' Yﬁo«MJw\u\J jﬁﬁ)u Ao mo(oc;hﬁ

Transition to turbulence
and flow control

Jerome Hoepffner
Fukagata lab




Instability mechanisms
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Couette and pipe are stable for all Reynolds.
+

o For boundary layers, transition to turbulence
) is observed before critical Reynolds number

... what is the mechanism?




Transient growth in the
boundary layer
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J streamwise vortices
move the flow
particles in the wall
normal direction:
deform the lines of
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Some special disturbance

can have very large effect, even if

the flow is stable




Boundary layer with incomming free-stream turbulence
(LES: Philipp Schlatter, KTH)




Energy evolution
ol eat m&
6«@7&1« = 00

| | | Transition to turbulence

/\ nassie eengyy ol can be caused by

transient growth

It is not allways enough to compute the unstable
eigenmodes... also compute the “optimal disturbances”

= Stability analysis using optimization




Flow control
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Sensor:  measure skin friction/pressure
Actuator: blowing and suction

Controller: computes the feedback

How to compute the best controller K?




3D Swept-wing
Boundary layer

No control
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With control

Examples:

2D Separated boundary layer

Flow over a smooth cavity
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Control using the

Reduced model 'O /% sl
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Swept-wing boundary layer with pointwise forcing
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Real flow Flow field reconstructed
using sensors




