
cal to that described in Part 1 of this study, to which the reader is referred for
further details.
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Figure 3. The variation of the maximum amplitude of the
spectral density function as a function of the wavenumbers kx

and kz for the DNS data of f̂1 (left) and the statistical model
of Part 1 (right).

Figure 4 illustrates isosurfaces of the physical-space convolution kernels
based on the statistics of the neglected terms in the linearized model, as deter-
mined from DNS. (Note that these gains are transformed to gains based on ηy ,
vyy, and p in the estimator simulations presented in §5). The kernels depicted
in Figure 4 are substantially different in shape from those used in the laminar
case, as reported in Figure 12 of Part 1; in particular, note that they are gener-
ally more focused in the region adjacent to the lower wall, likely as consequence
of the fuller mean velocity profile about which the system is linearized in the
turbulent case.

The level of the sensor noise, described in §2.2, is a natural “knob” to tune
the magnitude of the contribution to the estimator feedback from each of the
individual measurements. In an attempt to make a reasonably fair comparison
between the different stochastic models, we define measures of the ηy kernel

J =

∫ 1

−1

∫ Lx

0

∫ Lz

0

L2
ηy

dxdy dz.

Such a quantity measures the integral in all three spatial directions of the
square of the gain corresponding to the ηy measurement.

Four cases were studied, as shown in Table 4. In all four cases, the relevant
α parameters were tuned so that the sum J of the measure ηy is approximately
equal, The logic for performing the comparison in this way is to study the
additional information provided when the additional measurements are added
while the covariance of the system is accurately modeled. Future studies should
experiment with tuning the relevant α parameters differently (corresponding
to changing the relative noise on each of the three types of sensors) in order
to find the most effective combination. Note that, with the current choice
of the α parameters, the addition of the feedback into the estimator required
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Figure 4. Isosurfaces of the physical space convolution ker-
nels determined for Reτ = 100 turbulent channel flow based
on the statistics of the neglected terms in the linearized model,
as determined by DNS and plotted in Figures 1 and 3a.
Shown are the steady-state convolution kernels relating the
(left) τx, (center) τz , and (right) p measurements at the point
{x = 0, y = −1, z = 0} on the wall to the estimator forcing
on the interior of the domain for the evolution equation for
the estimate of (top) v and (bottom) η. Visualized are positive
(dark) and negative (light) isosurfaces with isovalues of ±5%
of the maximum amplitude for each kernel illustrated.

Case αη αv αp Q J1/2

1 0.1200 – – I 52
2 0.0037 – – Rf̂ f̂ 52

3 0.0030 0.0030 – Rf̂ f̂ 55

4 0.0030 0.0030 0.0075 Rf̂ f̂ 53

Table 1. The estimation simulations. For the cases when
using one and two measurements, only the corresponding αs
are relevant since the other measurements are excluded from
the C-matrix.

no adjustment of the time step for the extended Kalman filter DNS to run
properly.
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5. Estimator performance

5.1. Estimator algorithm

In order to quantify the performance of the Kalman filter developed in this
work, we run two direct numerical simulations in parallel. One simulation
represents the “real” flow, where the initial condition is a fully developed tur-
bulent flow field. The other simulation represents the estimated flow field, and
is initialized with a turbulent mean flow profile and all fluctuating velocity
components set to zero. The real flow is modeled by the Navier–Stokes equa-
tion. In the estimator simulations we have tested both Kalman filters (with the
state model being the linearized Navier–Stokes equation) and extended Kalman
filters (with the state model being the full nonlinear Navier–Stokes equation).

In the estimator simulations the volume forcing v, defined in §1.2, is added.
This additional forcing is based on the wall measurements and the precomputed
estimation gains L. For the Kalman filter simulations, we fix the mean flow
to the turbulent mean flow profile and compute the velocity fluctuations using
the linearized Navier–Stokes equation.

To evaluate the performance of the Kalman and extended Kalman filters,
the correlation between the actual and estimated flow is defined throughout
the wall-normal extent of the domain at each instant of time according to

corry(s, š) =

∫ Lx

0

∫ Lz

0 sš dxdz
(∫ Lx

0

∫ Lz

0 s2 dxdz
)1/2 (∫ Lx

0

∫ Lz

0 š2 dxdz
)1/2

, (17)

where s and š represent either a velocity component, the pressure, or the Rey-
nolds stresses from the actual and estimated flow, respectively. A correlation
of one means perfect correlation whereas zero correlation zero means no corre-
lation at all. Another useful quantity to study is the error between the actual
and estimated flow state, defined as

errny(s, š) =

(∫ Lx

0

∫ Lz

0
(s− š)2 dxdz

)1/2

(∫ Lx

0

∫ Lz

0 s2 dxdz
)1/2

. (18)

The error (18) ranges from zero, which means no error between the real and
estimated flow fields, and infinity. Finally, perhaps the most pertinent quantity
to measure is the kinetic energy of the total error between the real and estimated
velocity fields, defined (with Q selected appropriately, as required to measure
the energy of the velocity field) as

errntot
y (q, q̌) =

(∫ Lx

0

∫ Lz

0
(q − q̌)∗Q(q − q̌) dxdz

)1/2

(∫ Lx

0

∫ Lz

0
q∗Qq dxdz

)1/2
. (19)

By the initialization of the estimator (based on zero knowledge of the flowfield
fluctuation), the correlation is zero at t = 0, followed by a transient during
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which the correlation increases to statistically steady state. A similar transient
also appears in plots of the error. Figures 5.2–5.2 report the correlations and
errors as a function of y for the several cases considered at statistical steady
state (that is, after the transient).

5.2. One measurement — a comparison of two stochastic models

To compare the gains based on a spatially uncorrelated stochastic model Q = I
with the estimation gains based on the stochastic model obtained from DNS as
suggested in this study, we first compare the performance of the estimator using
only the ηy measurement. This is because we only obtained a well-resolved
estimation gain for the ηy measurement when using the spatially uncorrelated
stochastic model.

The correlation between the real and estimated flow, for one measurement,
is depicted in Figure 5.2 and Figure 5.2 for the Kalman and extended Kalman
filters respectively. The dashed lines represent the stochastic model developed
in this work whereas the dash-dotted lines represent the spatially uncorrelated
stochastic model. The correlation for the u-component is almost one (perfect
correlation) close to the wall for the two filters but there is an increasing dif-
ference both for the Kalman and extended Kalman filter as the wall distance
increases. For v, w, and p the difference is larger. This is due to the fact
that the streamwise disturbance velocity contains more energy than the other
components and that with only the ηy measurement we are missing important
information about the flow behavior.

Corresponding correlations are shown in Figure 5.2 and 5.2 for the Reynolds
stresses uv, vw, and uw. These correlations decay faster since they depend on
a squared velocity quantity. This also makes a clearer difference between the
two stocastic models.

In Figure 5.2 and Figure 5.2 we can see similar trends for the error function
(18) for all the primitive variables and for both the Kalman and extended
Kalman filter.

For both the estimators and both stochastic models, using only the ηy

gains, the correlation and error for the u-component, decay quickly once we
get beyond y+ ≈ 8 and in the center region of the channel both the error and
correlation measures perform poorly. The components v, w, and p are also
clearly not estimated very well when only the ηy measurement is used.

5.3. Two and three measurements, using the stochastic model obtained from
DNS

The performance of all three measurements combined, with the relative weight-
ing presented in Table 4, are shown as solid lines in Figure 5.2 – 5.2.

In these figures it is clearly seen that the correlation and error between the
real and estimated flow for the primitive variables and the Reynolds stresses are
greatly improved when the additional measurements are included, as facilitated



Turbulent flow estimation 151

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1 0.2 0.4 0.6 0.8 11 0.2 0.4 0.6 0.8 11 0.2 0.4 0.6 0.8 1

y
+

u v w p

Figure 5. The figure shows corry(s, š) for s = u, s = v,
s = w, and p obtained using Kalman filter. The solid line de-
notes estimation using all three measurements and noise sta-
tistics as discussed in §3. The dashed line denotes the es-
timator performance using only the ηy measurement. The
dash-dotted line is obtained using the spatially uncorrelated
stochastic model for noise statistics. The dotted line denotes
the estimator performance using the ηy and vyy measurements.
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Figure 6. The figure shows corry(s, š) for s = u, s = v,
s = w, and p obtained using extended Kalman filter. For a
definition of the curves see Figure 5.2.

by the covariance models proposed by this study. The strongest improvement
appears for the pressure, due to the addition of a pressure measurement.



152 M. Chevalier, J. Hœpffner, T. R. Bewley & D. S. Henningson

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1 0.2 0.4 0.6 0.8 11 0.2 0.4 0.6 0.8 1

y
+

uv vw uw

Figure 7. The figure shows corry(s, š) for the Reynolds
stresses obtained using Kalman filter. The solid line denotes
estimation using all three measurements and noise statistics as
discussed in §3. The dashed line denotes the estimator perfor-
mance using only the ηy measurement. The dash-dotted line
is obtained using the spatially uncorrelated stochastic model
for noise statistics. The dotted line denotes the estimator per-
formance using the ηy and vyy measurements.
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Figure 8. The figure shows corry(s, š) for the Reynolds
stresses obtained using extended Kalman filter. For a defi-
nition of the curves see Figure 5.2.

The dotted lines in Figure 5.2 – 5.2 represents the correlation when using
gains based on the ηy and the vyy measurements. By comparing the solid and
dotted lines it is evident that the importance of the pressure measurement is
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Figure 9. The relative estimation error errny(s, š), defined as
in equation (18) plotted for the Kalman filter. The solid line
denotes estimation performed with all three measurements and
gains based on turbulence statistics. The dashed line denotes
the estimator performance using only the ηy measurement.
The dash-dotted line is the correlation when using the spatially
uncorrelated stochastic model. The dotted line denotes the
estimator performance using the ηy and vyy measurements.
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Figure 10. The relative estimation error, defined as in equa-
tion (18), plotted for the extended Kalman filter. For a defi-
nition of the curves see Figure 5.2.

relatively weak for the velocity components and the Reynolds stresses where-
asfor the pressure component there is a big change. Notice also that the effect
of the pressure measurement generally becomes stronger when we get farther
away from the wall.
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Figure 11. The total energy of the estimation error is shown
as a function of the wall-normal distance. The solid line de-
notes the error when all three measurements are applied in
the estimator. The dashed and dash-dotted lines represent
the estimator performance when using only the ηy measure-
ment with the stochastic model based on turbulence statistics
and the spatially uncorrelated stochastic model respectively.
The thick lines show the extended Kalman filter and the thin
lines the Kalman filter data.

In Figure 5.2 the total estimation error, averaged in time, is plotted as
a function of wall-normal distance. The thin lines show the Kalman filter
results and the thick lines the corresponding extended Kalman filter results.
The improved estimation possibilities with the stochastic model presented in
this study over a spatially uncorrelated one is clearly seen in Figure 5.2. This
improvement is most pronounced close to the wall. The correlation and error
for all quantities decay quickly when we get well beyond y+ ≈ 10. As expected,
towards the center of the channel, by both measures, the estimator performs
poorly.

The total energy of the estimation error exhibits a transient as the two
simulations are started, as described in §5.1. This transient is depicted in
Figure 5.3 for the Kalman filter simulation. Closer to the wall the transient is
stronger and the error reaches a lower level than further into the flow domain.
The transient is due to the fact that the estimated flow is initialized with only
a turbulent mean flow profile.

In Figure 5.3, an instantaneous plot of the v-velocity component is shown
at y+ = 9.7 for the flow field and the two different filters (based on three mea-
surements). Similar structures are present in all three plots, with the extended
Kalman filter visibly superior to the Kalman filter in terms of matching the
actual flow.

At this time, it is impossible to compare fairly the performance of the
present approach to the adjoint-based estimation approach discussed in Bewley
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Figure 12. The transient of the total error energy at several
values of y+ for case 4 in Table 4. All three measurements are
used together with the Kalman filter; the transient exhibited
by the extended Kalman filter is similar.

& Protas (2004), where a turbulent channel flow at Reτ = 180 was estimated
based on wall measurements, as discussed in §1.1. The difficulty is that the two
methods have several adjustable parameters that are essentially incompatible
(in the present strategy, the α parameters, and in the adjoint-based strategy,
the length of the time horizon and the weighting of the so-called background
term); further, these parameters, have, so far, not been adequately optimized
for either approach. Thus, at this time, a fair comparison between the present
extended Kalman filtering approach and adjoint-based approach proposed in
Bewley & Protas (2004) to the estimation of near-wall turbulence is not possi-
ble, and remains a topic of future work.

6. Summary

A key step in the framing the Kalman filter problem is the accurate statis-
tical description of the system dynamics not fully described by the estimator
model. The present paper has shown that, by determining the appropriate
second-order statistical information in a full nonlinear DNS of the channel flow
system, then incorporating this statistical information in the computation of
the linear estimator feedback gains, an effective estimator may be built based
on all three measurements available at the wall. For a given feedback ampli-
tude, this estimator provides a better correlation between the real turbulent
flow and the estimate thereof than the corresponding estimators considered
for this problem in previous work. Significant improvements are obtained, as
compared with estimators based on spatially uncorrelated stochastic models,
in terms of both the maximum correlation near the wall as well as how far
into the channel an adequate correlation extends. Also, the estimation gains
may be transformed to physical space to obtain well-resolved convolution ker-
nels that eventually decay exponentially with distance from the origin, thereby,
ultimately, facilitating decentralized implementation.
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Figure 13. Wall-normal velocity component v plotted at
y+ = 9.7 at an instant in time when statistically steady state
has been reached in the estimator. In the top figure the flow
velocity itself is plotted. The middle plot shows the velocity
field reproduced by the extended Kalman filter, and the bot-
tom plot shows the velocity field reproduced by the Kalman
filter. The contour levels range from −1 to 1, where black and
white represent the lower and upper bound respectively.



Turbulent flow estimation 157

In Part 1 of this study, Hœpffner et al. (2005), the estimation of a perturbed
laminar flow was investigated, and it was shown that an artificial, but physically
reasonable, Gaussian distribution model for the spectral density function was
adequate to obtain effective, well-behaved estimation feedback kernels for the
problem of estimating the perturbed laminar flow. That result, together with
the result from the present study for the problem of estimating turbulence,
indicate that the choice of the disturbance model is quite significant in the
effectiveness of the resulting estimator. Note that it has also been observed
that a highly accurate statistical model is actually not essential in obtaining
effective estimator performance.

As expected, the (nonlinear) extended Kalman filter was found to out-
perform a (linear) Kalman filter on this nonlinear estimation problem. The
estimated state in the Kalman filter deteriorates more rapidly with the dis-
tance from the wall. The extended Kalman filter captures better the struc-
tures farther into the domain, both in magnitude and phase. In terms of
both correlation and estimation error, we also observed an approximate cor-
respondence with the performance of the present extended Kalman filter with
the adjoint-based estimation procedure reported in Bewley & Protas (2004).
The adjoint-based approach is vastly more expensive computationally, and, at
least in theory, can account for the nonlinear dynamics of the system more
accurately, so this correspondence reflects favorably on the performance of the
present extended Kalman filter.

The admittedly artificial assumption of the external disturbance forcing f̂
being “white” in time may be relaxed in future work, “coloring” the noise with
the time dynamics of n̂, by performing a spectral factorization and augmenting

the estimator model to account for the dominant time dynamics in f̂ . This
approach, while in theory tractable for this problem, involves estimators of
substantially higher dimension than the present (which is already large), and
might facilitate substantial performance improvements. Development of this
approach is thus deferred for the time being as a promising area for future
work on this problem.
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This paper presents the application of feedback control to spatially developing
boundary layers. It is the natural follow-up of Högberg & Henningson (2002),
where exact knowledge of the entire flow state was assumed for control. We
apply recent developments stochastic models for the external sources of distur-
bances that allow the efficient use of several wall measurement for estimation
of the flow evolution: the two components of the skin-friction and the pres-
sure fluctuation at the wall. Perturbations to base flow profiles of the family
of Falkner–Skan–Cooke boundary layers are estimated by use of wall measure-
ments. The estimated state is in turn fed back for control in order to reduce the
kinetic energy of the perturbations. The control actuation is achieved by means
of unsteady blowing and suction at the wall. Flow perturbations are generated
at the upstream region in the computational box and are propagating in the
boundary layer. Measurement are extracted downstream over a thin strip, fol-
lowed by a second thin strip where the actuation is performed. It is shown
that flow disturbances can be efficiently estimated and controlled in spatially
evolving boundary layers for a wide range of base flows and disturbances.

1. Introduction

There is much to be gained in the application of control to fluid mechanical
systems, the most widely recognized and targeted aim being the reduction of
skin friction drag on airplane wings. Flow control is a growing field and much
research effort is spent in both fundamental understanding and direct applica-
tion of control methods. For a review see e.g. Bewley (2001) and Högberg &
Henningson (2002).

Linear control theory gives powerful model-based tools for application of
control to fluid systems provided the system at hand can be well described
by a linear dynamic model. The theory of Linear–Quadratic–Gaussian control
(LQG) is one of the major achievement in the field of control theory. It gives
a methodology to compute the optimal, measurement based, control when the
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dynamic model is linear, the objective is quadratic, and the external sources of
excitations are stochastic. This theory is applied to boundary layer control in
the present work.

Feedback control design can be conceptually and technically decomposed
into two subproblems. The first one is to estimate the flow state from noisy wall
measurements. In our case, the state is the flow perturbation about the known
base flow profile. The estimator is a simulation of the dynamic system that is
run in parallel to the flow. Its state is forced as a feedback of the measurements
in order to converge to the real flow state. The estimated state is in turn used
for feedback control of the flow which is the second one. The closed loop system
with estimation and control is commonly referred to as measurement feedback
control or compensator.

This paper is the necessary follow-up of Högberg & Henningson (2002) in
which full information control was applied to spatially developing flows. The
use of stochastic model for external sources of excitation was introduced in
Hœpffner et al. (2005) and Chevalier et al. (2005), which allows computation
of well-behaved estimation feedback kernels for three wall measurements: the
two components of the skin-friction and the wall pressure. Each of these three
measurements provide the estimator with additional information on the instan-
taneous flow state. This variety of measurements is instrumental when complex
flows are targeted. This improvement of the estimation thus makes possible to
apply the full theory of feedback control to complex flow cases as the transi-
tional scenarios presented in this paper. For this reason, we have systemati-
cally reconsidered the flow cases of Högberg & Henningson (2002), where exact
knowledge of the entire flow state was assumed, and applied measurement-
feedback control, where the estimated flow state is used for control. We com-
pared the performance between the full information control of Högberg & Hen-
ningson (2002) and the present estimation based control, and found satisfactory
performance.

One of the major limitations to the application of control to spatially dis-
tributed systems (system in space and time, usually described by partial dif-
ferential equations) is the realization of the sensing and actuation that would
handle relatively fast events as well as small scales of fluid motion. In addition,
control over physical surfaces typically requires dense arrays of sensors and ac-
tuators. Recent development in MEMS technology and related research may
lead to solutions of this problem. For application of MEMS technology to flow
control see e.g. Yoshino et al. (2003).

Several recent investigations have pursued the application of LQG-type
feedback control to wall-bounded flow systems. A recent overview of this
progress is given in Kim (2003). Högberg et al. (2003b) demonstrated the
localization of the feedback kernels. This property allows a local application
of the control, i.e. only the local properties of the system (dynamics, distur-
bance sources and measurement information) are necessary for control locally.
The efficiency of the control scheme we use here was illustrated in Högberg
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et al. (2003a), where relaminarization of a fully developed turbulent flow was
achieved. In Hœpffner et al. (2005) and Chevalier et al. (2005), the focus was on
the estimation performance. By introducing a relevant model for the external
source of disturbance, it was possible to improve the estimation performance
on both transitional and turbulent flows.

The procedures of control design are based on the manipulations of a linear
dynamic model for the flow system, which is typically of large order. In the case
of spatially invariant systems, i.e. system for which the dynamics is independent
of some spatial coordinates, the problem can be decoupled in a parameterized
family of smaller systems. In our case, we assume spatial homogeneity over
the two horizontal directions. After Fourier transforming, this allows to design
and tune the controller and estimator for individual wavenumber pairs.

In a spatially developing flow like the boundary layer, this procedure can
still be used, even though the spatial invariance in the streamwise direction is
lost. Indeed, the localization of the control and estimation kernels ensures that
the feedback is local, so that the flow can be assumed to be locally parallel.
In Högberg & Henningson (2002), the actuation was successfully applied over
a strip parallel to the leading edge in Falkner–Skan–Cooke (FSC) boundary
layers, and the control feedback law was computed based upon the local Rey-
nolds number. In Högberg et al. (2003c), a measurement strip was added, and
the subsequent state estimate was used for control. The present paper aims at
the application of the recent development and improvement on the estimation
of the complex flow cases where the full information control was shown to be
successful in Högberg & Henningson (2002).

The structure of this paper is as follow. In §2, the flow system is described:
dynamics, input and output. In §3, we outline the main issues for the feed-
back control and estimation. The numerical method is described in §4. The
performance of the control in several flow cases is shown in §5, and concluding
remarks are given in §6.

2. System description

2.1. Flow dynamics

The Navier–Stokes equations are linearized about solutions of the FSC bound-
ary layer. Favourable and adverse pressure gradients can be accounted for as
well as the effect of a sweep. To obtain the family of FSC similarity solutions
we assume that the chordwise outer-streamline velocity obeys the power law
U∗
∞ = U∗

0 (x∗/x∗0)
m and that the spanwise velocity W ∗

∞ is constant. In the
expression above, U∗

0 is the free-stream velocity at the beginning of the com-
putational box and the asterisks (∗) denote dimensional quantities. Note that
the Blasius profile is a special case of FSC with zero cross-flow component and
no pressure gradient. If we choose the similarity variable η as

η(y∗) = y∗
√
m+ 1

2

U∗
∞

2νx∗
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one can derive the following self-similar boundary layer profiles,

f ′′′ + ff ′′ + βh(1 − f ′2) = 0,

g′′ + fg′ = 0,

where the Hartree parameter βh relates to the power law exponent m as βh =
2m/(m+ 1). The accompanying boundary conditions are

f = f ′ = g = 0, for η = 0,

f ′ → 1, g → 1, as η → ∞.

The complete derivation can be found in e.g. Schlichting (1979) and Cooke
(1950). From the FSC similarity solutions, we construct the nondimensional
velocity profiles

U(y) = f ′(η(y)), (1a)

W (y) =
W∞

U∞

g(η(y)), (1b)

for a fixed x and where y = y∗/δ∗0 . The velocity profiles (1a) and (1b) are then
used as base flow when constructing the linear dynamic model for the flow
disturbance and the initial conditions for the direct numerical simulations.

Once linearized, the system can be transformed to Fourier space by as-
suming local spatial invariance. This implies that the non-parallel effects are
small, i.e. the base flow is slowly developing in the streamwise direction. Af-
ter transformation to the velocity–vorticity (v – η) formulation, we obtain the
Orr–Sommerfeld/Squire equations (see e.g. Schmid & Henningson 2001)

(
v̇
η̇

)
=

(
LOS 0
LC LSQ

)(
v
η

)
, (2)

where

LOS = ∆−1[−i(kxU + kzW )∆ + ikxU
′′ + ikzW

′′ + ∆2/Re],

LSQ = −i(kxU + kzW ) + ∆/Re,

LC = i(kxW
′ − kzU

′),

(3)

with the boundary conditions

v(0, t) = ϕ, Dv(0, t) = 0, η(0, t) = 0,

v(y, t) = 0, Dv(y, t) = 0, η(y, t) = 0, as y → ∞.
(4)

The control actuation affects the system through a non-homogeneous bound-
ary condition on the wall-normal velocity ϕ(t) (time varying wall blowing and
suction). The Reynolds number Re is based on the free-stream velocity and
displacement thickness at x = 0 (denoted δ∗0).

In order to fit the controlled Orr–Sommerfeld/Squire system into the for-
malism of (14) we perform a lifting procedure (see e.g. Högberg et al. 2003b)
where the control at the wall vwall now enters the flow through a volume forcing
term instead of as an inhomogeneous boundary condition at the wall. This is
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done by decomposing the flow state into a time varying homogeneous compo-
nent (subscript h) and a steady particular (subscript p) component

(
v(t)
η(t)

)
=

(
vh(t)
ηh(t)

)
+

(
vp

ηp

)
ϕ(t). (5)

The augmented state q, incorporating the actuation variable thus reads

q =




v(y, t)
η(y, t)
ϕ(t)



 , (6)

and augmented operator A and operator B (see §3) can be written

A =

(
LOSS 0

0 0

)
, B =

(
−qp
1

)
, (7)

with

LOSS =

(
LOS 0
LC LSQ

)
, (8)

and where the particular solution qp is chosen to satisfy the numerically conve-
nient equation LOSS qp = 0 with a unity boundary condition on the wall-normal
velocity at the wall. The Laplacian operator is denoted ∆ = D2 − k2, where
D is the wall-normal derivative and k2 = k2

x + k2
z .

2.2. Stochastic disturbances

2.2.1. Modeling of the external disturbances

The description of a dynamical system can also include a description of its
input (external sources of excitations) and its output (measurements, possibly
corrupted by noise). The performance of the state estimation relies on the
construction of a proper model for the flow disturbances. Indeed, if the external
sources of perturbations in the flow are well identified, it becomes an easy task
to estimate the flow evolution using a dynamic model of the system.

The external sources of perturbations in typical aeronautical applications
can be wall roughness, acoustic waves, and free-stream turbulence.

We will assume the external disturbance forcing f = (f1, f2, f3)
T in (14)

to be a zero-mean stationary white Gaussian process with auto-correlation

E[fj(x, y, z, t)fk(x+ rx, y
′, z + rz , t

′)] = δ(t− t′)
︸ ︷︷ ︸
Temporal

Qfjfk
(y, y′, rx, rz)︸ ︷︷ ︸
Spatial

,

where δ(·) denotes the Dirac δ-function.

The remaining property to be described is the spatial extent of the two-
point, one-time, auto-correlation of f over the whole domain

Qfjfk
(y, y′, rx, rz) = E[fj(x, y, z, t)fk(x + rx, y

′, z + rz , t)].
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The corresponding quantity in Fourier space is a covariance operator, obtained
for any wavenumber pair {kx, kz} via the following integration over the homo-
geneous directions

Rfjfk
(y, y′, kx, kz) =

∫ ∫
Qfjfk

(y, y′, rx, rz)e
−i(kxrx+kzrz)drx drz .

Our model for the covariance of f assumes that the disturbance has a localized
structure in space (i.e., the two-point correlation of the disturbance decays
exponentially with distance) and that the correlations between forcing terms on
different velocity components are zero. We assume a model for the covariance
of the external forcing f of the form

Rfjfk
(y, y′, kx, kz) = d(kx, kz) δjkMy(y, y′), (9)

where

d(kx, kz) = exp

[
−
(
kx − k0

x

dx

)2

−
(
kz − k0

z

dz

)2
]
. (10)

The model parameters k0
x and k0

z can be used to locate the peak energy of the
disturbances in Fourier space, and dx and dz to tune the width of this peak.
These parameters are specific for each flow case, e.g. for a typical TS-wave the
peak energy will be at k0

x = 0.3 and k0
z = 0, or for a typical streamwise streak,

the choice will be k0
x = 0 and k0

z = 0.5.

The y-variation of Rfjfk
is given by the function

My(y, y′) = w ((y + y′)/2) exp

[
− (y − y′)2

2dy

]
, (11)

where the design parameter dy governs the width of the two-point correlation
of the disturbance in the wall-normal direction. The function w(ξ) describes
the variances at different distances from the wall. In the present paper, the
estimator will be applied to disturbances inside the boundary layer, we thus
use the wall-normal derivative of the base flow,

w(ξ) =
U ′(ξ)

U ′(0)
, (12)

so that the variance of the disturbance varies as the mean shear: greatest close
to the wall and vanishing in the free-stream. The parameters for all flow cases
presented are given in table 2.

Other forms for d(kx, kz) are also possible, and may be experimented with
in future work. Note that we will denote R = Rff = diag(Rf1f1

, Rf2f2
, Rf3f3

)
in the sections that follow.
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y′

y′
y′
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Figure 1. The covariance of f , for the FSC problem (cases
12–13 in table 1) is depicted in (a). The covariance is stronger
in the interior of the boundary layer. From top to bottom and
right to left each square represent the covariance for f1, f2,
and f3. The wavenumber space amplitude function is shown
in (b). The peak is set at {0.25,−0.25}, about the mode that
is triggered in the FSC simulations.

2.2.2. Sensors and sensor noise

The measurements used in this study are the streamwise and spanwise shear
stresses and the wall pressure fluctuations.






τx = τxy|wall =
1

Re

∂u

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kxD

2v − kzDη)|wall ,

τz = τzy |wall =
1

Re

∂w

∂y

∣∣∣∣
wall

=
1

Re

i

k2
(kzD

2v + kxDη)|wall ,

p = p|wall =
1

Re

1

k2
D3v|wall .

which yields the following measurement matrix C

C =
1

Re

1

k2




ikxD

2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0



 .

Each of the three measurements is assumed to be corrupted by random
sensor noise processes, the amplitude of which is determined by the assumed
quality of the sensors. The covariance of the sensor noise vector g can thus be
described in Fourier space by a 3× 3 matrix G where the diagonal elements α2

ι

are the variances of the sensor noise assumed to be associated with each indi-
vidual sensor. The covariance for each sensor can be written on the following
form

Rgι(t),gκ(t′) = δικδ(t− t′)α2
ι , (13)
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where δικ denotes the Kronecker delta. Thus, in the present work, we assume
that the sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed
back only gently into the estimator, lest the sensor noise disrupt the estimator.
When the signal-to-noise ratio is high, the measured signal may be fed back
more aggressively into the estimator, as the fidelity of the measurements can be
better trusted. For a given covariance of the external disturbances, the tuning
of the assumed overall magnitude of the sensor noise in the Kalman filter design
thus provides a natural “knob” to regulate the magnitude of the feedback into
the estimator.

3. Compensation

The system is now described: its dynamics is governed by (2), it is excited
by external sources of disturbance as in (10) and the sensor information is
corrupted by noise as in (13). We can now apply the procedure of LQG control
and estimation.

Our system can be written on the general state-space form

q̇ = Aq +B2u+B1f, q(0) = q0,

y = Cq + g,
(14)

where q is the state, A is the linear operator representing the dynamics of the
system. The external disturbances, denoted by f , force the state through the
input operator B1, and q0 is the initial condition. The operator B1 transforms a
forcing on (u, v, w) to a forcing on (v, η), since the flow state is expressed in this
formulation. The control signal u affects the system through the input operator
B2. Operator C extracts the measurements from the state variable, and g adds
a stochastic measurement noise with given statistical properties. The noisy
measurement is then denoted by y. Once we have the physical model on this
form, we can apply the tools from control theory, see for example Lewis &
Syrmos (1995).

3.1. Controller

To construct an optimization problem we need to define an objective function.
The performance measure for optimality is chosen as a weighted sum of the
flow kinetic energy and the control effort. We thus aim at preventing small
disturbances from growing, and achieve this goal with the minimum possible
actuation energy. The objective functional thus reads

J =

∫ ∞

0

(q∗Qq + l2u∗u) dt (15)

where l2 is included to penalize the time derivative of the control ϕ̇, and

Q =

(
Q Qqp
q∗p q∗pQqp

)
(16)
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where the term r2 is an extra penalty on the control signal itself. The operator
Q represents the energy inner-product in the (v, η) space

(
v∗ η∗

)
Q

(
v
η

)
=

1

8k2

∫ 1

−1

(
k2|v|2 +

∣∣∣∣
∂v

∂y

∣∣∣∣
2

+ |η|2
)

dy, (17)

with k2 = k2
x + k2

z .

We now want to find the optimal K that feeds back the state to update the
control u = Kq. It can be found as the solution of a algebraic Riccati equation
(ARE)

A∗X +XA− 1

l2
XB2B

∗
2X + Q = 0 (18)

where X is the unique non-negative self-adjoint solution. Note that the linear
feedback law does not depend on the disturbances present in the flow and is
thus computed once and for all for a given objective function and base flow.
The optimal control gain K is

K = − 1

l2
B∗

2X. (19)

A sufficient range of wavenumber pairs are computed and after Fourier trans-
form in both horizontal directions, we obtain physical space control convolution
kernels. Examples of such control kernels are depicted in figure 2.

3.2. Estimator

We build an estimator analogous to the dynamical system (14) as

˙̂q = Aq̂ +B2u− L(y − ŷ), q̂(0) = q̂0,

ŷ = Cq̂,
(20)

where q̂ is the estimated state and ŷ represents the measurements in the esti-
mated flow.

Kalman filter theory, combined with the models outlined in §2.2.1 and
§2.2.2 for the statistics of the unknown external forcing f and the unknown
sensor noise g respectively, provides a convenient and mathematically-rigorous
tool for computing the feedback operator L in the estimator described above
such that q̂(t) converges to an accurate approximation of q(t) (see e.g. Lewis
& Syrmos 1995, p. 463–470). Note that the volume forcing v = L(y − ŷ)
used to apply corrections to the estimator trajectory is proportional to the
measurement difference in the flow and in the estimator ỹ = y − ŷ.

The problem reduces to solving an algebraic Riccati equation similar to
equation (18)

0 = AP + PA∗ − PC∗G−1CP +B1RB
∗
1 , (21)

where P is the unique non-negative self-adjoint solution. The optimal gain L
that minimizes the expected energy of the state estimation error at steady state
is

L = −PC∗G−1. (22)
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(a)
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z

(b)

y
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Figure 2. Steady-state control convolution kernels relating
the flow state v̂ (a) and η̂ (b) to the control at {x = 0, y =
0, z = 0} on the wall. Positive (dark) and negative (light)
isosurfaces with isovalues of ±20% of the maximum amplitude
for each kernel are illustrated.

3.3. Extension to spatially developing flows

When solving the linear control problem and computing optimal control and
estimation gains we have linearized about a specific base flow profile. When the
gains are applied in the control and measurement strip, the base flow varies
along those regions i.e. errors will be introduced due to the changes of the
base flow. Based on findings in Högberg & Henningson (2002), Högberg et al.
(2003a), Högberg et al. (2003c), and Chevalier et al. (2005) it was expected that
the controller and the estimator had some robustness properties with respect
to changes in the base flow profile. Due to the fact that the convolution kernels
themselves, for proper choices of parameters, are localized indicates that only
local information is needed which relaxes the requirement of constant base flow
profile. For almost all control and estimation gains, the base flow profile in the
centre of the control and measurement regions have been used. For the longer
control interval in the optimal perturbation flow case, the same gains were used
as for the shorter interval.

The control and estimation convolution kernels for the Falkner–Skan–Cooke
boundary layer flow, described in §2, are depicted in figures 2 and 3.

4. Numerical issues

4.1. Direct numerical simulations

All direct numerical simulations have been performed with the code reported
in Lundbladh et al. (1992) and Lundbladh et al. (1999), which solves the in-
compressible Navier–Stokes equations

∂u

∂t
= NS(u)+λ(x)(u − uλ) + F,

∇ · u = 0,
(23)
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Figure 3. Steady-state estimation convolution kernels relat-
ing the measurements τx, τz , and p at the point {x = 0, y =
0, z = 0} on the wall to the estimator forcing on the interior
of the domain for the evolution equation for the estimate of
(left) v̂ and (right) η̂. Positive (dark) and negative (light) iso-
surfaces with isovalues of ±10% of the maximum amplitude
for all kernels illustrated except for the τz kernel for η which
is plotted at ±20%.
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by a pseudo-spectral approach. The variable u is given by u = (u, v, w)T . In
the subsequent we will divide the velocity field into a base flow (U) and a
disturbance (u′) part so that u = U +u′. In order to allow spatially developing
flows, a fringe region technique as described in e.g. Nordström et al. (1999) has
been applied. This forcing is implemented in the term λ(x)(u−uλ), where λ(x)
is a non-negative function which is nonzero only in the fringe region located
in the downstream end of the computational box. The outflow and inflow
conditions are determined by the desired velocity distribution qλ. The other
additional forcing term F = [F1, F2, F3]

T is used e.g. to enforce a parallel
base flow in temporal simulations, or to introduce perturbations in the spatial
simulations.

At the lower wall a no-slip boundary condition is applied where it is also
possible to apply zero mass-flux blowing and suction. An asymptotic free-
stream boundary condition is used to limit the computational box in the wall-
normal direction, at a constant height from the lower wall (see e.g. Malik et al.
1985).

The computational domain is discretized in space by Fourier series in both
horizontal directions and with Chebyshev polynomials in the wall-normal di-
rection. The time integration uses a four-step low-storage third-order Runge–
Kutta method for the advective and forcing terms whereas the viscous terms
are treated with a Crank-Nicolson method. The incompressibility condition is
enforced implicitly by expressing the flow state in the wall-normal velocity and
wall-normal vorticity state space.

4.2. Temporal simulations

When needed, we add a volume forcing vector F = [F1, F2, F3]
T to enforce a

parallel base flow, defined as

F1 = −∂U(y, t)

∂t
− 1

Re

∂2U(y, t)

∂y2
,

F2 = 0,

F3 = − 1

Re

∂2W (y, t)

∂y2
.

(24)

The velocity profiles U(y, t) and W (y, t) are given for a spatial position xr. To
further allow for a moving frame we make the following variable transformation
xr = x0 + ct where c is the reference frame speed and let U(xr, y) = U(x0 +
ct, y) = U(t, y).

4.3. Spatial simulations

4.3.1. Fringe region

By adding the fringe forcing mentioned in §4.1 we can enforce flow periodicity
and thus apply spectral methods allowing us to solve spatially developing flows.
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Case Flow Perturbation Estimation Control
xm ∈ r2 l xc ∈

0 A Eigenmode
1 A Eigenmode 0 102 [0, 25.14]
2 A Eigenmode [0, 25.14] 0 102 [0, 25.14]
3 B TS-wave
4 B TS-wave 0 102 [100, 250]
5 B TS-wave [0, 100] 0 102 [100, 250]
6 C Optimal
7 C Optimal 0 102 [300, 450]
8 C Optimal [0, 300] 0 102 [300, 450]
9 C Optimal 0 102 [300, 750]
10 C Optimal [0, 300] 0 102 [300, 750]
11 D Random
12 D Random 0 102 [175, 325]
13 D Random [40, 150] 0 102 [175, 325]
14 E Stationary
15 E Stationary 0 102 [150, 300]
16 E Stationary [40, 150] 0 102 [150, 300]

Flow Resolution Box

A Temporal FSC 4 × 129 × 4 25.14 × 20 × 25.14
B Spatial Blasius 576 × 65 × 4 1128× 20 × 12.83
C Spatial Blasius 576 × 65 × 4 1128× 20 × 12.83
D Spatial FSC 192 × 49 × 48 500 × 8 × 251.4
E Spatial FSC 768 × 65 × 24 500 × 8 × 25.14

Flow Fringe
xstart xmix ∆mix ∆rise ∆fall

B Spatial Blasius 928 928 50 30 15
C Spatial Blasius 1028 1028 40 100 20
D Spatial FSC 350 400 40 100 20
E Spatial FSC 350 400 40 100 20

Table 1. The tables contain detailed information about the
simulations performed in this study. Both the control and es-
timation kernels are computed based on a velocity profile from
the centre of each domain except for cases 9–10 where the same
control kernels were used as for cases 7–8. The rise and fall
distance of the control region and the measurement regions
are always ∆x = 5. The domain xm denotes the measurement
region used in the estimator and the domain xc denotes the
region where blowing and suction is applied in the control part
of the simulations. The parameters ατx

, ατz
, and αp are the

sensor noises for each measurement which is used when com-
puting the estimation gains and determines their relative and
total strength, as described in §2.2.2.
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Parameter Cases
3–5 6–10

xf −201.06 −158.16
ω 0.06875 0
kz 0 0.4897
as 10−5

ts 0
tr 20

Parameter Cases
11–13 14–16

x0 20.95 20.95
at 0.001
as 0.0036
xscale 10 10
yscale 1 1
zscale −25.14
zcenter 0 0
lskew 1
nmodes 21
tdt 1

Table 2. Volume forcing parameters for the spatial simula-
tions. Note that negative coordinates indicate positions up-
stream of the inflow boundary.

The fringe function is defined as

λ(x) = λmax

[
S

(
x− xstart

∆rise

)
− S

(
x− xend

∆fall

)]
(25)

where the step function S is defined as

S(x) =






0, x ≤ 0,

1/
[
1 + exp

(
1

x−1 + 1
x

)]
, 0 < x < 1,

1, x ≥ 0.

(26)

The parameters xstart and xend define the start and end location of the fringe
domain, whereas the parameters ∆rise and ∆fall define the rise and fall distance
of the fringe function.

In order to enforce the inflow boundary condition at the downstream end of
the domain we construct the following blending function which gives a smooth
interpolation between two velocity profiles. Let the velocity components be
given as

uλ = U(x, y) + [U(x− lx, y) − U(x, y)]S

(
x− xmix

∆mix

)
+ u′f(x− lx, y, z, t),

wλ = W (x, y) + [W (x− lx, y) −W (x, y)]S

(
x− xmix

∆mix

)
+ w′

f (x− lx, y, z, t),

(27)
where lx is the box length in the streamwise direction. The parameters xmix

and ∆mix are both blending parameters. The former is the start of the blending
region and the latter is the rise distance of the blending. Additional forcing to
add streaks or different wave forms can be added through the velocity compo-
nents (u′f , v

′
f , w

′
f ) directly in the fringe.
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4.3.2. Perturbations

To introduce perturbations into the spatially evolving flow an external volume
force can be applied locally in the computational domain. This forcing can
either be applied in the fringe region, as for the optimal disturbance and the
TS-wave case, or in the physical flow domain.

In order to introduce unsteady perturbations in the physical computational
domain, we use a random forcing, acting only on the wall-normal component
of the momentum equations

F rand
2 = atexp[−((x− xcenter)/xscale)

2 − (y/yscale)
2]f(z, t), (28)

where

f(z, t) = [(1 − b(t))hk(z) + b(t)hk+1(z)] (29)

and
k = floor(t/tdt),

b(t) = 3p2 − 2p3,

p = t/tdt − k,

(30)

where floor denote rounding to the next smaller integer, and hk(z) is a Fourier
series of unit amplitude functions with random phase generated at every time
interval k. Within each time interval tdt, the function b(t) ramps the forcing
smoothly in time. The maximum amplitude is determined by at and the forcing
is exponentially decaying in both streamwise and wall-normal direction centred
at xcenter. The number of modes with non-zero amplitude is determined by
the parameter nmodes. This forcing has been used to generate the travelling
cross-flow vortices described as cases 11–13 in table 1 with the corresponding
parameters given in table 2.

Generating disturbances in the fringe region is done through prescribing the
components (u′f , v

′
f , w

′
f ) in equation (27). Since we are looking at the evolution

of linear disturbances, these components can be taken as the eigenfunctions of
the parabolized stability equations, known as the PSE (Bertolotti et al. 1992;
Herbert 1997). Input to the eigenvalue problem is a given real frequency ω, an
appropriate Reynolds number Re and a real spanwise wavenumber kf

z . A set of
equations valid for both algebraically and exponentially growing disturbances
was derived in Levin (2003), capturing the different scales associated with the
two growth scenarios. Having obtained the complex eigenvalues kf

x(x) and the
eigenfunctions q̂ = (û(x, y), v̂(x, y), ŵ(x, y))T from the solution of the PSE, one
can readily formulate the forcing applied in the fringe as the real part of

q′f = as q̂(x, y)exp

(
iRe

∫ x

xf

kf
x(ξ)dξ + ikf

z z − iωt

)
S

(
t− ts
tr

)
(31)

where xf is typically the start of the fringe region and as is the amplitude of
the disturbance. The step function S is given by equation (26) and ts and tr
are used as time ramping parameters.
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4.3.3. Zero mass-flux actuation

The numerical model in the DNS does not allow for net inflow or outflow,
we thus have to enforce a zero-mass flux through the actuation strip by the
transformation

ϕ̂(x, z) = (ϕ(x, z) + c)H(x), (32)

where

c = −

∫

z

∫

x

ϕ(x, z)H(x) dxdz

zl

∫

x

H(x) dx

(33)

and

H(x) = S

(
x− (xc − lcx)

∆x

)
− S

(
x− (xc − lcx)

∆x

)
. (34)

The parameter S(x) is defined as in equation (26) and xc denotes the centre of
the control interval. Parameters lcx and lcz are respectively the length and width
of the control domain and ∆x is the rise and fall distance of the actuation.

4.4. Compensator algorithm

The compensator algorithm is depicted in figure 4. The “real” flow could be an
experimental setup where only wall information is extracted. In our studies the
“real” flow is represented by a DNS. The estimator is another DNS, which is
used to recover the state from sensor information. The compensation algorithm
can be sketched in the following steps

1. Take wall measurements in both real and estimated flow
2. Compute the estimator volume forcing based on precomputed estima-

tion gains and the difference of the wall measurements from the real and
estimated flow

3. Apply the volume forcing to the estimator flow to make it converge to
the real flow

4. Compute the control signal as a feedback of the reconstructed state in
the estimator

5. Apply the control signal in both the real and estimated flow

5. Flow cases

In order to evaluate the compensator performance in transitional flows we test
a range of different flow cases. To ease the comparison with the full information
controller results reported in Högberg & Henningson (2002) we study partly
the same flow cases and the same control parameter l2 = 100 have been used.
However, some control regions have been set further downstream to fit also a
measurement region into the computational domain. Note that in principle we
could have overlapping control and measurement regions. The computational
parameters for each flow type are listed in table 1.
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Actual flow

Estimated flow
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xc
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2U∞
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U(x, y)
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Lx

yfst
Lz/2

−Lz/2

Figure 4. Compensator configuration. The upper box repre-
sents the “real” flow where the light grey rectangle along the
wall is the measurement region (x ∈ [xm

1 , x
m
2 ]) and the corre-

sponding dark grey rectangle is the control area (x ∈ [xc
1, x

c
2]).

In the beginning of the box a perturbation is indicated as a
function of the wall-normal direction. This perturbation will
evolve as we integrate the system in time. The estimated flow
system is depicted in the lower box. Here the volume force
that is based on the wall measurements and the estimation
gains is shown as a grey cloud in the computational domain.

Parameter Cases
3 5 8 & 10 13 16

k0
x 0.25 0.28 0 0.25 0.25
k0

z −0.25 0.0 0.49 −0.25 −0.25
dx 0.10 0.25 0.15 0.20 0.20
dy 0.10 0.10 0.10 0.10 0.10
dz 0.10 0.25 0.15 0.20 0.20
ατx

29.56 4.0 0.20 0.20 0.20
ατz

2.21 0.30 0.20 0.20 0.20
αp 14783 2000 300 30000 30000

Table 3. Estimator model parameters. The parameters k0
x,

k0
z , dx, dy, and dz all relate to the covariance model of the

external disturbances and the parameters ατx
, ατz

, and αp

relate to the modeling of the sensor noise.
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5.1. Single eigenmode

To validate the numerical implementation of the control and the estimator forc-
ing we studied a temporal FSC boundary layer flow where the Reynolds number
at the beginning of the simulation box was Re = 337.9 with a free-stream cross-
flow velocity component W∞ = 1.44232U∞(x = 0) and a favourable pressure
gradient m = 0.34207 as defined in §2.1. The same flow setup is also studied
in a spatial setting in §5.4. In the case of temporal flow the measurement and
control regions overlap since they both extend over the whole wall.

The initial disturbance is the unstable eigenfunction associated with the
eigenvalue c = −0.15246 + i0.0382 that appears at kx = 0.25 and kz = −0.25.
The exponential energy growth of the uncontrolled eigenmode is depicted in
figure 5 as a thick solid line. In the same figure the full information controller
is plotted as a thick dashed line and the disturbance energy decays rapidly in
time and levels out. All thin lines are related to the compensator simulation.
The thin solid line represents the disturbance energy in the estimator and it
increases initially to quickly align with the energy growth of the actual state.
This can also be viewed through the estimation error plotted as a thin dash-
dotted line which decays exponentially in time. The compensator control is
shown as the thin dashed line. Initially when the estimated state is poor the
controller is not very efficient. However as the estimated state improves the
compensator control is also improving.

5.2. TS-wave

The TS-wave perturbation is applied in a spatially developing Blasius bound-
ary layer with an inflow Reynolds number of Re = 1150. This base flow can
be obtained as a similarity solution described in §2.1 with m = 0. The per-
turbations are introduced by means of forcing in the fringe region as described
in §4.3.2. Since the TS-wave is a pure two-dimensional instability, the span-
wise wavenumber in (31) is kf

z = 0. These waves are forced at the dimen-
sionless oscillating frequency F = 59, relating to the physical frequency ω as
F = 1062πων/U2

∞. This value is chosen according to Levin (2003) where it
was found to be the most unstable. The unstable area for this wave extends
from Branch I at x = −124 (Re ≈ 949) to branch II at x = 621 (Re ≈ 1854).
The measurement region is x ∈ [0, 100] and the control region is x ∈ [100, 250]
so that they are both located in the exponential growth region. The simulation
parameters correspond to cases 3–5 in table 1 and the parameters defining the
fringe forcing are given in table 2.

Figure 6 shows the uncontrolled energy growth and decay as the solid thick
line. Full information control, displayed as the thick dash-dotted line, performs
perfectly, lowering the amplitude of the energy by approximately five decades.
The estimator builds up energy levels throughout the whole estimation region,
reaching almost the amplitude of the original flow. This is visualized as the
thin solid line. Even though the difference between the original flow and the
estimated flow is very small, there is a noticeable difference in the performance
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Figure 5. Time evolution of the perturbation energy of the
uncontrolled unstable eigenmode at kx = 0.25, kz = −0.25 in a
FSC boundary layer and the corresponding controlled system.
Solid: uncontrolled energy growth (case 1). Dashed: full in-
formation control applied (case 2). Solid-thin: energy growth
in the estimator when no control is applied. Dash-dotted-thin:
the estimation error when no control is applied. Dashed-thin:
compensator control is applied (case 3). The simulations cor-
respond to cases 1–3 in table 1.

of the full information control and the compensator control, shown as the thin
dash-dotted line. Despite this difference, the compensator still manages to
lower the energy levels by almost three decades.

Figure 7(a) shows a snapshot of an x–y plane of the wall-normal uncon-
trolled velocity field. The forcing has been turned on long enough to let the
waves propagate throughout the whole computational box. In figure 7(b) the
compensator control has been active for 926 time units, corresponding to ap-
proximately fifteen periods of the forcing. At this instance of time there are
still large amplitude disturbances present far downstream, but as can be seen
from figure 7(c), 30 periods later the contour-levels of the disturbances are
small throughout the whole domain. It is evident that the unsteady blowing
and suction has effectively diminished the disturbances, leaving the remaining
TS-wave to be advected out of the domain by the base flow.

The control signals for the full information control and the compensator
control are shown in figure 8. The difference in amplitude of the two is of
the order 10−7. The control signals mimic waves with decaying amplitude in
the streamwise direction. The large amplitude at the beginning of the control
interval is due to the fact that the controller manages to do the job within
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Figure 6. Spatial evolution of the perturbation energy of a
TS-wave in a spatially growing boundary layer. Solid upper:
Flow. Solid lower: Full information control. Dashed upper:
Estimator. Dashed lower: Compensator, or control based on
information from the estimator.

only a few wavelengths of the TS-wave, hence leaving large amplitude control
further downstream unnecessary.

5.3. Optimal perturbation

The compensator performance is also studied for transiently growing perturba-
tions, also known as optimal perturbations after Butler & Farrell (1992). The
spatial optimal perturbations in a Blasius boundary layer have been computed
by Andersson et al. (1999) and Luchini (2000). The optimal perturbation is
introduced at x = −158.16 and then marched forward to x = 0 with the tech-
nique developed in Andersson et al. (1999). The perturbation is introduced in
the fringe region to give the proper inflow condition, as described in section
§4.3 and with the choice of parameters displayed in table 2. The perturbation
is optimized to peak at x = 237.24.

The base flow is essentially the same as the one described in §5.2, with the
same box-size but with a smaller fringe region and a lower Reynolds number.
Here the local Reynolds number at the inflow is Re = 468.34 (Andersson et al.
(2000)). The simulation parameters are given in table 1 as cases 6–10.

Figure 9 shows the energy of the uncontrolled flow, full information control
and compensator control once steady state has been reached. Here the energy
is defined as

E =

∫ 2π/k0
z

0

∫ ∞

0

(u2 + v2 + w2) dy dz, (35)

where the spanwise wave number is k0
z = 0.4897. Two different lengths of

the control regions have been implemented. Both types of controllers for both
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Figure 7. A snapshot of the wall-normal perturbation veloc-
ity for controlled and uncontrolled TS-waves. (a) The TS-wave
at t = 3926 with no control. (b) Compensator control ap-
plied during 15 TS-wave periods which corresponds to 926 time
units. (c) Compensator control applied during 45 TS-wave pe-
riods. The unsteady wall blowing and suction effectively elim-
inates disturbances, with the results that the original TS-wave
disturbances are advected out of the domain

control intervals work well at reducing the perturbation energy. In the case
with a narrow control strip the perturbation energy starts to grow again since
a stronger component of the growing disturbance remains. Note that the esti-
mated flow energy does not reach the exact perturbation energy level, but in
contrast to the TS-wave perturbation this does not seem to strongly affect the
compensator performance.

The control signal for the full information and compensator control cases,
applied in the interval x ∈ [300, 750], are depicted in figure 10. The actuation
presents a peak at the beginning of the control region and then a fast decay
which levels out progressively. A similar feature is reported in Cathalifaud &
Luchini (2000) where control is applied over the whole domain.

5.4. Travelling cross-flow vortices

The FSC boundary layer flow studied in this paper is subject to several other
studies, for example Högberg & Henningson (1998) and Högberg & Henningson
(2002). Originally it was an attempt to reproduce experimental results where
travelling cross-flow modes have been observed (see e.g. Müller & Bippes 1988).
A random perturbation in space and time that generates cross-flow vortices
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Figure 8. Control signal when the control has been turned
on for 926 time units. Solid: Full information control. Dash-
dotted: Compensator control. The compensator control signal
is of the order 10−7 lower in amplitude than the full informa-
tion control signal.
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Figure 9. Spatial energy evolution of the optimal pertur-
bation. Solid: no control. Dashed: full information control
applied in region x ∈ [300, 450]. Dash-dotted: compensator
control with measurement region xm ∈ [0, 300] and the con-
trol region xc ∈ [300, 450]. Thin-solid: estimated flow en-
ergy. Thin-dashed: full information control applied in region
x ∈ [300, 725]. Thin dash-dotted: compensator control with
the measurement region xm ∈ [0, 300] and the control region
xc ∈ [300, 725]. The flow cases correspond to cases 6–10 in
table 1.

downstream is applied, as described in §4.3.2. The specific numerical details
can be found under cases 11–13 in table 1 and 2.

In case 11 we compute the time evolution of the forcing as it develops
downstream and forms the cross-flow vortices depicted with a solid line in
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Figure 10. The control signals for the optimal disturbance
case after initial transient. Dashed: full information control
applied in region x ∈ [300, 750]. Dash-dotted: compensator
control in domain x ∈ [300, 750].

figure 11. In case 12 we apply full information control. Exponential decay then
replaces the uncontrolled exponential growth, as shown by the dashed line in
figure 11. However almost adjacent to the downstream end of the control region
the disturbances start to grow exponentially. Indeed, this wave is unstable over
the whole box, and resumes growth behind the control strip. In the same figure
the perturbation energy for the compensator is plotted as a dash-dotted line.

The simulations are run until we reach a statistically steady state where we
sample and time average the disturbance energy in the streamwise direction as
shown in figure 13. The control gains are computed for the base flow at position
x = 250 which is the centre of the control domain x ∈ [175, 325]. The estimator
gains are centred at x = 95 and the measurements are taken in x ∈ [40, 150].
In figure 13(a) the uncontrolled flow for the wall-normal perturbation velocity
is plotted at y = 1.0. The corresponding plot for the compensated flow is
depicted in figure 13(b).

5.5. Stationary cross-flow vortices

Stationary perturbations introduced at the beginning of the computational
domain, with large enough amplitudes, will generate stationary nonlinearly
saturated cross-flow vortices that develop downstream.

The control is acting in the interval x ∈ [150, 300] and the control kernels
are computed based on the mean flow at x = 225 with l = 102. The measure-
ment region is in the interval x ∈ [0, 150] and the the estimation kernels are
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Figure 11. Time averaged perturbation energy for cross-flow
vortices in a Falkner–Skan–Cooke boundary layer. Solid: un-
controlled. Dashed: full information control. Dash-dotted:
compensator control. Thin-solid: estimator energy. The sim-
ulations correspond to cases 11–13 in table 1.
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Figure 12. Time evolution of the disturbance energy inte-
grated throughout the computational box. During the first
2000 time units the flow is uncontrolled. At time t = 2000 the
compensator is turned on. Solid: energy in the flow. Thin-
solid: energy in the estimator.

computed based on the base flow centred in that interval. The complete set of
parameters for these simulations is given as cases 14–16 in table 1.

The full information control has been applied to both a flow with fully
developed cross-flow vortices throughout the computational domain as well as
a flow where the control is turned on at the same time as the perturbation is
first introduced in the upstream region. Both approaches give the same result
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Figure 13. Snapshots of the wall-normal velocity component
at y = 1.0. The flow state is depicted in part (a). In (b) the
effect of the compensator control is shown. In the controlled
flow the actuation was applied in 2000 time units. The black
to white scales lie within the interval v ∈ [−0.00045, 0.00055].

after the initial transients, due to the control. However the transition phase in
the former case requires smaller time steps due to stronger transients. There
could also be a problem in the former case if too strong wall-normal velocities
are generated due to technical limitations in the spectral code that are being
used.

For estimation-based control, two approaches regarding the initial state of
the estimator have been attempted. First the control is applied after a well
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Figure 14. Perturbation energy growth for cross-flow vor-
tices in a Falkner–Skan–Cooke boundary layer. Solid: un-
controlled. Dashed: full information control. Dash-dotted:
compensator control. Thin-solid: estimator energy. The sim-
ulations correspond to cases 14–16 in table 1.

converged estimated state is obtained. This leads to full actuation strength
immediately. To avoid a strong initial actuation, we turn on estimator and
control at the same time. The results shown here have been produced with the
latter method.

The simulation is run until a stationary state has been reached and the cor-
responding energy is shown in figure 14. The solid line shows the perturbation
energy and the thin line shows the corresponding estimator state energy. The
dashed and dash-dotted lines show the full information and compensated con-
trol cases respectively. In both cases, oscillations in the upstream part of the
control region indicate that there are nonlinear interactions taking place. As
reported in Högberg & Henningson (2002), the full information control turns
exponential growth into exponential decay, and downstream of the control re-
gion, new cross-flow vortices appear due to the inflectional instability.

6. Conclusion

Based on findings on how to improve the performance state estimation perfor-
mance, reported in Hœpffner et al. (2005), combined with the state-feedback
control used in, for example, Bewley & Liu (1998) and Högberg & Henningson
(2002), viscous instabilities, non-modal transient energy growth and inflectional
instabilities in spatially developing boundary layer flows are controlled based
on wall measurement.

The key to the improved performance of the estimator is the design of a
physically relevant stochastic model for the external sources of disturbances.
For this purpose we choose a correlation length which is weighted to be stronger
in the interior of the boundary layer than outside. We also choose an amplitude
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distribution in wavenumber space such that it represents the most dominant
wavenumbers in the specific flow being studied. This procedure leads to well
resolved estimation gains for the three measurements: streamwise and spanwise
skin frictions and wall pressure. Both the sensor noise and the external distur-
bances are assumed to be white noise processes. As the estimator is switched
on, there is an initial transient that propagates with the group velocity of the
dominating disturbances through the computational domain. Upstream of this
transient the estimate is converged. This feature makes the compensator con-
trol efficient since little extra time is needed to have a good state estimate
where it is needed for control, i.e. above the actuation region.

Acknowledgement

This work has been partially financed by the Innovation fund at the Swedish
Defence Research Agency (FOI) which is greatfully acknowledged.



188 M. Chevalier, J. Hœpffner, E. Åkervik & D. S. Henningson
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Högberg, M. & Henningson, D. S. 2002 Linear optimal control applied to insta-
bilities in spatially developing boundary layers. J. Fluid Mech. 470, 151–179.

Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids 15 (5), 1093–1105.

Levin, O. 2003 Stability analysis and transition prediction of wall-bounded flows.
Licentiate thesis, Royal Institute of Technology, Stockholm.

Lewis, F. L. & Syrmos, V. L. 1995 Optimal control . Wiley-Interscience.

Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer
over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289–309.



Linear feedback control and estimation in boundary layers 189

Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. &

Henningson, D. S. 1999 An Efficient Spectral Method for Simulations of In-
compressible Flow over a Flat Plate. Technical Report TRITA-MEK 1999:11.
Department of Mechanics, Royal Institute of Technology, KTH.

Lundbladh, A., Henningson, D. S. & Johansson, A. 1992 An Efficient Spectral
Integration Method for the Solution of the Navier–Stokes Equations. Technical
Report FFA TN 1992-28. FFA, the Aeronautical Research Institute of Sweden,
FFA.

Malik, M. R., Zang, T. A. & Hussaini, M. Y. 1985 A spectral collocation method
for the Navier–Stokes equations. J. Comp. Phys. 61, 64–88.

Müller, B. & Bippes, H. 1988 Experimental study of instability modes in a three-
dimensional boundary layer. AGARD-CP 438 18.

Nordström, J., Nordin, N. & Henningson, D. S. 1999 The fringe region technique
and the Fourier method used in the direct numerical simulation of spatially
evolving viscous flows. SIAM J. Sci. Comp. 20 (4), 1365–1393.

Schlichting, H. 1979 Boundary-Layer Theory , seventh edn. Springer.

Schmid, P. J. & Henningson, D. S. 2001 Stability and transition in shear flows,
Applied Mathematical Sciences, vol. 142. Springer-Verlag.

Yoshino, T., Suzuki, Y. & Kasagi, N. 2003 Evaluation of GA-based feedback
control system for drag reduction in wall turbulence. In Proc. 3rd Int. Symp. on
Turbulence and Shear Flow Phenomena, pp. 179–184.





Paper 4

4





Control of cavity-driven

separated boundary layer
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The aim of this paper is to build a reduced model for control design based
on the eigenmodes of the 2D cavity flow. The flow dynamics is dominated
by the shear layer instability, and the pressure is found to play a coupling role
between separation and re-attachment, potentially leading to global instability.
The large dimensionality of the discretized flow system is a challenge for control
design. A reduced dynamic model is constructed by projection on a basis of
eigenmodes, and a controller is computed based on this reduced model.

1. Introduction

Active flow control has received increasing attention in the last decade, where
knowledge from fluid mechanics is combined with control theory to affect the
properties of flow systems. A common goal is to stabilize a flow subject to linear
instability, like for instances the Tollmien-Schlichting waves on an aeroplane
wing (see e.g. Högberg & Henningson (2002)), or force the flow back to a
laminar regime, like for instance in a turbulent channel flow (see e.g. Högberg
et al. (2003a); Kim (2003)).

These systems are described by partial differential equations. These can
be discretized in time and space and typically lead to large systems of ordinary
differential equations. This represents a challenge for control design based on
optimization methods like the linear quadratic Gaussian (LQG) method, or
more recently the H2 andH∞ control synthesis. On the other hand, many
flow cases exhibit low dimensionality. For instance, only one eigenmode might
be unstable, so that one can hope to describe properly the flow’s dynamics
with a simpler dynamical system. It is thus preferable to first build a reduced
order model for the flow system. This is typically a heavy computational task,
but once this model is obtained, one has the possibility to experiment with
many control strategies and set of control parameters to obtain the desired
flow behaviour. The final test is to apply the controller thus designed on the
original flow system. As a first step, in the present analysis the controller built
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for a drastically reduced system is applied to the high-dimensional dynamical
system.

Several techniques are available for model order reduction, the most widely
used of which are the balanced truncation or the optimal Hankel norm mini-
mization (see e.g. Obinata & Anderson (2001)). But these are computationally
intensive and cannot readily be implemented in large scale systems. One the
other hand, thanks to increasing computational power and the use of Arnoldi
method (see Edwards et al. (1994)), it has now become possible to solve large
eigenvalue problems, i.e. including the eigenanalysis of a complete two dimen-
sional flow. These eigenmodes can in turn be used as a reduced basis for the
Galerkin projection of the flow dynamics. Hopefully, a small family of the
eigenmode can represent correctly the target flow dynamics. For a review of
eigenmodes analysis with several dimensions in fluid mechanics, see e.g. The-
ofilis (2003).

In this paper, we aim at controlling the instability in an open cavity in a
boundary layer. This flow presents similarities to the separated boundary layer
where the recirculation is induced by an adverse pressure gradient. In the case
of the cavity, the recirculation bubble is due to the wall curvature. This flow
present as well some similarities to the rectangular cavity extensively studied
for the generation of strong acoustic noise (see e.g. Rowley et al. (2002)). The
central element of this recirculated flows is the shear layer, i.e. the region of large
shear that isolates the recirculating zone from the free-stream. It is subject to
large growth due to Kelvin–Helmholtz instability (see Huerre (2000)).

2. Description of the geometry

A cavity with smooth edges, or lips, and a large aspect ratio, as seen in fig-
ure 1 is considered. The presence of the cavity induces a separated region,
isolated from the free-stream by a shear layer. At the end of the cavity, the
downstream cavity lip, the flow re-attaches, and slowly relaxes downstream to
a flat plate boundary layer again. The Reynolds number based on the dis-
placement thickness at inflow and the free-stream velocity, was chosen such
that the boundary layers upstream and downstream of the cavity are stable to
Tollmien-Schlichting waves, so that the flow is dominated by the effect of the
cavity.

3. Numerical tools

The base flow is obtained by means of direct numerical simulation (DNS) of the
nonlinear Navier-Stokes system. The base flow thus obtained is interpolated
on a spectral grid for computation of the eigenmodes. We choose a spectral
spatial discretization, which is optimal in terms of accuracy, for the eigenmode
computation in order to reduce the memory requirement. Once the eigenmodes
computed, we can use them as a reduced order model for the system. We will
use this model to analyse the possible energy growth mechanisms, and then for
control design optimization.
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y

Figure 1. Sketch of the geometry, with Blasius boundary lay-
ers upstream and downstream of the domain, with recircula-
tion inside the cavity. The recirculating region is isolated from
the free-stream by a shear layer.

The numerical solution procedure to solve the Navier–Stokes system in
this highly non parallel geometry has previously been considered for bump-
like geometries triggering boundary-layer separation (Marquillie & Ehrenstein
(2003)). We use a coordinate transformation to account for the wall curvature.
Fourth-order finite differences are used in the streamwise x-direction, whereas
the wall-normal y-direction is discretized using Chebyshev-collocation. Second-
order backward Euler differencing is used in time: the Cartesian part of the
diffusion term is taken implicitly whereas the nonlinear and metric terms are
evaluated using an explicit second-order Adams-Bashforth scheme. In order
to ensure a divergence-free velocity field a fractional time-step procedure has
been adapted to the present formulation of the Navier–Stokes system with
coordinate transformation.

A streamwise length L = 400 has been considered, the cavity geometry
being confined between x ≈ 30 and x ≈ 150. The distance between the cavity
and the end of the computational domain is large enough for the flow dynamics
in the vicinity of the cavity to be independent of possible reflections at outflow.
Up to 3000 grid points in x have been considered with up to 129 collocation
points in the wall-normal direction.

To compute the base flow, we initiate the computational domain with zero
velocity, and enforce the boundary conditions, that is uniform free-stream flow
at infinity, the Blasius profile at inflow and no-slip at the wall. The flow
is then marched in time until a stationary state is obtained. In cases of a
globally unstable base flow, a time domain filtering technique is used to reach
the unstable steady state.

Once a steady state U(x, y) = (U(x, y), V (x, y)) is obtained, the Navier-
Stokes system is linearized considering a disturbance in the flow field and pres-
sure as used in Ehrenstein & Gallaire (2005) for the computation of global
modes for the weakly non-parallel flat-plate boundary layer flow.
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The eigenvalue problem obtained after discretization may be written for-
mally as

−iωB q = A q (1)

the vector q containing the discretized disturbance flow velocity and pressure,
−iω being the generalized eigenvalue. In the forthcoming analysis up to 250
collocation points in x and 65 collocation points in y have been considered and
hence more than 48 000 complex equations. Such a system is too large to be
solved by standard QZ algorithms and Krylov subspace projections provide
the possibility to recover part of the spectrum using the “shift and invert”
strategy. Details of the method are given for instance in Nayar & Ortega
(1993). The complexity reduces to the computation of the Krylov subspace
together with the Arnoldi algorithm: Introducing a shift parameter λ, the
Krylov subspace may be computed by a successive resolution of linear systems
with matrix (A − λB), using a LU decomposition, which is achievable even
for a very large matrix (cf Ehrenstein & Gallaire (2005)). A large part of the
spectrum can be recovered when considering a large Krylov subspace. Here,
we considered reduced systems, the eigenvalues being determined using a QZ-
algorithm, with up to m = 800 equations. The operator is shifted in order
to provide the spectrum in a neighbourhood of the shift parameter λ. In
most of the computations we set λ = 0. Given the large Krylov subspace
we considered, the part of the spectrum relevant for our analysis could be
recovered in one computation. Projection on the global modes are achieved
using the bi-orthogonality condition involving the adjoint modes.

3.1. Computation of the optimal initial condition

To exhibit the rich behaviour of the cavity flow, we compute the initial flow
condition that leads to the largest energy growth. The possibility of initial
transient energy growth is related to to the non-normality of the governing
operator, i.e. to the non-normality of its eigenvectors. This transient energy
amplification is also refereed to as non-modal since it is not due to the behaviour
of a single eigenmode, but is caused by the superposition of several of them.
For precise description of the procedure, see Schmid & Henningson (2001).

4. Base flow and Eigenmodes of the cavity flow

4.1. Description of the base flow

The obtained steady flow is depicted in figure 4.1. It is a steady solution of
the Navier–Stokes equation for the cavity geometry at Reynolds number 350.
We can observe the Blasius boundary layers upstream and downstream of the
cavity. The main effect of the cavity is the generation of the recirculation zone
and the shear layer. It can be seen on this figure that the shear layer slowly
diffuses and extends in the y direction. We can observe the inflection points
of the shear layer. This is the origin of the shear layer instability that plays a
strong role in the cavity dynamics.
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Figure 2. Streamwise base flow profile used for stability anal-
ysis and eigenmodes computation. One sees clearly the recir-
culation zone inside the cavity
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Figure 3. Eigenvalues of the cavity flow. One sees two un-
stable modes with imaginary part about 0.15.

4.2. Spectra and eigenvectors of the cavity flow

The least stable eigenvalues are shown in figure 4.2 where only eigenvalues
with positive real part are represented. One sees two unstable eigenmodes (with
positive imaginary part), with real part of about 0.15. These two modes belong
to a branch, composed by the least stable eigenmodes (including modes labelled
(m1), (m2) and in the sub-branch, (m3). The eigenvectors corresponding to this
branch present common features, and are related to the flow around the cavity
zone. Slightly more damped, we see another branch of modes with common
features corresponding to modes beginning in the cavity and extending further
downstream.

The least stable eigenmode is depicted in figure 4.2. The streamwise and
normal velocity (a) and the pressure (b) are presented. This mode mainly
consist of vortices travelling downstream the shear layer. Further analysis
shows that its amplitude is growing exponentially along the shear layer, with
a growth rate similar to a Kelvin-Helmholtz wave with same wave length. The
velocity components for the adjoint eigenvector is presented in figure 4.2 (c).
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Figure 4. Least stable eigenmode, corresponding to the
eigenvalue labelled m1 in figure 4.2. a) streamwise and normal
velocity, b) pressure, c) velocity components of corresponding
adjoint eigenmode

Regions of large amplitude of the adjoint mode indicate spatial locations where
the mode is sensitive to excitations. In this case, we observe high sensitivity
at the upstream lip, close to the wall. This is natural, since a forcing at this
location will directly excite the shear layer instability.

4.3. Transient energy growth

The computation of the worst case initial condition is based on the reduced
model composed of the computed eigenmodes. To see how the eigenmodes
contribute to this growth, we perform the analysis with one eigenmode, then
two, progressively increasing the number of included eigenmodes, beginning
with the least stable ones. The obtained envelopes are depicted in figure 4.3.
The curve with lowest energy correspond to one mode, then two modes, and up
to the most energetic one with all (300) modes included. Using one mode we
observe as expected an exponential growth. Using two modes, we see on top of
the exponential growth, a cycle of growth and decay of period approximatively
300 time units. Increasing the number of modes, we observe the same cycle
with higher energy. Finally, the envelope consist of an exponential growth
much faster that the one due to the unstable modes, then the cycle, and still
we can observe the effect of an exponential growth of the order of the one of
the unstable modes. We will next analyse the reasons for this behaviour by
inspecting the evolution of the flow field.

For each time of the envelope, there is a potentially different worst case
initial condition. In this case, we found that all the initial conditions were
resembling a wave packet in the upstream region of the shear layer, as depicted
in figure 4.3. It is a common feature of convectively unstable flows that the
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Figure 5. Envelope of maximum energy growth from initial
conditions. The different lines correspond to increasing num-
ber of eigenmodes included in the optimization, 1 to 300 from
bottom to top.

Figure 6. The worst case initial condition for energy growth
when including 200 modes in the optimization. It corresponds
to time 200 of the most energetic envelope of figure 4.3. The
initial condition is a wave packet in the upstream region of the
shear layer. The wave packet is represented at time 20 of its
evolution, so that its features are more easily recognizable.

initial condition leading to the largest energy growth is a wave packet in the
upstream region of the unstable zone, see Ehrenstein & Gallaire (2005) for
the worst case initial condition in the 2D Blasius boundary layer, or Cossu &
Chomaz (1997); Chomaz (2005) for the Ginzburg–Landau equation.

We can analyse the flow evolution due to the worst case initial condition by
an x/t diagram as shown in figure 7 a) for the velocity components and b) for
the pressure. One sees the convection of the initial wave packet passed the shear
layer and the downstream cavity lip, and the re-apparition of the wave packet at
the upstream cavity lip. When the wave packet, having grown along the shear
layer, reaches the downstream cavity lip, there is a global pressure change,
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Figure 7. Streamwise/time diagram of (top) the normal ve-
locity and (bottom) the pressure in the free-stream, at y = 4
for the worst case initial condition. The propagation of the
wave packet with group velocity approximatively 0.3 can be
seen by the oblique rays, and the global changes of pressure
are seen by the vertical rays of pressure.

visible in the form of a vertical ray, regenerating a wave packet by a receptivity
mechanism at the upstream cavity lip. The location of the cavity lips and
wave packet propagation are underlined by black lines to put in evidence the
locations of reflection and receptivity.

5. Feedback control using a reduced model

5.1. Control and estimation

The general setting for control is the following: the signal r is measured in the
flow, in our case we chose to measure the wall shear stress at the downstream
cavity lip, and an actuator is implemented with signal u. When control is
active, the actuation signal is a function of the measured variable. The flow is
disturbed by the external sources of excitation w, for instance acoustic waves,
incoming eddies... The control objective consists in minimizing the variance of
the flow state q.

In the following we will aim at minimizing the flow energy, while main-
taining a small control effort. This can be expressed by the control objective
function

J =

∫ ∞

0

(qHQq + `2u2)dt (2)
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Figure 8. Sketch of the control setting. One actuator apply-
ing blowing and suction is located at the upstream lip of the
cavity, and one sensor measuring wall shear stress uy is located
at the downstream lip of the cavity. The flow is excited by a
random forcing in the upstream region of the shear layer.

where the flow kinetic energy 〈q, q〉 = qHQq is accounted for, along with the
control effort penalized by a control penalty `.

The system is exposed to external sources of disturbance, the input w. We
will represent these inputs by stochastic variables with given covariance. The
stochastic input variable will be assumed uncorrelated in time, i.e. white noise.

The flow system that we aim at controlling can be described in the state
space form

{
q̇ = Aq +B1w +B2u

r = Cq + g
(3)

with dynamic matrix A from the linearized Navier–Stokes equation in the 2D
domain with cavity, w are stochastic external disturbances, representing for
instance acoustic waves, incoming eddies or free-stream turbulence. The op-
erator B1 describes how these disturbances enter the dynamic equation, for
instance their spatial location in the flow domain. The control input u comes
as a forcing to the dynamic equation, and B2 describes the actuators, for in-
stance blowing and suction as a boundary condition, and spatial location of the
actuator. A measurement r can be extracted from the flow state, as described
by operator C. It can for instance extract the wall-shear stress at a given wall
location. The measurement is disturbed by a stochastic measurement noise g
with given variance.

One of the most widely used controller based on optimization is the linear
quadratic Gaussian (LQG) controller. It can be decomposed in the computa-
tion of an optimal estimator, that builds an estimate of the instantaneous flow
field using the available measurements, and the optimal controller for which it
is assumed that the state is known exactly. The estimation and control feed-
back gains L and K can be computed by the solution of two Riccati equations.
For description of this methodology, see e.g. Skogestad & Postlethwaite (2005),
and for applications of this methodology to fluid mechanics , see e.g. Högberg
et al. (2003b).
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5.2. Galerkin projection for system order reduction

The eigenmodes of the system can be used as a model for the flow dynamics.
We compute about 300 pairs of leading eigenmodes. This number is still rather
large for control design, and especially would be too large for a real application,
where the controller has to be run in parallel to the real flow. We have the
freedom to pick out of these computed modes a set on which to project the
dynamic system (3).

For projection of the dynamic system on the chosen set of eigenvectors,
we can use the bi-orthogonality property of the adjoint eigenmodes. It is an
easy task to project the dynamic matrix A since in the basis of eigenmodes,
the dynamic operator is the diagonal matrix of the eigenvalues. Projection of
the input and output operators requires more care. The relation between the
physical flow state q and its expansion coefficient representation k is

q =
∑

i

qik, kj =
〈
q, q+j

〉
. (4)

where qi is a single eigenmode. Applying the inner product on both sides of
(3) we obtain

k̇j =
〈
q̇, q+j

〉
=

〈
A
∑

h

qhkh, q
+
j

〉
+
〈
B1u, q

+
j

〉
+
〈
B2w, q

+
j

〉

= ωjkj +
〈
B1, q

+
j

〉
︸ ︷︷ ︸

B1jM

u+
〈
B2, q

+
j

〉
︸ ︷︷ ︸

B2jM

w.
(5)

For the measurement we have

r = C
∑

h

Cqkkh =
∑

h

Cqk︸︷︷︸
CM

k

kh. (6)

The final system model is thus

k̇ = AMk + BM
1 u+BM

2 w

r = CMk + g.

}
(7)

The projection of the objective function is obtained by similar steps

JM =

∫ ∞

0

(kHQMk + `2u2)dt, with QM
i,j = qH

i Qqj . (8)

If the leading eigenmodes correctly represent the system’s dynamics, this
reduced system will be a good model for the effect of actuation and measure-
ment, and the reduced energy measure QM , will be a good measure of the flow
kinetic energy, and thus of the control performance.

6. Results

For the control results presented in this section we have chosen the following
design parameters. The actuation signal penalty ` was chosen 108. This high
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Figure 9. Control gainK and estimation gain L, represented
by their streamwise (Ku, Lu) and cross-stream (Kv, Lv) com-
ponents. For control, the actuator signal u(t) is obtained by
evaluation of the inner product u(t) = 〈K, q̂(t)〉 where q̂(t) is
the estimated flow state. For estimation, the estimated flow
state is forced with forcing function L(r(t) − r̂(t)) where the
term r(t) − r̂(t) denotes the measurement mismatch between
the flow and the estimated flow

value is to be compared to the flow energy term in the objective function (2).
Since the energy is high and the actuation penalization is a relative term, we
need a high penalty `. The sensor noise term was chosen as 8×103. Once again,
this high term should be compared to the large flow mean energy achieved to
the external source of excitation w.

6.1. Control and estimation gains

The estimation gain computed with the chosen parameters are represented in
figure 6.1(a). Its support is located in the region of the shear layer, with an
amplitude growth comparable to that of the cavity eigenmodes. The control
gain can be seen in figure 6.1(b). Its support is located upstream of the cavity,
close to the wall. the actuator signal is computed as the inner product of the
control gain with the estimated flow state u(t) = 〈K, q̂(t)〉.

The state space representation of the controller system has several states,
but have a single input and single output (SISO). In this context, it is interest-
ing to represent the transfer function of the controller by its impulse response
i.e. the actuation signal that would result from an impulse at the measurement.
This impulse response is represented in figure 6.1. This impulse response can
also be interpreted as a convolution kernel for the measurement signal history
to obtain the actuation:

u(t) =

∫ ∞

0

G(τ)r(t − τ)dτ (9)

One can see from figure 6.1 that the measurement history up to 300 time units
in the past is necessary for control. This time corresponds well with the cycle
period found in previous sections.
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Figure 10. Actuation signal at the output of the controller
for an impulse at the measurement. Can as well be interpreted
as a convolution kernel to obtain the actuation signal from
past measurements.

6.2. Controlled flow

To test the control performance, we implement an oscillating volume force in the
upstream region of the shear layer in the DNS simulation. Its spatial structure
is chosen as the worst case initial condition found in §4.3. We then compare
the energy evolution for the controlled and uncontrolled flow as represented in
figure 6.2.

One can recognize in figure 6.2 the energy cycles similar to the response
to the worst case initial condition in §4.3. In fact the oscillating force have a
very similar effect on the flow dynamics, since it most affects the flow when it
is turned on. For the controlled flow, one observes the same energy growth for
its first peak, and after the first decay, no energy growth is observed.

While the wave packet is convected along the shear layer, there is no control
authority, since the actuator is located upstream, but at the time the perturba-
tion reaches the downstream cavity lip, it can be sensed, and the actuator can
play its role, counteracting the receptivity to pressure and thus the regeneration
of the wave packet.

This mechanism can be observed in more details in figure 6.2 where x/t
diagram similar as to §4.3 represent the flow and controlled flow evolution at
y = 4 for the normal velocity and the pressure. When control is applied, one
naturally still observes the vertical rays of the global pressure changes, but the
wave packet does not reappear.

7. Conclusion

In this paper, we have applied feedback control on a two dimensional flow using
the flow’s eigenmodes to build a reduced order model. The control methodology
was the LQG (Linear Quadratic Gaussian), the eigenmodes of the large system
was computed by means of a Krylov/Arnoldi method. The flow composed
of a recirculating cavity was found to be unstable due to a pressure feedback
mechanism between the re-attachment and detachment points of the cavity
flow. The controller based on the 20 least stable eigenmodes of the system was
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Figure 11. Flow kinetic energy when excited with oscillating
volume force in the upstream region of the shear layer with
(thin solid) and without control (Thick solid). One sees the
energy cycles for the uncontrolled flow. For the controlled flow,
only the first growth cycle is still present: the controller has
prevented the regeneration of the wave packet.

Figure 12. x/t diagrams for the flow normal velocity and
pressure in the case a) without control, and b) with control.
The vertical rays of the pressure variation is still visible, but
the wave packet regeneration is prevented.

found to perform well on a Galerkin model of the cavity flow constructed using
all the computed eigenmodes (300 pairs). We found that the self-sustaining
process due to the pressure was removed by the controller. The next step is
to apply the controller computed using the least stable eigenmodes to the full
direct numerical simulation of the flow.

This paper focused on the description of the flow dynamics using the com-
puted flow eigenmodes. For stability and control of the flow using the direct
numerical simulation, see the introduction part of this thesis.
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Transient growth on boundary layer streaks
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The linear perturbations evolving on streamwise boundary layer streaks which
yield maximum energy growth are computed. The steady and spanwise peri-
odic streaks arising from the nonlinear saturation of optimally growing stream-
wise vortices are considered as base flow. It is shown that significant transient
growth may occur for both sinuous antisymmetric perturbations and for vari-
cose symmetric modes. The energy growth is observed at amplitudes signifi-
cantly below the threshold beyond which the streaks become linearly unstable
and is largest for sinuous perturbations, to which the base flow considered first
become unstable. The optimal initial condition consists of velocity perturba-
tions localised in the regions of highest shear of the streak base flow, tilted
upstream from the wall. The optimal response is still localised in the areas
of largest shear but it is tilted in the flow direction. The most amplified per-
turbations closely resemble the unstable eigenfunctions obtained for streaks of
higher amplitudes. The results suggest the possibility of a transition scenario
characterised by the non-modal growth of primary perturbations, the streaks,
followed by the secondary transient growth of higher frequency perturbations.
Implication for turbulent flow is also discussed.

1. Introduction

Eigenvalue analysis is traditionally performed to investigate the linear stability
of a given flow configuration. The least stable among the exponentially decay-
ing eigensolutions to the linearised disturbance equations provides information
about the flow behaviour at large times. However, initial conditions which give
transient energy growth may exist, a possibility related to the non-normality
of the governing operator. This transient energy amplification is also referred
to as non-modal since it is not due to the behaviour of a single eigenmode but
it is caused by the superposition of several of them. In some cases the energy
growth can be large enough to trigger nonlinear interactions and take the flow
into a new configuration. The initial disturbance able to induce the largest
perturbation at a given time is called optimal and can be computed applying
optimisation techniques. These were first introduced in this context by Farrell
(1988).
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Here we apply this analysis to investigate the behaviour of small ampli-
tude perturbations developing on boundary layer streamwise streaks. These
elongated structures and their breakdown are found to be key factors both
in transition in boundary layers subject to high levels of free-stream turbu-
lence (Matsubara & Alfredsson 2001) and in the near wall region in turbulent
flows (e.g. Kim, Kline & Reynolds 1971). The motivation for this study comes
from the observation that the breakdown may occur also for asymptotically
stable streaks. In the case of near-wall turbulence, it was noted by Schoppa
& Hussain (2002) that only 20% of the streaks in the buffer layer exceed the
amplitude threshold for instability. By choosing an initial condition based on
streamwise- spanwise-velocity Reynolds stress events from fully developed near-
wall turbulence, these authors were able to identify a streak transient growth
mechanism, capable of triggering the breakdown. The amplification observed
was about tenfold. From the experimental data on transition induced by free-
stream turbulence as well as from the recent simulations by Brandt, Schlatter
& Henningson (2004) it is difficult to assess whether the streaks undergoing
breakdown are linearly unstable. However, the possibility of a transient energy
amplification is suggested by the experiments of Lundell (2004). In the present
study, by considering a steady approximation of the transitional streaks, we
assess how large this transient growth can be and present the corresponding
optimal flow structures. The present results are therefore directly applicable
to boundary layer transition, albeit with physical connection with near-wall
turbulence via rescaling of the base flows.

Interestingly, the basic flow under consideration is also the result of a non-
modal growth. Owing to the lift-up effect (Landahl 1975), streamwise elongated
vortices are able to mix high- and low-momentum fluid and thus create streaks
of high and low streamwise velocity. It is therefore not surprising that for
wall-bounded laminar flows the initial condition yielding the largest transient
energy growth has been found to consist of streamwise oriented vortices of
long streamwise wavelength (see Schmid & Henningson 2001, for a review).
In the case of a spatially evolving zero-pressure-gradient boundary layer, the
input at the leading edge leading to maximum output energy far downstream
has been identified by Andersson, Berggren & Henningson (1999) and Luchini
(2000). The output perturbation consists of streamwise streaks whose spanwise
periodicity is of the order of the boundary layer thickness. If the upstream
vortex amplitude is high enough, the disturbance eventually reach an amplitude
at which nonlinear effects become relevant. The basic flow considered here was
obtained in Andersson et al. (2001) by computing the nonlinear streaks forced
by these optimal leading edge vortices.

If the amplitude of the streaks grow to a sufficiently high value, instabilities
can develop and provoke breakdown to turbulence. This instability is caused
by inflectional profiles of the base flow velocity and it is of inviscid type. The
experiments of Swearingen & Blackwelder (1987) were the first to document
the emergence of streaks with inflectional profiles, in this case owing to the
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formation of Görtler vortices in the boundary layer over a concave wall. This
investigation demonstrated that time-dependent fluctuations appear in the flow
either in a spanwise symmetric (varicose) or antisymmetric (sinuous) pattern
with respect to the underlying streak. The varicose perturbations are more
closely related with the wall-normal inflection points while the sinuous oscilla-
tions are related with the spanwise inflectional profile and they were found to
be the fastest growing. For the streaks considered here, it was also found that
the most dangerous perturbations are of sinuous type (Brandt & Henningson
2002) and that the instability is convective in nature (Brandt et al. 2003).

The inviscid streak instability evolves on the fast convective time scale
and is characterised by a large exponential growth. Therefore, we will focus
our analysis on streaks of moderate amplitude, mainly stable to linear pertur-
bations, to investigate the potentiality of a non-modal growth mechanism to
trigger the breakdown of subcritical streaks.

2. Flow configuration and numerical method

2.1. Base flow and physical configuration

We consider the boundary layer over a flat plate and define the local Reynolds
number, Re = (U∞δ∗)/ν, by means of the free-stream velocity U∞ and the local
Blasius boundary layer displacement thickness δ∗. In the analysis the streaks
resulting from the nonlinear evolution of the spatial optimal perturbation in
a zero pressure gradient boundary layer are considered. This base flow was
computed in Andersson et al. (2001) by solving the full Navier–Stokes equa-
tions. In that work, the complete velocity field representing the steady linear
optimal perturbation calculated by Andersson et al. (1999) was used as input
close to the leading edge and its downstream nonlinear development was moni-
tored for different upstream amplitudes of the input disturbance. The flow was
assumed periodic in the spanwise direction and only one spanwise wavelength
of the optimal perturbation considered. To quantify the size of this primary
disturbance field at each streamwise position, an amplitude A was defined in
Andersson et al. (2001) as

A(X) =
1

2

[
max
y,z

(
U(x, y, z) − UB(x, y)

)
− min

y,z

(
U(x, y, z) − UB(x, y)

)]
, (1)

where UB(x, y) is the Blasius profile and U(x, y, z) is the total streamwise ve-
locity in the presence of streaks. The streamwise velocity U is made non dimen-
sional with respect to the free-stream velocity U∞. The spanwise wavenumber
is taken to be β = 0.45, which corresponds to linearly optimally growing streaks
at x = 1 (cf. the scaling adopted in Andersson et al. 2001).

We are interested in determining the local properties of the streaks in the
parallel flow approximation. Therefore one wishes to study the local charac-
teristics of a basic flow which evolves slowly in the streamwise direction, as
required in the boundary layer approximation and to consider a perturbation
which evolves faster than the basic flow. The parallel flow assumption becomes
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therefore questionable for perturbations of long streamwise scale or when the
behaviour at large times is considered.

As in Andersson et al. (2001), the streak profiles under consideration are
extracted at the streamwise station x = 2. This station has been chosen because
it is associated with the region where the streak energy attains its maximum
value (see figure 5 in Andersson et al. 2001). The critical amplitude A beyond
which unstable streamwise travelling waves are found is 0.26 for sinuous insta-
bility modes and 0.37 for their varicose counterpart. Note finally that in the
present investigation, we restrict our attention to perturbations which have the
same spanwise periodicity as the base flow, i.e. according to Floquet theory
the detuning parameter is taken to be zero (see Nayfeh & Mook 1979). This
reduction to the fundamental mode amounts to considering a total flow (basic
flow plus perturbation) which is spanwise periodic of fundamental wavelength
λz and it is justified by the observation that the perturbations under consid-
eration are localised in the region of strongest shear. For this reason, weak
variations with the Floquet parameter were found in the eigenvalue analysis in
Andersson et al. (2001).

2.2. Governing equations and optimisation procedure

The equations governing the linear evolution of a perturbation velocity u(x, y, z, t) =
(u, v, w), of corresponding pressure p, on the streak profile U(y, z) are obtained
by substituting U+u into the Navier-Stokes equations and neglecting the qua-
dratic terms in the perturbation. Following a procedure similar to that used in
the derivation of the Orr-Sommerfeld and Squire system, the above equations
can be reduced to two equations in terms of the normal velocity v and the
normal vorticity η = uz − wx (Waleffe 1995; Schmid & Henningson 2001)





∆vt + U∆vx + Uzzvx + 2Uzvxz − Uyyvx − 2Uzwxy − 2Uyzwx = 1
Re∆∆v,

ηt + Uηx − Uzvy + Uyzv + Uyvz + Uzzw = 1
Re∆η.

(2)
In the above, the spanwise velocity w can be eliminated by using the identity

wxx + wzz = −ηx − vyz.

Since the flow is assumed parallel, solution can be sought in the form of
normal modes

[v, η] = [v̂(y, z, t), η̂(y, z, t)] eiαx + c.c. (3)

where α is the streamwise wavenumber. As the basic flow is symmetric about
z = 0, the modes can be further divided into separate classes according to their
odd or even symmetry with respect to the basic flow.

In particular, fundamental modes with an odd symmetry are called vari-
cose with reference to their streamline patterns in the (x, z) plane, whereas
fundamental modes with an even symmetry are usually referred to as sinuous.

Being able to describe the dynamics of small perturbations on streamwise
streaks, we aim at finding the initial disturbance that would lead to the largest
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amplification at a given time. The search for the initial condition that leads
to the maximum energy growth for a linear system is a well-known procedure,
(see e.g. Andersson et al. 1999; Corbett & Bottaro 2000) and it is therefore
only briefly outlined here.

Let us define Hτ as the linear operator that maps an arbitrary initial
condition q to the subsequent state at time τ . To apply this operator amounts
to integrating (2) in time. The maximum energy growth G(τ) at time τ is

G(τ) = max
q

||Hτ q||
||q|| = max

q

〈Hτ q,Hτq〉
〈q, q〉 , max

q

〈q,H+
τ Hτ q〉

〈q, q〉 , (4)

where the rightmost identity introduces the definition of H+
τ , the adjoint of

Hτ with respect to the inner product (·, ·). It appears from (4) that the great-
est eigenvalue and corresponding eigenvector of the operator H+

τ Hτ are the
greatest achievable growth and the corresponding initial condition.

The direct solution of the problem by eigendecomposition of H+
τ Hτ is a

heavy computational task for a system of large order, since it involves the
computation of two matrix exponentials for the explicit description of Hτ and
H+

τ . Instead, the mapping Hτ is applied to the state q(0) by marching the
initial condition in time using the dynamic operator L, defined by (2), and H+

τ

is applied to q(τ) by marching the state backward in time using the adjoint L+

of the dynamic operator. The adjoint L+ is built as the discrete adjoint

L+ = Q−1LHQ, (5)

where the matrix Q defines the discrete energy inner product,

〈q1, q2〉 = qH
2 Q q1, (6)

and the superscript H stands for the matrix conjugate transpose. Each step
of the power iteration qn+1 = H+

τ Hτ q
n will magnify the projection of q onto

the desired flow state by a factor G. The iteration will thus converge quickly
provided the leading eigenvalue is well separated from the following ones. In
the present case, an absolute accuracy of 10−2 could be achieved within about
15 iterations when starting from an arbitrary initial guess.

The state variable and dynamic operator are discretized in the wall-normal
direction using a Chebyshev collocation method (see e.g. Weideman & Reddy
2000). Both the forward and the backward time marching are implemented us-
ing the second-order Crank-Nicholson scheme (implicit) and a unit time step is
employed in the time integration. The results have been validated by comput-
ing the evolution of the optimal input with the numerical code and procedure
described in Brandt et al. (2003).

3. Results

3.1. Optimal growth

The maximum energy growth G(τ) for different values of the streak amplitude
and of the streamwise wavenumber α is displayed in figure 2.2 and 3 for the sin-
uous and varicose symmetry respectively. The curve given by G(τ) represents
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Figure 1. Maximum amplification G versus τ of sinuous per-
turbations with wavenumber α = 0.01, 0.1, 0.2 ... 0.6 for streak
of increasing amplitude. (a): A = 0.14, (b): A = 0.20, (c):
A = 0.255, (d): A = 0.288. Note the appearance of the expo-
nential instability for the largest streak amplitude.
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Figure 2. Maximum amplification G versus τ of varicose per-
turbations with wavenumber α = 0.01, 0.1, 0.2 ... 0.6 for streak
of increasing amplitude. (a): A = 0.14, (b): A = 0.20, (c):
A = 0.255, (d): A = 0.288. The dashed line in (a) pertains to
α = 0.25 at which a viscous instability is present.

the maximum possible amplification at each instant in time optimised over all
possible initial conditions with unity energy norm. Since the optimal initial
conditions are in general different for different τ , G(τ) can be also thought of
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Figure 3. (a) Maximum transient growth versus Reynolds
number and (b) instant of maximum amplification versus the
Reynolds number for streaks of increasing amplitude, A =
0.14, 0.20, 0.229, 0.255, 0.288. Solid lines display sinuous per-
turbations whereas dashed lines are used for their varicose
counterpart. The selected streamwise wavenumber is α = 0.3.

as the envelope of the energy evolutions of the initial conditions yielding maxi-
mum energy growth at each instant τ . Note that time is made non-dimensional
with respect to δ∗/U∞.

Results are presented also for low values of the streamwise wavenumber α,
at which the parallel flow approximation becomes questionable, to show that
the maximum amplification is attained in the limit of α→ 0 for asymptotically
stable streaks. However, significant amplification is observed also at larger
wave numbers. For sinuous perturbations, an energy growth of the order of
a thousand is found at Re = 1000 already for a streak amplitude of 14%, i.e.
well below the threshold for the onset of the inviscid secondary instability. It
can also be seen in figure 2.2 that the energy growth of perturbations of larger
α increases with increasing streak amplitude more than for disturbance of low
streamwise wavenumber. Figure 2.2(d) shows the maximum energy growth
for a streak which is slightly unstable to sinuous perturbations, A = 0.288.
The initial transient growth becomes stronger, it is no longer maximum at
the lowest streamwise wavenumber considered and for the unstable α = 0.2,
it dominates over the exponential growth for times τ < 200. Conversely, for
streaks of higher amplitudes (> 30%), the exponential inviscid instability is
seen to become dominant already at small values of τ (not reported here).

The results pertaining to varicose perturbations are presented in figure 3.
The maximum transient energy amplification is lower than for sinuous per-
turbations and it is slightly decreasing with increasing streak amplitude. The
dashed line in figure 3(a) depicts perturbations with α = 0.25 at which a weak
viscous instability is present (see Cossu & Brandt 2004).

The maximum transient growth and the instant at which the maximum
occurs are displayed in figure 3.1 versus the Reynolds number for sinuous and
varicose perturbations with α = 0.3. Both these quantities increase with Re
but a simple scaling law could not be found. Note that in the simulations by
Brandt et al. (2004) of a boundary layer subject to free-stream turbulence of
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Figure 4. (a) Streamwise, wall-normal and spanwise velocity
fields of the input initial condition yielding maximum output
energy at τ = 123 for sinuous perturbations with α = 0.3
at Re = 1000. (b) Velocity field at the instant of maximum
growth. The isosurfaces represent the areas where the value
of the velocity is 0.2 of the maxima, which are u = 0.386,
v = 0.658 and w = 1.893 at t = 0; u = 63.499, v = 6.13 and
w = 15.662 at t = τ .

relatively high intensity, Tu = 4.7%, transition is found to occur, in average,
at Re ≈ 730, whereas in the experiment by Matsubara & Alfredsson (2001),
where Tu ≈ 2%, the breakdown to turbulence is observed at Re ≈ 1500.

3.2. Flow visualisation

The velocity field pertaining to the initial conditions yielding maximum growth
and the flow configuration at the time of maximum energy are displayed in fig-
ure 3.2 and 3.2 for sinuous and varicose disturbances, respectively. In the case
of antisymmetric perturbations, the streamwise and wall-normal velocity com-
ponents of the optimal disturbance are concentrated in the region of strongest
spanwise shear of the basic flow, i.e. on the flanks of the low-speed streak located
in the middle of the box in the figures presented here, whereas the spanwise
velocity is larger in the region of strong wall-normal shear on the top of the
high-speed streak. Both three velocity components are tilted upstream from
the wall. The optimal response velocity field (fig. 3.2b) resembles the unstable
modes leading to the streak breakdown (see Brandt & Henningson 2002). As a
consequence, it would be difficult to assess from experimental results whether
the streak breakdown is triggered by an exponential instability or by a non-
modal mechanism. The streamwise velocity component is the most amplified
and the perturbation is still located in the region of strongest shear but the
flow structures are now inclined in the downstream direction. This indicates
that the disturbance has extracted energy from the mean shear by transporting
momentum down the mean velocity gradient, similarly to what is observed for
the Orr mechanism (Orr 1907; Butler & Farrell 1992). This non-modal growth
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Figure 5. (a) Streamwise, wall-normal and spanwise velocity
fields of the input initial condition yielding maximum output
energy at τ = 80 for varicose perturbations with α = 0.3
at Re = 1000. (b) Velocity field at the instant of maximum
growth. The isosurfaces represent the areas where the value
of the velocity is 0.2 of the maxima, which are u = 0.462,
v = 0.867 and w = 1.494 at t = 0; u = 27.691, v = 3.538 and
w = 8.560 at t = τ .
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Figure 6. Time evolution of the volume integral of the terms
appearing in the perturbation kinetic energy equation. ——:
Ty = −uv Uy, −−−: Tz = −uwUz, ·− ·−: viscous dissipation
and ◦: Kt. (a) Sinuous perturbation at Re = 1000, α = 0.3,
τ = 123. (b) Varicose perturbation at Re = 1000, α = 0.3,
τ = 80.

mechanism is the only present in the case of spanwise independent perturba-
tions in a shear flow and describes short term inviscid instabilities due to the
tilting of initial disturbances into the direction of the mean shear. However, the
maximum of the perturbation is not attained when the disturbance is aligned
in the wall-normal direction (cf. Butler & Farrell 1992) and indeed the analysis
presented below confirms that other mechanisms are active as well.

In the case of varicose perturbations (figure 3.2), the rotation of the per-
turbation from upstream to downstream tilting is also observed. The pertur-
bations are still located at the locations of maximum shear of the underlying
streak and the streamwise velocity component is the most amplified.
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To try to better understand the mechanisms responsible for the observed
growth, the evolution of the perturbation kinetic energy K integrated over one
streamwise wavelength is considered

Kt =

∫
(−uv Uy︸ ︷︷ ︸

Ty

−uwUz︸ ︷︷ ︸
Tz

−ω · ω/Re︸ ︷︷ ︸
D

) dy dz dx, (7)

where ω is the perturbation vorticity vector. This balance equation is derived in
a straightforward manner from the Navier–Stokes equations linearised around
the base flow U(y, z). The first production term of density Ty = −uv Uy

represents the work of the Reynolds stress −uv on the wall-normal basic shear
Uy, while the second production term of density Tz = −uwUz is associated
with the work of the Reynolds stress −uw on the spanwise basic shear Uz. The
last term represents viscous dissipation.

The time evolution of the terms appearing in equation (7) is displayed in
figure 3.2 both for a sinuous and a varicose perturbation. The production as-
sociated to the wall-normal shear of the perturbation Ty is positive at early
times and then becomes negative as for two-dimensional perturbations expe-
riencing a growth due to the Orr mechanism. However its amplitude is lower
than that of the production related to the spanwise shear Tzwhich is therefore
responsible for the large growth observed both for the sinuous and the varicose
disturbance. It is remarkable to note that initially both production terms are
positive and that the spanwise shear is also responsible for the growth of vari-
cose perturbations. This is unexpected considering that exponentially growing
varicose perturbations are driven by the action of the wall-normal shear. Two
growth mechanisms seem therefore to be active, similarly to what observed in
constant-shear flows by Farrell & Ioannou (1993). Tilting of the mean flow
vorticity, as in the streak generation process in two-dimensional flows, and the
Orr mechanism. The former is stronger for α → 0, while the latter is present
at finite α.

4. Conclusions

The behaviour of linear perturbations developing on boundary layer streamwise
streaks is investigated for streak amplitudes below or right at the onset of the
inflectional secondary instability. The input velocity fields leading to an output
flow of maximum possible energy at a given time are computed for the first time
for a parallel basic flow periodic in the spanwise direction.

It is found that large energy amplification can be achieved both by sinuous
and by varicose disturbances. The transient energy growth is larger for sinuous
modes, it increases with the Reynolds number and it is already relevant at
amplitudes well below the threshold for the onset of secondary instabilities.
The results indicate the possibility, first suggested by Grossmann (2000), of
a transition scenario in which energy is extracted from the laminar state by
a series of linear non-modal mechanisms. In particular, first the lift-up effect
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responsible for the streak growth and then the non-modal amplification of the
streamwise dependent perturbations presented here.

The present results have also implications on the dynamics of near-wall
turbulent flows, where the streak breakdown is one of the key elements of
the underlying self-sustaining process. The regeneration of vortices following
the streak breakdown can be related to non-modal growth mechanisms and
therefore occur at lower streak amplitudes (cf. Schoppa & Hussain 2002) and
for both sinuous and varicose perturbations.

The input and output velocity fields are also presented. The optimal initial
condition consists of velocity perturbations localised in the regions of highest
shear of the streak base flow, tilted upstream from the wall. The optimal
response is still localised in the areas of largest shear but it is tilted in the
flow direction. The most amplified perturbations closely resemble the unsta-
ble eigenfunctions obtained for streaks of higher amplitudes and it appears
therefore difficult to distinguish between the two from experimental/numerical
data. Similar flow structures at the streak breakdown are in fact observed for
the unstable streaks in Brandt & Henningson (2002) and the transient growth
scenario in Schoppa & Hussain (2002). Varicose modes are also shown to have
significant amplifications and they are indeed observed in the simulations in
Brandt et al. (2004). Comparable growth rates for varicose and sinuous modes
are found in the analysis of the corrugated vortex sheet instability in Kawahara
et al. (2003). Analysis of the equation governing the evolution of the perturba-
tion kinetic energy reveals that the work of the Reynolds stress uw against the
spanwise shear of the underlying streak is responsible for the transient growth
of both sinuous and varicose disturbances. In both cases, the largest velocity
component of the optimal disturbance is the spanwise whereas the optimal re-
sponse is strongest in its streamwise velocity component. This also explains
why the initial condition proposed by Schoppa & Hussain (2002) is able to
trigger some transient amplification and lead to the streak breakdown. Future
investigations will aim at a better understanding of the physical mechanism
responsible for the observed transient growth and to quantify the realizability
of this growth process in noisy situations in which streaks continuously form.
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A method is proposed to estimate the covariance of disturbances to a stable lin-
ear system when its state covariance is known and a dynamic model is available.
This is an issue of fundamental interest for estimation and control of fluid me-
chanical systems whose dynamics is described by the linearized Navier–Stokes
equations. The problem is formulated in terms of a matrix norm minimisation
with linear matrix inequality constraint, and solved numerically by means of
alternating convex projection. The method is tested on covariance estimation
in a low Reynolds number channel flow.

1. Introduction

Much interest has been recently devoted to analysis of fluid mechanical sys-
tems using methods from control theory. Recent reviews can be found in, for
instance, Gunzberger (1996), Bewley (2001), and Kim (2003). Such systems
are found to be highly sensitive to signal and model uncertainty, even in physi-
cal parameter ranges where the systems are asymptotically stable. The strong
non-normality of the underlying dynamic operators is responsible for this sen-
sitivity (see Schmid & Henningson (2001)). Due to this sensitivity, the system
response is critically dependent on external excitations.

The following investigations have studied the response of fluid flow in the
case of stochastic excitation. Farrell & Ioannou (1993), Bamieh & Dahleh
(2001), Jovanović & Bamieh (2005), and Jovanović & Bamieh (2004) studied
in detail the response of the linearized Navier–Stokes equations to stochastic
external disturbances, using techniques from control theory and robust control.
Jovanović & Bamieh (2001) addressed the problem of modeling second order
statistics of a turbulent channel flow by an appropriate stochastic forcing to the
linearized dynamic operator. A stochastic forcing could be constructed that
reproduced the main features of the state covariance of the original non-linear
system. Hœpffner et al. (2005) focused on the performance of state estimation
in a laminar channel flow. It was shown that a proper covariance model for the
flow disturbances can improve the estimation performance. In Chevalier et al.
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Flow system

Model

d̄, (R̄) x̄, (P̄ )

d, (R) x, (P )

Ā

A

Figure 1. We are given the flow state covariance P̄ and an
approximate dynamic model A. We aim to use this informa-
tion to estimate the flow disturbance covariance R̄.

(2005), the disturbances to the linearized dynamics, identified as the forcing
due to the nonlinear terms, was computed by means of a direct numerical
simulation (DNS) of the fully nonlinear system for a turbulent channel flow.
This covariance model was in turn used for construction of plain and extended
Kalman filters. It was found that with the resulting estimation gains, improved
estimation from wall measurement could be attained in the near wall region,
where most of the turbulence generation process takes place.

In this paper, we address the study initiated in Jovanović & Bamieh (2001).
We develop a method to estimate the covariance of the stochastic disturbances
in order to approach optimally the given flow state covariance.

Development of computational methods and computer power has recently
opened wide possibilities of applications of linear matrix inequality (LMI) for
control design and system analysis (see e.g. Boyd et al. (1994) and Boyd &
Vandenberghe (2004)). It is shown in Skelton et al. (1998) that the LMI:

ΓGΛ + (ΓGΛ)H + Θ < 0 (1)

forG plays a central role in many control design problem, and intuitive methods
based on alternating convex projection (ACP) are proposed for its numerical
solution. It will appear that our problem involves such an inequality constraint.
We will closely follow the procedure proposed in Skelton et al. (1998) and
Grigoriadis & Skelton (1996), and extend several of the projection results to
the case of an arbitrary weighting for the Frobenius norm.

Consider a linear time invariant (LTI) system, governed by the stable dy-
namics Ā and with external sources of disturbances d̄:

˙̄x = Āx̄+ d̄,

with E[x̄(t)x̄(t)H ] = P̄ ,

E[d̄(t1)d̄(t2)
H ] = R̄δ(t1 − t2),

(2)

where E[·] denote the expectation operator and superscript H stands for Her-
mitian (complex conjugate) transpose. P̄ is the covariance matrix of the state
x̄, and R̄ is the covariance matrix of the disturbances d̄.
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The actual external sources of disturbances may be due to complex physi-
cal mechanisms and are thus difficult to identify. In systems with high dimen-
sion, as for instance systems described by partial differential equation (PDE),
it would be valuable to have a method to estimate the disturbances statis-
tics from knowledge of the plant state covariance (possibly available through
experiment). We discuss in this paper the problem of noise covariance estima-
tion when a stable approximate model A of the stable system dynamics Ā is
available, and the covariance matrix of the plant P̄ is known (see figure 1).

The Lyapunov equation can be used to perform this task since it relates
the covariance matrices of the state and the external disturbances:

AP + PAH +R = 0. (3)

The Lyapunov theorem states that given an arbitrary R ≥ 0 there exist a
unique P ≥ 0 that satisfies (3) provided A is Hurwitz (has all its eigenvalues in
the open left half plane). The primary difficulty is that it is not true that, given
an arbitrary P ≥ 0, there exist R ≥ 0 such that AP + PAH + R = 0. Given
an arbitrary state covariance, there does not necessarily exist an associated
disturbance covariance. In this paper, we call a P ≥ 0 assignable as a state
covariance for the system with dynamics A if AP + PAH ≤ 0. In particular,
a covariance P̄ obtained from experimental measurements is not necessarily
assignable for the model system A.

Our aim can now be stated in terms of a matrix nearness problem, with LMI
constraint: find the covariance matrix P closest to the given state covariance
matrix P̄ such that P is assignable for the model A. The resulting R = −(AP+
PAH) will be called the covariance estimate. See Higham (1989) for a review
on matrix nearness problems.

In §2, we will formulate the optimisation problem and discuss the existence
and uniqueness of its solution. We then extend several projection results from
Grigoriadis & Skelton (1996) to a weighted Frobenius norm, and show how
they can be applied to our problem. In §4 we present computational results of
estimation of wall-roughness-type disturbances in a channel flow. In this test
case, the modeling error will consist of an inacurate Reynolds number in the
construction of the dynamic model for estimation. We will then conclude in
§5.

2. Preliminaries

2.1. Mathematical formulation

The problem can be formulated as follows:

Given P̄ ≥ 0, and A a Hurwitz matrix: find P ≥ 0 that minimizes
‖P̄ − P‖ subject to the constraint

AP + PAH ≤ 0. (4)

Plant quantities will be denoted with over-bar ( ·̄ ). We will consider the
weighted Frobenius matrix norm with weighting matrixQ1. The set of matrices
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satisfying the assignability constraint (4) will be denoted C
C ,

{
P ≥ 0 : AP + PAH ≤ 0

}
. (5)

2.2. Existence and uniqueness of the solution

It can be shown that the condition P ≥ 0 is redundant if the assignability
constraint (4) is imposed. To see this, multiply (4) on the left and right by the
left eigenvectors of A. It follows that P is then positive semidefinite. We thus
deal only with the constraint (4) in the optimisation.

Since the set C is convex and the objective function is quadratic, we have a
convex optimisation problem. We are thus guaranteed (see Luenberger (1968))
that the solution to this problem is unique. Furthermore, C is not empty. Since
A is Hurwitz, we can infer from the Lyapunov theorem Skelton et al. (1998)
that for any arbitrary R ≥ 0 there exist a (unique) P ≥ 0 that satisfies the
Lyapunov equation (3).

2.3. Weighted Frobenius norm

The Frobenius matrix inner product and corresponding norm with weighting
Q1 > 0 is defined as

〈X1, X2〉Q1
, Tr(XH

2 Q1X1Q1),

‖X1‖Q1
, 〈X1, X1〉1/2

Q1
,

(6)

where Tr denote the matrix trace. The weighting Q1 can be factorized as
Q1 = FH

1 F1, where the factor F1, Hermitian positive definite, is unique. The
flexibility in the choice of the weighting is useful in applications for which there
is a natural metric, as for instance energy related metric in mechanical systems.

3. Solution procedure

The simple geometry of this optimisation problem motivates the use of ACP.
The optimal P is the matrix that minimizes the distance between P̄ and the
cone C, i.e. the orthogonal projection of P̄ onto C. C can be decomposed into the
intersection of two simpler convex sets of higher dimension, for which analytical
projection formulas can be derived. The iteration toward the optimal solution
can be then done by alternatively projecting onto each one of those sets. Due
to the convexity of the constraint sets, the alternating projection eventually
converges to a point in the intersection of the two sets. A simple modification
of the standard ACP method (Boyle & Dykstra (1986),Han (1988)) provides
an algorithm which solves the optimisation problem.

3.1. Alternating convex projection

We recall here the alternating projection algorithm for the optimality problem.

Proposition 3.1 (optimal ACP). Consider the family of closed, convex sets
{C1, C2, . . . , Cm} and a given matrix X0. The sequence of matrices {Xi}, i =
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1, 2, . . . ,∞ computed as follow:

X1 = PC1
X0, Z1 = X1 −X0

X2 = PC2
X1, Z2 = X2 −X1

...
Xm = PCm

Xm−1, Zm = Xm −Xm−1

Xm+1 = PC1
(Xm − Z1), Zm+1 = Z1 +Xm+1 −Xm

Xm+2 =PC2
(Xm+1 − Z2), Zm+2 =Z2 +Xm+2 −Xm+1

...
X2m=PCm

(X2m−1 − Zm), Z2m = Zm+X2m−X2m−1

X2m+1 =PC1
(X2m−Zm+1), Z2m+1=Zm+1+X2m+1−X2m

...

(7)

converges to the orthogonal projection of X0 on C1

⋂
C2

⋂
· · ·
⋂
Cm.

3.2. Decomposition of C into the intersection of two simpler sets

Now we will decompose the set C in two sets, simpler in the sense that analytical
projection formula can be derived.

Proposition 3.2 (Intersection). Define the two following sets:

J ,

{
W ∈ H2n :

(
A, I

)
W

(
AH

I

)
≤ 0

}
,

T ,

{
W ∈ H2n : W =

(
0 W12

WH
12 0

)
, W12 ∈ Hn

}
,

(8)

where Hn (resp. H2n) denote the sets of hermitian n × n (resp. 2n × 2n)
matrices. Then the two following statements are equivalent:

(a) X ∈ C,
(b) X = W12 where W ∈ J

⋂
T .

Proof. Let X be in C, we then have

AX +XAH =
(
A, I

)( 0 X
X 0

)(
AH

I

)
≤ 0. (9)

Conversely, if X satisfies (b) then simple calculations reveal that (9) holds.

We will now find a Frobenius norm weighting for the inner product in
H2n such that the orthogonal projection on J ⋂ T provides the orthogonal
projection of our covariance matrix on C
Proposition 3.3 (Projection equivalence in Hn and H2n). For any given
X ∈ Hn and a weighting Q1, the two following statements are equivalent:

(a) X∗ = PQ1

C
X

(b)

(
0 X∗

X∗ 0

)
= PQ2

J
⋂

T

(
0 X
X 0

)
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where PQ1

C denotes the orthogonal projection on the set C for the Frobenius
norm with weighting Q1, and where the inner product on H2n has the weighting
matrix

Q2 =

(
Q1 0
0 Q1

)
=

(
F1 0
0 F1

)H(
F1 0
0 F1

)

︸ ︷︷ ︸
,F H

2
F2

(10)

Proof. By definition of the weighted norm
∥∥∥∥

(
0 X
X 0

)
−
(

0 X∗

X∗ 0

)∥∥∥∥
Q2

=

Tr

(
0 X −X∗

X −X∗ 0

)(
Q1 0
0 Q1

)

×
(

0 X −X∗

X −X∗ 0

)(
Q1 0
0 Q1

)
=

2Tr(X −X∗)Q1(X −X∗)Q1 = 2‖X −X∗‖Q1

(11)

So that the X∗ ∈ C that minimize ‖X −X∗‖ minimizes as well
∥∥∥∥

(
0 X
X 0

)
−
(

0 X∗

X∗ 0

)∥∥∥∥
Q2

. (12)

This result implies that we can obtain the orthogonal projection of P̄ on
the assignability set by projecting

(
0 P̄
P̄ 0

)
(13)

on the set J
⋂
T , with inner product Q2.

3.3. Orthogonal projection on J and T
We will now give the formulas for the orthogonal projections of an arbitrary
matrix in H2n on the sets J and T for the weighting Q2. We will first need the
projection of a Hermitian matrix on the set of negative semidefinite matrices
for the unweighted Frobenius norm. This result and proof can be found in
Higham (1988).

Lemma 3.4 (Projection on negativity set). Let X ∈ Hn, with eigenvalue-
eigenvector decomposition X = LΛLH. The projection X∗ of X onto the set
of negative semidefinite matrices is

X∗ = LΛ−L
H , (14)

where Λ− is the diagonal matrix obtained by replacing the positive eigenvalues
of X in Λ by zero.

We can use the previous result to project on the set J :
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Proposition 3.5 (Projection on J ). Let W ∈ H2n. Consider the singular
value decomposition (

A, I
)
F−1

2 = U
(
Σ, 0

)
V H (15)

where U and V are unitary matrices, and define

Y , V HF2WFH
2 V =

(
Y11 Y12

Y H
12 Y22

)
, Y11 ∈ Hn (16)

The projection PQ2

J
W of the matrix W onto the set J is

PQ2

J W = F−1
2 V

(
Y ∗

11 Y12

Y H
12 Y22

)
V HF−1H

2 (17)

where Y ∗
11 is the projection of Y11 on the set of negative definite matrices for

the unweighted Frobenius norm as in (14).

Proof. Let

Ŵ =

(
Ŵ11 Ŵ12

ŴH
12 Ŵ22

)
∈ J (18)

be an arbitrary matrix in J . We will show that the inner product 〈W ∗ −
W,W ∗ − Ŵ 〉 is non-positive (see Luenberger (1968)). Let V be defined from
the singular-value decomposition (15), and F2 from (10), we have

〈W ∗ −W,W ∗ − Ŵ 〉Q1

= 〈F2W
∗FH

2 − F2WFH
2 , F2W

∗FH
2 − F2ŴFH

2 〉I
= 〈Y ∗ − Y, Y ∗ − Ŷ 〉I ,

(19)

with
Y ∗ = V HF2W

∗FH
2 V, Y = V HF2WFH

2 V,

Ŷ = V HF2ŴFH
2 V.

(20)

since V is unitary. Partitioning the matrices as in (18) we obtain

〈Y ∗ − Y, Y ∗ − Ŷ 〉I

=

〈(
Y ∗

11 − Y11 0
0 0

)
,

(
Y ∗

11 − Ŷ11 Y12 − Ŷ12

Y H
12 − Ŷ H

12 Y22 − Ŷ22

)〉

I

= 〈Y ∗
11 − Y11, Y

∗
11 − Ŷ11〉I

(21)

Now observe that, since Ŵ ∈ J ,we have

(
A, I

)
Ŵ

(
AH

I

)
≤ 0, (22)

and by substituting the singular value decomposition

U
(
Σ, 0

)
V HF2ŴFH

2 V︸ ︷︷ ︸
Ŷ

(
ΣH

0

)
UH ≤ 0, (23)
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then pre- and post- multiplying by Σ−1UH and (Σ−1UH)H we obtain

(
I, 0
)
Ŷ

(
I
0

)
≤ 0, (24)

that is, Ŷ11 ≤ 0. Note that, from lemma 3.4, the orthogonal projection of the
matrix Y11 on this set is given by (14). Hence, by construction of Y ∗

11 in (17),
we have

〈Y ∗
11 − Y11, Y

∗
11 − Ŷ11〉I ≤ 0, (25)

that is, the inner product (19) is non-positive.

Finally the projection on T :

Proposition 3.6 (Projection on T ). Let W ∈ H2n, the orthogonal projec-

tion PQ2

T W of the matrix W on the set T is

PQ2

T W =

(
0 1

2 (W12 +WH
12)

1
2 (W12 +WH

12) 0

)
. (26)

Proof. We use the same procedure as previously, let

Ŵ =

(
0 X̂

X̂ 0

)
∈ T , W ∗ , PQ2

T W, (27)

then simple calculations reveal that

〈W ∗ −W,W ∗ − Ŵ 〉Q2

= Tr

(
−W12Q1

1
2 (W12 +WH

12)Q1

− 1
2 (W12 +WH

12)Q1 −W22Q1

)

×
(

0 [12 (W12 +WH
12) − X̂]Q1

[12 (W12 +WH
12) − X̂]Q1 0

)

= 0.

(28)

Hence W ∗ is the projection of W on T .

Each loop of the iteration requires one eigenvalue decomposition in (17) of
a matrix in Hn. The singular value decomposition (15) is computed once for
all at the start of the iterations.

4. Numerical example

We will now exemplify the procedure on a fluid mechanical example where we
aim at estimating the disturbances to a flow system. We will introduce the plant
and its model, originating from equations of fluid dynamics, and introduce the
weighted norm as the flow kinetic energy.

We will test the projection results as follow. First the plant is constructed,
and excited by a stochastic forcing. The state’s covariance is computed using
the Lyapunov equation. We then build a model from the same physical equa-
tions but with a parameter mismatch as will be described later. The plant’s
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state covariance is then projected on the assignability set C to retrieve a dis-
turbance covariance estimate, again using the Lyapunov equation.

4.1. Physical system

We consider the viscous and incompressible fluid flow between two infinite
plane walls and driven by a constant pressure gradient. This is the classical
Poiseuille flow case. For more detail on the analysis of this flow see Schmid
& Henningson (2001). The pressure gradient is in the streamwise x direction.
The flow motion is governed by the Navier–Stokes equations. The boundary
condition is no-slip, i.e. the flow velocity vanishes at top and bottom walls.
The unique steady solution in this geometry of the Navier–Stokes equations
properly non-dimentionalized is a parabola

(U, V,W ) = (1 − y2, 0, 0), (29)

where y = ±1 denote bottom and top walls.

The stability of the (29) can be studied by mean of the linearization of
the Navier–Stokes equation. Exploiting spatial invariance in both horizontal
direction (streamwise x and spanwise z), the linearized operator can be decou-
pled by a spatial Fourier transform. In Fourier space, the dynamic operator
has a block diagonal structure, each block corresponding to the dynamics of a
wave-like perturbation to the nominal base flow profile (U, V,W ). The resulting
equation system is known as the Orr–Sommerfeld/Squire equations

(
v̇
η̇

)

︸︷︷︸
ẋ

=

(
∆−1LOS 0
LC LSQ

)

︸ ︷︷ ︸
A

(
v
η

)

︸︷︷︸
x

+

(
dv

dη

)

︸ ︷︷ ︸
d

(30)

where v and η are the wall-normal velocity and wall-normal vorticity, and dv

and dη are the external forcing on v and η. The random processes dv and dη

are related to the external forcing on the original velocity component u, v, and
w by

(
dv

dη

)
=

(
∆−1 0

0 I

)(
−ikxD k2 −ikzD
−ikz 0 ikx

)

︸ ︷︷ ︸
B




du

dv

dw



 , (31)

where k2 = k2
x + k2

z . The Orr–Sommerfeld LOS , Squire LSQ, and coupling LC

terms assume the form

LOS = −ikxU∆ + ikxD2U + ∆2/Re,

LSQ = −ikxU + ∆/Re, LC = −ikzDU,
(32)

where D denote differentiation in the wall normal direction y, ∆ = D2 − k2 is
the Laplacian operator, and kx and kz are the wavenumbers in streamwise and
spanwise directions. The Reynolds number Re is the single flow parameter. It
represents the balance between inertial and diffusive effects.
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The velocity profile (29) is asymptotically stable to low amplitude per-
turbations up to Re = 5772, but is sensitive to disturbances well below this
threshold due to the non-normality of the underlying dynamic operator (30).

4.2. External disturbances

We will excite the system with a forcing on the velocity components u, v, and
w, similar to wall roughness at the lower wall (y = −1). The expression for
this forcing d used in our example is




du(y, t)
dv(y, t)
dw(y, t)



 =




λ1(t)
λ2(t)
λ3(t)



 e−5(y+1) (33)

where λ1(t), λ2(t), and λ3(t) are three uncorrelated white noise scalar process
with unit variance. The parameter 5 is chosen for a rapid decay of the forcing
away from the wall. The disturbance covariance matrix

R = BE








du

dv

dw








du

dv

dw




H


BH =

(
Rvv Rvη

RH
vη Rηη

)
(34)

has thus rank 3. This low rank will ease the comparison between R and its
model, but is not a limitation of the method. Note that we aim at estimating
the covariance of

(
dv, dη

)
and not

(
du, dv, dw

)
.

4.3. Plant and model

For the purpose of this paper we will consider the test case of a mismatch
in the Reynolds number R̄e between the plant dynamics and its model used
for estimation, i.e., the model will as well be constructed from (30) but with
a inaccurate Reynolds number Re. The plant/model mismatch can thus be

parameterised by µ , |R̄e − Re|/R̄e. This type of modeling error is a sim-
ple test case for the method developed here. In fluid mechanical applications,
the plant/model mismatch may originate in any inaccuracies of the model-
ing assumption, e.g. finite amplitude perturbations, geometry imperfections,
approximate spatial invariance. . . The present method can be readily used for
this great variety of applications.

4.4. The energy norm

The natural metric for the flow state is related to its kinetic energy (standard
L2[−1, 1] norm in (u, v, w)). In the (v, η) coordinate system and for a given
wavenumber pair it assumes the form (Schmid & Henningson (2001))

E ,

∫ 1

−1

1

8k2

(
k2|v|2 +

∣∣∣∣
∂v

∂y

∣∣∣∣
2

+ |η|2
)

dy

= 〈x, x〉Q1
= xHQ1x.

(35)
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The matrix Q1 > 0 is called the energy measure matrix. It will be used
in the following as a weighting in the Frobenius norm. We can compute its
square root factor F1 such that Q1 = FH

1 F1, and inverse F−1
1 , by a singular

value decomposition.

4.5. Discretization of the PDE system

We need now to discretize in space the set of partial differential equation (30)
into a set of linear ordinary differential equation. The discrete operators are
obtained through enforcement of the Orr–Sommerfeld/Squire equations at each
points of the Gauss–Lobatto grid, using a Chebyshev colloquation scheme (Wei-
deman & Reddy (2000)). The spectral differentiation matrices D1, D2, and D4

are combined according to (30) to compute the matrices Ā, A, and B. The
integration weights for the Chebyshev grid with the Gauss–Lobatto colloca-
tion points are computed using the algorithm from Hanifi et al. (1996). These
weights provide spectral accuracy in the numerical integration used to assemble
the energy measure matrix Q1.

4.6. Convergence and results

We ran several computations using the methodology described above. We chose
R̄e = 50, low enough to allow a correct description of the PDE dynamics with
small matrices (here 40× 40). The model was build using a lower Re, with the
mismatch parameter µ varying from 0 to 1/2 (Re ∈ [25, 50]).

Ultimately, the convergence criterion of the ACP should be satisfied when
all the eigenvalues of R = −AP −PAH are non-negative. We relax slightly this
condition in our computations. We assume a converged result whenever this
condition is satisfied, or the ratio of the minimum over maximum eigenvalues
of R is greater than a prescribed tolerance, here 5 × 10−5. This significantly
reduces the computational time but allows small negative eigenvalues for R.
This is needed because the ACP projects on the surface of the constraint sets.

The matrices P̄ , R̄, and projections P and R for µ = 1/2 are depicted in
figure 2. They are represented fractioned as in (34), and the axis values from -1
to 1 represent the location in the wall normal direction y for v and η. For the
present choice of parameters (Re = 50 and µ = 1/2), no discrepancies between
P̄ and P are visible. For the disturbances covariance, no major structural
difference can be seen, but the amplitude of R is notably higher. This is due
to the lower sensitivity of the model A to external disturbances (lower Re).

Figure 3 show for a varying mismatch parameter µ, the distance ‖P̄ − P‖
(minimised for), as well as ‖R̄ − R‖ and ‖Ā − A‖. As µ increases, ‖P̄ − P‖
increases as expected, the model and the plant being increasingly different,
their assignable state covariances drift away from each other. Note that for
low µ (in [0, 0.05]), P̄ was found inside the assignability set (‖P̄ − P‖ = 0).
It is observed that the norms ‖P̄ − P‖, ‖R̄− R‖, and ‖Ā− A‖ have a similar
dependence on µ.
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and ‖R̄−R‖ (solid) as µ is increased.

The number of iteration in the ACP of now studied. Figure 4 show how
the number of iterations before convergence depends on µ. The bigger the
mismatch, the longer the computation. We also show in figure 4 the CPU time
required on an “AMD Opteron 144 1.8 GHz” for increasing matrix order n,
from 20 to 60. The computational effort increases rapidly with the order of the
system.
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Figure 4. Iteration convergence criterion versus the number
of iterations for several µ (left) and CPU time versus matrix
order (right).

5. Conclusions and future work

We presented in this paper a method to estimate the covariance of the distur-
bances to a LTI system by use of an alternating convex projection algorithm.
The projection method used in Grigoriadis & Skelton (1996) was extended to
weighted Frobenius norms. We have applied this method to a fluid mechani-
cal problem, to estimate the covariance of wall-roughness-type disturbances in
a laminar channel flow at low Reynolds number. The limitation to low Rey-
nolds number originates in the size limitations of the matrices for practical
convergence time of the present numerical algorithm.

Several additional issues can be addressed for this problem. A numerical
method for computation of the optimisation problem should be set up, that
allow matrices with higher order. Preliminary tests indicate that a significant
speedup is possible using a directional ACP (Gubin et al. (1967)) with a con-
straint on ‖P̄ −P‖. It would be interesting to treat the problem with partially
known state covariance P̄ , as for example in cases where only the variance of
the state was measured (as in Jovanović & Bamieh (2001)). One could as well
aim to match some possibly available data on R̄.

This method will be applied in future work on disturbance covariance esti-
mation for improvement of flow control, in large scale computation of channel
and boundary layer flows.
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Steady solutions of the Navier-Stokes equations
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A new method, enabling the computation of steady solutions of the Navier-
Stokes equations in globally unstable configurations, is presented. We show
that it is possible to reach a steady state by damping the unstable frequencies.
This is achieved by adding a dissipative relaxation term proportional to the
high-frequency content of the velocity fluctuations. Results are presented for
boundary-layer cavity-driven separation and a separation bubble induced by
an external pressure gradient.

1. Introduction

The knowledge of a steady base-flow solution of the governing Navier-Stokes
equations is fundamental to instability studies and flow control. In the for-
mer case it allows for both linear modal and non-modal analyses and weakly
nonlinear approaches, whereas in the latter case the stabilization of such a
base flow can be adopted as design target. Recent developments, reviewed
in e.g. Theofilis (2003), have allowed the research community to examine the
stability of flows in increasingly complex configurations and to compute two-
and three-dimensional eigenmodes, the so-called global modes Chomaz (2005).
Unfortunately, it is virtually impossible to numerically compute a steady con-
figuration by directly marching in time the Navier-Stokes equations when the
flow under consideration is globally unstable. In some limited cases solutions
can be obtained by enforcing symmetries in the system, the most studied ex-
ample being the two-dimensional flow around a circular cylinder. For other
cases, the only remaining possibility is the class of Newton iteration methods,
which however require heavy computational resources for large systems. In this
letter, we propose a simple numerical approach to compute steady solutions of
the Navier-Stokes equations in unstable configurations. We show that it is
possible to reach a steady state by damping the most dangerous frequencies
and thus quenching the corresponding instability. The method is adapted from
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large-eddy simulation (LES) techniques, in particular considering the work of
Pruett et al. (2003, 2005).

2. Problem formulation

Consider the nonlinear system

q̇ = f(q) , (1)

with appropriate initial and boundary conditions for the vector quantity q
under the operator f(q). (A dot is used here to denote derivative with respect
to time). For a flow problem, the system (1) are the Navier-Stokes equations. A
steady state qs is then given by q̇s = f(qs) = 0. If f is unstable, any q 6= qs will
quickly depart from qs. In order to stabilize the above system (1) we propose
to apply regularization techniques common in control theory; being able to
act directly on the state q, proportional (P) feedback control is adopted. This
amounts to adding to the right-hand side a linear term forcing towards a target
solution w,

−χ(q − w) , (2)

where χ is the control coefficient. The theoretical target solution for the control
is of course the steady-state solution qs, which is however not available a priori.
Therefore, the actual target solution is a modification of q with reduced temporal
fluctuations, i.e. a temporally low-pass filtered solution w = T ∗q, defined as the
convolution of q with the temporal filter kernel T . For the method to converge,
the filter cut-off frequency should be lower than that of the flow instabilities.
Therefore, in the following, the unstable frequency will be referred to as high
frequency. With these definitions, the modified system is written as

q̇ = f(q) − χ(I − T ) ∗ q , (3)

where I is the identity operator. As q is approaching qs, the filtered solution
w = T ∗ q will in turn approach q, therefore reducing the control influence.
If q is the actual steady solution, the time-filtered value w will be identical
to q = qs, yielding a vanishing forcing. Hence the steady solution qs of the
controlled system (3) is also a steady solution of the original problem (1). Note
that there is no generation of new artificial steady states.

A related technique is also used in large-eddy simulation (LES) for the tem-
poral approximate deconvolution model (TADM) Pruett et al. (2005). Working
with spatial filters, a similar relaxation term has been successfully applied in the
spectrally-vanishing viscosity (SVV) concept Tadmor (1989) and in the (spa-
tially filtered) approximate deconvolution model (ADM) Stolz et al. (2001) and
the ADM-RT model Schlatter et al. (2004). Following these modelling ideas,
a different interpretation of the method can be given as follows. To attenuate
unstable high-frequency temporal oscillations and thus reach a steady state we
include in the momentum equations an additional linear regularization term,
expression (2). This term is effectively damping the high-frequency content of
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q. Two parameters have to be chosen in the stabilization procedure, the filter
shape T and the control gain χ. Time domain filters are discussed first.

3. Time-domain filter

For a continuous function q(t), a causal low-pass time filter is defined

q(t) =

∫ t

−∞

T (τ − t; ∆) q(τ)dτ , (4)

where q is the temporally filtered quantity, T is the parameterized filter kernel
and ∆ its associated filter width (see e.g. Pruett et al. (2003)). To be admissible,
the kernel T must be positive and properly normalized. Additionally, in the
limit of vanishing filter width the filter (4) must approach the Dirac delta
function. Probably the simplest example of such a filter is the exponential
kernel,

T (τ ; ∆) =
1

∆
exp(

τ

∆
) , (5)

with the corresponding transfer function in Fourier/Laplace space

H(ω; ∆) =

∫ 0

−∞

T (τ ; ∆)exp(iωτ)dτ =
1

1 + iω∆
, (6)

where ω is the circular frequency and i =
√
−1. The cutoff frequency of the

filter is defined as <(H(ωc; ∆)) = 1/2 and is given by ωc = 1/∆. The transfer
function of the filter is represented in figure 3 for a fixed filter width ∆. For
real applications, the integral formulation of the filter (4) is impractical, since
it requires the storage of the complete time history of the signal q. Therefore,
the equivalent differential form is adopted,

q̇ =
q − q

∆
, (7)

which can be readily advanced in time using any integration scheme.

The order of the filter is defined as the index of the first non-vanishing
derivative of <(H(ω)) with respect to ω at ω = 0, i.e. the filter (6) is of second
order. Based on the exponential filter, also higher-order low-pass filters can be
constructed by repeated application of the primary low-pass filter H (see e.g.
Pruett et al. (2005)). The use of higher-order filters allows a better control over
the separation between damped and undamped frequencies. For specific cases,
i.e. if the separation between instability mode and relevant flow phenomena is
small, such a filter can be beneficial. Figure 3 displays the transfer function
of 10th-order filter (degree N = 4, i.e. four applications of the exponential
filter) with adapted filter width. This is one particular case of the general
formulation where the shape of the filter transfer function can be tailored for
specific demands Kailath (1980).
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4. Stabilization of unstable steady solution

Analyses of the dynamics of the augmented system is presented in order to
elucidate the stabilization procedure and quantify the effect of the control pa-
rameters. Considering system (3) with the exponential temporal filter (7), i.e.
w = q, the new system becomes

q̇ = f(q) − χ(q − q)

q̇ = (q − q)/∆

}
. (8)

The effect of the regularization can be illustrated by considering the eigenvalues
of system (8) linearized about the steady state. Introducing the Jacobian A of
f at the steady state qs, the linearized system is

(
q̇
q̇

)
=

(
A− χI χI
I/∆ −I/∆

)(
q
q

)
. (9)

Assume µ is an eigenvalue of A with corresponding eigenvector φ. Observation
of the structure of system (9) suggests that the eigenvectors of the new system
will be [φ, αφ]T where α is a complex number to be determined, and the cor-
responding eigenvalue will be λ = λ(µ, α, χ). Introducing this ansatz in (9), α
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and λ are obtained as

α± = −F ±
√
F 2 + 4∆χ

2∆χ
, with F := ∆(µ− χ) + 1,

λ± = µ− χ(1 − α±). (10)

The two solutions α+ and α− give two eigenvalues λ+ and λ− for the modified
system, originating from the same eigenvalue µ of the original system. The
eigenvalue λ+ can be seen as the damped original eigenmode, whereas λ− is
roughly associated to the filtering and corresponds to the 1/∆ term in (9). The
mapping µ→ λ± of the complex plane is illustrated in figure 4 for parameters
χ = 0.02 and ∆ = 15. Two lines are represented (indicating possible eigenval-
ues µ of the original system), with imaginary parts 0.01 and −0.03, respectively.
(These regions approximately correspond to the eigenvalues we are interested
to damp in the cavity flow presented below). Each line is mapped into two
curves, the dashed one corresponding to λ+, and dash-dotted line to λ−. The
arrows indicate how two points of the original solid lines are mapped in the
new eigenvalues. It can be seen that points with large real part (corresponding
to large circular frequency) are simply damped, i.e. shifted downwards, by a
constant value χ, with virtually no shift along the real axis. Points of small
real part are moved towards the origin exhibiting both a decrease in frequency
and change in growth rate (imaginary part). The width of the hump forming
at low frequencies is related to the filter cutoff frequency, i.e. 1/∆. It should
be noted that a stable eigenvalue µ with low frequency will never be mapped
into the unstable region.

In summary, the filter cutoff ωc is related to the frequency of the relevant
instabilities and should be smaller than those frequencies at which perturbation
growth is expected. The gain χ is related to the growth rates of the instabilities
and should be large enough to move the instability modes to the lower half
plane. However, chosing a large χ will render the system evolution slow, since
the low-frequency eigenvalues move towards the origin of the complex plane.
The system will eventually converge to a steady state, but very slowly owing
to the low-damping rates. When chosing ∆ as large as possible, the additional
eigenvalues, which cluster around ωc = 1/∆, will make the subsystem for q
very slow. A balance has to be found for each system at hands to obtain quick
convergence of all the time scales of the system. Testing several parameter pairs
on the linear system (9) can be helpful. In cases where the Jacobian A cannot
be approximated, like for the separation bubble presented below, the frequency
of the instability can be estimated by considering the resulting unstable flow.
As a guideline, the regularization parameter χ is chosen to be twice the growth
rate of the dominant disturbance. The cutoff frequency, ωc = 1/∆ is chosen in
such a way that the unstable disturbances are well within the damped region,
e.g. ωc ≈ 1/2ωdist.
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(solid)) of the complex plane due to the modified (linear) sys-
tem (9). Two points originate from each complex eigenvalue µ,
one point corresponding to λ+ (dashed)and one corresponding
to λ− (dot dashed). χ = 0.02, ωc = 1/∆ = 1/15.

5. Results

The selective frequency damping (SFD) method is applied to compute the two-
dimensional flow over a long cavity, and the separation bubble induced by an
external pressure distribution. Implementation of the present method into an
existing code amounts to increasing the memory to store the filtered variable
q, adding the forcing term in the original time-marching scheme and advance
the linear equation (7).

The streamfunction pertaining to the steady state of the cavity-driven sep-
arated flow is displayed in figure 5, where the streamwise and wall-normal
coordinates are made non-dimensional with the inflow boundary-layer displace-
ment thickness δ∗. The inflow profile is the Blasius profile at Reynolds number
Reδ∗ = 350. This value has been chosen by gradually increasing it until a
global unstable flow is obtained. The streamwise extent of the computational
domain is Lx = 409, with the cavity being confined to an area of x ∈ [30, 150],
whereas the wall-normal height is Ly = 80. The numerical code employed is
described in Marquillie & Ehrenstein (2003). Time history of the streamwise
velocity measured just above the cavity is shown in figure 5 for two different
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Figure 3. Contour lines of the streamfunction of the steady
state for the cavity case. The zero values of the streamfunc-
tion are indicated by the thick line, solid lines indicate positive
values with spacing 0.2, dotted lines negative values (spacing
0.025). The recirculation zone inside the cavity and the up-
ward flow motion at the point of reatachment of the shear layer
are clearly visible.

simulations. In the first simulation, the SFD is active from the beginning of
the computation where a zero initial condition is used, whereas in the second
simulation SFD is switched on at time t = 3000. Both simulations eventually
converge to the exact same steady state, in one case smoothly and in the other
by damping the existing oscillations, the saturated unstable global mode.

In the case of the separation bubble, a flow field subject to a pressure gradi-
ent prescribed via the streamwise velocity at the upper boundary is computed.
The equations are solved in vorticity-velocity formulation, with the relaxation
term −χ (ωz − ωz) being added to the right-hand side of the transport equa-
tion for the spanwise vorticity ωz. The code is presented in Kloker (1998).
For the present case, a Blasius profile is prescribed at the inflow (Reδ∗=1000)
while at the upper boundary, the streamwise velocity is quickly decreasing to
about 10% of the free-stream velocity and then increasing again. The box size
is Lx×Ly = 562×64, and χ=0.4, ∆=0.75. Two different resolutions (801×193
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Figure 4. Time history of the streamwise velocity measured
just above the cavity (at the downstream end) at x = 153.4,
y = 0.8485. (dot dashed): simulation started with zero initial
condition. (solid): SFD turned on at t = 3000. Both cases are
converging towards exactly the same steady state.

and 1601 × 385) where used, with the time step adapted accordingly. The re-
sulting steady state is shown in figure 5. To check convergence, the absolute
difference between the filtered and the unfiltered vorticity was sampled over
time. Its maximum in the domain is plotted in figure 5. Without the SFD, no
steady state could be reached. In the case of the laminar separation bubble,
the flow parameter are not incremented to follow a bifurcation but the pres-
sure distribution is chosen arbitrarily to have an unstable flow. We thus show
that the method allows to reach a steady state without any initial guess. Of
course, the initial condition becomes relevant in cases where multiple steady
states coexist.

6. Conclusions

A simple numerical approach to compute steady solutions of the Navier-Stokes
equations is presented. The most attractive advantages of such a strategy can
be summarized as follows. It is easy to implement into an existing numerical
code; it does not require a good initial guess of the solution; steady states can
be computed without specific knowledge of the critical bifurcation parameters.
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Figure 5. Contour lines of the streamfunction of the steady
state for the separation bubble. The zero values of the stream-
function are indicated by the thick line, solid lines indicate
positive values with spacing 0.1, dashed lines negative values
(spacing 0.005).

To our experience, the SFD methods appears to be very robust, and therefore
this procedure provides a viable alternative to the classic Newton method.
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