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The phase relationship between the streamwise and the wall-normal velocity disturbances induced by a
traveling-wave-like blowing or suction control �T. Min et al., J. Fluid Mech. 558, 309 �2006�� in a two-
dimensional laminar Poiseuille flow is investigated. The investigation is done by solving the linearized Navier-
Stokes equation and by using the identity equation between the skin-friction drag and the Reynolds shear stress
�K. Fukagata et al., Phys. Fluids 14, L73 �2002��. It has been known that a traveling wave creates a non-
quadrature between the velocity disturbances and generates the positive phase shift of the streamwise velocity
disturbance in the case of a skin-friction drag reduction. The present analysis further reveals that this non-
quadrature consists of an inviscid base phase relationship and a near-wall phase shift induced by the viscosity.
The analogy between the present control and Stokes’ second problem is discussed. The thickness of the
near-wall region in which the viscous phase shift takes place is found to be scaled similarly to the Stokes’
second problem.
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I. INTRODUCTION

Reduction in the skin-friction drag in turbulent flow is of
great importance for energy utilization: the friction drag con-
tributes to, e.g., about 50%, 90%, and 100 % of the total drag
in commercial aircrafts, underwater vehicles, and pipelines,
respectively �1�. Since 1990s, different active control meth-
ods for the skin-friction drag reduction have been proposed,
e.g., wall oscillations �2�, blowing or suction from the walls
�3�, and deformation of the walls �4,5�.

Because the quasistreamwise vortex in the region near the
wall exchanges the momentum, the skin-friction drag and the
Reynolds shear stress �RSS� significantly increase in wall-
bounded turbulent flows. In fact, there is an identity equation
relating the RSS and the skin friction �6,7�. For a fully de-
veloped channel flow, the identity equation for the dimen-
sionless friction drag, D, reads as

D = 2

Dlam

+
3

2
Re�

−1

1

�− y��− u�v��dy

�D

.

�1�
Here, the Reynolds number, Re=Uc� /�, is defined based on
the centerline velocity, Uc, and the channel half width, �;
−u�v� is the RSS and y is the wall normal coordinate extend-
ing from y=−1 �lower wall� to y=1 �upper wall�. This equa-
tion indicates that the skin-friction drag is divided clearly
into the laminar contribution, Dlam=2, and the drag incre-
ment, �D, which is the integration of the y-weighted RSS.
More surprisingly, this equation implies that a friction drag
below the laminar level �i.e., sublaminar drag� is achieved if
�D�0 �6�.

Based on this implication, Min et al. �8� proposed a pre-
determined control method by which sublaminar drag can be
achieved without using any sensors. Their method assumes
the local blowing or suction velocity from the walls, vw, as

vw = a cos�k�x − ct�� , �2�

where x and t denote the streamwise coordinate and the time,
respectively. The parameters a, k, and c represent the ampli-

tude, the wave number, and the wave speed of the traveling
wave, respectively. Min et al. �8� predicted the amount of
drag reduction by coupling the linear analysis and Eq. �1�.
The sublaminar drag was achieved by upstream traveling
wave �c�0� and in such cases negative RSS �if the RSS in
ordinary turbulent channel flows is called positive� is created
in the regions near the walls. Min et al. �8� also confirmed
the drag reduction effect in a fully developed turbulent chan-
nel flow by means of direct numerical simulation �DNS�. The
mechanism of the skin-friction drag reduction was also dis-
cussed by the two-dimensional simulation of channel flow
under zero mean pressure gradient. It was found that the net
mass flux in the streamwise direction was induced by the
upstream traveling wave, which is as pointed out by Marusic
et al. �9� equivalent to the skin-friction drag reduction in the
channel flow under a constant mass flow rate. This net mass
flux was induced by the RSS caused by the positive phase
shift of streamwise velocity disturbance. Hoepffner and
Fukagata �10� confirmed this pumping effect by simulating
flows without imposing a mean pressure gradient. They
showed that the traveling-wave-like blowing or suction
pumps in the backward direction, while the similar deforma-
tion pumps in the forward direction. They also explained the
dynamical mechanism of pumping by analyzing the stream-
lines and trajectories of fluid particles.

The major drawback of the control of Min et al. �8� may
be the much smaller gain �i.e., more expensive control cost�
than that of the existing feedback control schemes �11,12�.
Under the constant flow rate condition, the gain of upstream
traveling wave control is on the order of 1–10, while that of
the existing feedback control schemes is on the order of 100–
1000. According to the very recent study by Lieu et al. �13�
�see also, Moarref and Jovanović �14��, the gain of the up-
stream traveling wave control can be even smaller under the
constant pressure gradient condition instead of constant flow
rate. A plausible reason for the small gain is that the up-
stream traveling wave does not stabilize the flow, as was
revealed by Lee et al. �15� through the stability analysis. Lee
et al. �15� also showed that most disturbances become highly
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unstable at the wave speed of c�0.4. Min’s control, how-
ever, is still attractive for realization of active turbulent drag
reduction because it does not require massive microsensors
�16�, which is one of the biggest hurdles for feedback con-
trols to be applied in reality.

The present work is an extension of the studies of Min et
al. �8� and Hoepffner and Fukagata �10�. In order to obtain a
unified explanation on the drag reduction effect by the
traveling-wave-like blowing or suction in a laminar channel
flow, wide ranges of control parameters �Reynolds number,
wave number, and wave speed� are examined and analyzed
through a detailed phase analysis. As will be shown later,
these effects can be scaled similarly to the Stokes’ second
problem. In order to demonstrate the validity of this scaling
in a different control mode, we also consider the sinuous
mode in addition to the varicose mode which has been con-
sidered by Min et al. �8� and Hoepffner and Fukagata �10�.

It is also worth noting that drag reduction control of a
laminar channel flow does not make sense from the practical
viewpoint. Bewley �17� and Fukagata et al. �18� mathemati-
cally proved that under a constant flow rate the lower bound
of driving power �i.e., sum of pumping and actuation pow-
ers� is the pumping power of the laminar channel flow.
Namely, the total power can never be saved when control is
applied to a laminar channel flow even if a sublaminar drag
is achieved. Nevertheless, we study the mechanism of the
control of Min et al. �8� using a laminar flow as an important
step toward the comprehensive understanding of control ef-
fects in turbulent flows. The use of laminar flow may be
justified by the following reasons: �1� the primary effect of
control, i.e., production of the “negative” Reynolds shear
stress �or, in other words, pumping from the walls �10��, is
considered common to laminar and turbulent flows; and of
course, �2� it is simpler than a turbulent flow.

II. LINEAR ANALYSIS

A two-dimensional channel flow is considered. The gov-
erning equations are two-dimensional and incompressible
continuity and Navier-Stokes equations. Figure 1 shows the
flow geometry, the coordinate systems, and the control input.
All quantities are made dimensionless by using the centerline
velocity, Uc, and the channel half-height, �. The velocity
components in the x� �streamwise� and y� �wall-normal� di-
rections are denoted as u and v, respectively. The pressure is
denoted as p. The asterisk denotes the fixed coordinates in
contrast to the moving coordinates introduced later. The base
flow, U, is set to be the laminar Poiseuille profile, i.e., U
=1−y�2.

The periodic boundary condition is employed in the
streamwise direction. The no-slip condition is imposed for
the streamwise velocity at the wall. As a control input, the
wall-normal velocity at the wall is given as a traveling-wave-
like blowing or suction. Two wave modes are considered for
the traveling wave: the varicose mode and the sinuous mode.
The varicose mode corresponds to two solid lines in Fig. 1,
which reads �8� as

vw� = � a cos�k�x� − ct��� , �3�

where vw+ and vw− are the wall-normal velocity at the upper
and the lower walls, respectively. Namely, the surface wall-
normal velocities are in phase with opposite sign. In contrast,
the sinuous mode is the combination of the solid line at the
lower wall and the dotted line at the upper wall in Fig. 1,
which reads as

vw� = � a cos�k�x� − ct��� . �4�

The surface wall-normal velocities are in phase.
The problem can be reduced into a steady problem by

introducing a coordinate transformation from the fixed coor-
dinates to the coordinates traveling with the wave, i.e., x
ªx�−ct�, yªy�, tª t� �19�. The boundary conditions �Eqs.
�3� and �4�� in the moving coordinates read

vw� = ��a cos�kx� varicose mode

�a cos�kx� sinuous mode.
� �5�

The unsteady term of incompressible Navier-Stokes equation
is transformed as

�

�t�
=

�

�t
− c

�

�x
. �6�

Because the flow is steady due to the steady boundary con-
dition, the first term in the right-hand side of Eq. �6�
vanishes.

The governing equations are linearized: u=U+u�, v=v�,
and p= P+ p� are substituted into the governing equations
and the high-order terms of disturbance are neglected. Here,
U and P denote the velocity and pressure of the base flow,
respectively, and the prime denotes the disturbance compo-
nent. The linearized disturbance equations read as

�u�

�x
+

�v�

�y
= 0, �7�

− c
�u�

�x
+ U

�u�

�x
+ v�

�U

�y
= −

�p�

�x
+

1

Re
�2u�, �8�

− c
�v�

�x
+ U

�v�

�x
= −

�p�

�y
+

1

Re
�2v�. �9�

Equations �7�–�9� are discretized by using the Fourier
transformation in the streamwise direction and the Cheby-
shev collocation method in the wall-normal direction. These
equations can be expressed as a system matrix equation;
thus, the solution can easily be obtained. Details of the nu-
merical discretization are presented in the Appendix.

Varicose mode Sinuous mode

Wave propagation

FIG. 1. Flow geometry and schematic of control input.
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According to the amplitude expansion of flow quantities,
the drag effect appears as the second-order solution that can
equivalently be expressed as the product of two first order
solution, u� and v� �see, e.g., Eq. �A2� of Hoepffner and
Fukagata �10��. Therefore, when the flow response is well
described by the linear solution, we can predict the drag by
substituting the first order solution in to Eq. �1�. Namely, we
can predict the drag increment, �D, �which is essentially the
nonlinear effect� from the linear solution. The results ob-
tained by these calculations are linear solutions so that the
disturbance components are scaled by the wave amplitude, a.

While the Orr-Sommerfeld �OS� operator formulation
used by Min et al. �8� is usually preferred to study this kind
of problem �20,21�, here we use the alternative formulation
based on the primitive variables. Although these two formu-
lations are mathematically equivalent, the present formula-
tion has an advantage that it can be easily extended to in-
clude control inputs other than blowing and suction, e.g.,
body forces due to local heating and cooling �22,23�, mag-
netohydrodynamics �MHD� �24�, or plasma actuators �e.g.,
�25��, which may be more realistic control input than blow-
ing or suction. All we have to do is to add the terms of these
effects, we do not need to play with algebra beforehand. The
result obtained with the same number of nodes should be
more accurate than that with the OS formulation because the
OS has a fourth order derivative whereas the derivative in the
presented formulation is at highest second order. Increase in
computational cost is subtle with the current computer
power.

Figure 2 shows the dependency of the computed amount
of drag reduction on the number of Chebyshev nodes. The
difference between the values obtained with 128 nodes �used
throughout the present study� and 512 nodes was less than
10−12 for both cases presented in Fig. 2.

III. RESULTS AND DISCUSSIONS

A. Varicose mode

Figure 3 shows the drag increment, �D, as a function of
the wave speed of the traveling wave, c, computed at Re
=2000 under different wave numbers, k=0.5, 1.0, 1.5, and
2.0. It confirms that the present method perfectly reproduces

the results of Min et al. �8�. For the upstream traveling wave
as shown in Fig. 3�a�, the drag decreases ��D�0� by the
faster traveling wave �i.e., the case of larger �c��. The amount
of drag reduction is larger for smaller wave numbers. For the
downstream traveling wave as shown in Fig. 3�b�, �D is
found to be positive. The drag is nearly unchanged in the
range of c�1, whereas �D becomes extremely large in the
range of 0�c�1.

Figure 4 shows �D as a function of c for k=0.5 under
different Reynolds numbers, Re=20, 200, 2000, and 10 000.
At all Reynolds numbers, the drag is decreased by the faster
upstream traveling wave. As increasing the Reynolds num-
ber, the effect of control becomes larger.

Two explanations can be made for the extremely large
value of �D observed around c=0.4. One is the existence of
a critical layer �10�, which moves at the same speed of the
wave speed of traveling wave as illustrated in Fig. 5. This
layer is a singular point in the inviscid limit and the singu-
larlike behavior still remains also in the viscous flow; thus,
the velocity fluctuations, u� and v�, are strongly amplified.
Another is the quasiresonance between the forcing at the
wall and the least stable mode of the governing equations. As
has been shown by Lee et al. �15�, the growth rate of the
least stable mode takes the maximum around c=0.4.

Figure 6�a� shows the RSS distributions for c=−1.5 and
Re=2000 under different wave numbers, k=0.5, 1.0, 1.5, and
2.0. It is clearly observed that the negative and positive RSSs
are produced in the region near the lower and upper walls,
respectively. According to Eq. �1�, the skin-friction drag is
the y-weighted integration of the RSS: the drag reduction,
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0
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100

Node number

FIG. 2. Node number dependency of �D /a2 for k=0.5, c=−2,
and Re=2000: circle, varicose mode; cross, sinuous mode.
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FIG. 3. Normalized drag increment, �D /a2, as a function of the
wave speed, c, under different k �Re=2000, varicose mode�: �a�
upstream traveling waves, c�0; �b� downstream traveling waves,
c�0.
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�D�0, observed above is due to the negative RSS induced
in the region near the walls. Moreover, the zoom up of the
near wall region in Fig. 6�a� shows that the peak of the RSS
decreases as increasing the wave number. In this figure, we
define an influence layer thickness of the traveling-wave-like
blowing or suction, �b/s, which is the height from the lower
wall to the point of maximum �−u�v��. This influence layer
thickness, �b/s, is also found to decrease as increasing the
wave number.

Figure 6�b� shows the RSS distributions for c=−1.5 and
k=0.5 under different Reynolds numbers, Re=20, 200, 2000,

and 10 000. As increasing the Reynolds number, increase in
maximum RSS and decrease in �b/s are observed.

These results imply that there is a relationship among the
influence layer thickness, the wave number, and the Rey-
nolds numbers. From the similarity of the problems, it may
be natural to assume an analogy between the present flow
and the Stokes’ second problem. The Stokes’ second problem
is the steady oscillation of the wall under stationary fluid.
The Stokes’ layer thickness, �s, scales as

�s
	� Re 
 const, �10�

where � is the angular frequency of the wall oscillation. We
apply Eq. �10� to the case of traveling-wave-like blowing/
suction, i.e., by substituting �= �c�k,

�b/s	�c�k Re 
 const, �11�

where the left-hand side of Eq. �11� is referred hereafter as
the dimensionless influence layer thickness.

This scaling is similar to that used for the analysis of
skin-friction drag reduction induced by spanwise wall oscil-
lations �e.g., �2��, although the detailed mechanism is some-
what different: in the spanwise oscillation the existing RSS is
suppressed in the Stokes layer through the disruption of near-
wall turbulence-production cycle �26,27�; while in the
present case the RSS is actively produced in this layer.

Figure 7�a� shows the dimensionless influence layer thick-
ness as functions of c for different wave numbers, k. The
dimensionless influence layer thickness is found to be un-
changed in the range of c�−0.4 and c�1.0, whereas it de-
viates from the constant value in the range where the critical
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FIG. 4. Normalized drag increment, �D /a2, as a function of c at
different Re �k=0.5, varicose mode�: �a� upstream traveling waves
c�0; �b� downstream traveling waves, c�0.
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FIG. 5. �Color online� Schematic of a critical layer.
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FIG. 6. Profile of the RSS induced by the varicose mode and the
upstream �c=−1.5� traveling wave: �a� for different k, �Re=2000�;
�b� for different Re�k=0.5�.

MAMORI, FUKAGATA, AND HOEPFFNER PHYSICAL REVIEW E 81, 046304 �2010�

046304-4



layer effect is significant. The sub-figure shows dimension-
less influence layer thickness in wider range of the vertical
axis.

Figure 7�b� shows the dimensionless influence layer
thickness at different Reynolds numbers. For the cases of
Re=200, 2000, and 10 000, the dimensionless influence
layer thickness is kept constant except for �c��1. The value
for Re=20 are slightly lower than that for the other cases.

A schematic of the behavior of dimensionless influence
layer thickness is shown in Fig. 8. The main reason for more
peculiar behavior around c=0, where Stokes’ analogy is not
valid, may be threefold: �1� where �c� approaches zero, �b/s
does not infinitely increase due to the bounded domain; �2�

in the range of 0�c�1 the effect of critical layer �or qua-
siresonance� appears; �3� around c�−0.34 the meaning of
the defined influence layer thickness becomes ambiguous,
where the RSS profile has double peaks �positive and nega-
tive� as exemplified in Fig. 9.

In the followings, a phase analysis is made to discuss the
mechanism of the drag reduction in the range of c where the
above analogy holds. The RSS can be expressed as the prod-
uct of the absolute value of the Fourier coefficients and the
phase difference, i.e.,

− u�v� = −
1

2
�û��v̂�sin�	� , �12�

where 	 is the phase difference between u� and v�,

	 = arg û − arg v̂ +



2
. �13�

According to Eq. �12�, nonzero RSS is created when u� and
v� depart from the quadrature �	=0 or 	= �
�.

The sign of �D is determined by 	. Namely, the drag
decreases when

−1.5 −1 −0.5 0 0.5 1 1.5
−1.0

−0.8

−0.6

−0.4

0.2

0

phase/ π

FIG. 10. �Color online� Profiles of phases of the Fourier coeffi-
cients for viscous and inviscid disturbances in drag reducing case
by the upstream traveling wave �k=0.5, c=−1.5, Re=2000, and
varicose mode�.
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FIG. 7. The dimensionless influence layer thickness,
�b/s	�c�k Re, as a function of c �varicose mode�: �a� for different k
�Re=2000�; �b� for different Re�k=0.5�.
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FIG. 8. Schematic of the dimensionless influence layer thick-
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0 � 	 � 
 �− 1 � y � 0� ,

− 
 � 	 � 0 �0 � y � 1� , �14�

and the drag increases when

− 
 � 	 � 0 �− 1 � y � 0� ,

0 � 	 � 
 �0 � y � 1� . �15�

Again, this near-wall phase shift produces the RSS according
to Eqs. �12�–�15�.

Figure 10 shows the phase relationship between û and v̂
in the lower half of the channel at the case of the maximum
drag reduction. Hereafter, the ordinary phase relationship is
defined as “viscous” phase relationship. The phase differ-
ence, 	, is found to be in the regions near the walls, and
contributes the drag reduction according to Eq. �14�. This
nonquadrature is generated by the positive phase shift of û,
i.e., arg v̂=0 but arg û�−
 /2 in the region near the wall, as
was pointed out by Min et al. �8�.

Figure 10 also shows the phases computed from the in-
viscid linear equations �21�, i.e., Eqs. �8� and �9� without the
viscosity term, defined as “inviscid” phases. The inviscid

phase relationship is found to be in quadrature. The viscous
and inviscid phase relationships are similar except for the
near-wall regions �hereafter which is defined as the “base
phase relationship”�. In the region near the wall, arg û �vis-
cous� is found to lead arg û �inviscid�, defined as the “near-
wall phase shift.” This viscous and inviscid comparison
clearly shows that the near-wall phase shift is caused by the
viscosity effect in the region near the wall. This region is the
influence layer which is affected by the blowing or suction.

Figure 11 shows the disturbance fields of wall-normal ve-
locity, v�, streamwise velocity, u�, and their product, −u�v�,
respectively, at k=0.5, c=−1.5, and Re=2000. As shown in
Fig. 11�a�, the wall-normal velocity, v�, induced by the
traveling-wave-like blowing or suction is antisymmetric due
to the varicose control input. Figure 11�b� shows symmetric
u� generated as a response of the system. Due to the subtle
phase shift of u� near the wall, u� and v� become nonquadra-
ture and nonzero values of −u�v� are created in the region
near the wall as shown in Fig. 11�c�. This −u�v� is antisym-
metric: negative and positive values appear more frequently
near the lower and upper walls, respectively.

For comparison, the inviscid disturbance fields �computed
by the inversed Fourier transformation of the solution of the
inviscid linear equations� are depicted in Fig. 12. Again, the
inviscid disturbance fields are found to be identical to the
viscous disturbance fields except the region near the wall.
Figure 13 shows the zoom-up view of u� in the region near
the wall. The near-wall phase shift of viscous u� is clearly
observed in the region near the wall. These results indicate
that the base phase relationship is determined by the inviscid
solution, whereas the near-wall phase shift, positive or nega-
tive, of streamwise velocity disturbance is induced by the
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FIG. 11. �Color online� Disturbance fields: �a� v� /a, �b� u� /a,
�c� −u�v� /a2. The same condition as Fig. 10.
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FIG. 12. �Color online� Disturbance fields computed from the
inviscid equation: �a� v� /a, �b� u� /a, �c� −u�v� /a2. The same con-
dition as Fig. 10.
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FIG. 13. �Color online� Zoom-up view of u� in the region near
the wall: �a� viscous case �Fig. 11�b�� and �b� inviscid case �Fig.
12�b��.
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viscosity in the region near the wall and generates the non-
quadrature between u� and v�.

The effect of the downstream traveling wave is also in-
vestigated. Figure 14 shows the RSS profile under c=1.5 and
Re=2000 for different k. The RSS profile is found to be
positive and negative in the region near the lower and upper
walls, respectively, which produces the drag increase, �D
�0, according to Eq. �1�.

Figure 15 shows the viscous and inviscid phase relation-
ships of the drag increase case �k=0.5, c=1.5, and Re
=2000�. It is clear that the drag increase can be explained by
exactly the same argument �but with the opposite sign� as
that made for drag reduction.

B. Sinuous mode

Figure 16 shows the drag increment, �D, as a function of
c, for the sinuous mode traveling wave. We obtain drag re-
duction ��D�0� by the upstream traveling wave for k=1.0,
1.5, and 2.0. However, �D is found to be positive in the case
of k=0.5. Similarly to the varicose mode, �D is found to be
positive by the downstream traveling wave. A large drag in-
crease is observed in the range of 0�c�0.5 due to the criti-
cal layer and the flow instability. For the faster traveling
wave, c�0.5, �D is found to approach zero.

Figure 17 shows that the dimensionless influence layer
thickness, �b/s	�c�k Re, is kept constant in the range of �c�
�1 regardless of k. The case of the Re=20 gives slightly
lower values than the other cases of Re�200. This trend is
common to the varicose mode.
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FIG. 16. Normalized drag increment, �D /a2 as a function of c
under different k �Re=2000, sinuous mode�: �a� upstream traveling
waves �c�0� and �b� downstream traveling waves �c�0�.
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FIG. 17. The dimensionless influence layer thickness,
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Figure 18 shows the RSS profile under different k at c=
−0.5 and Re=2000. The RSS for k=0.5 and k=1.0 is found
to be negative and positive in the region near the upper and
lower walls, respectively, which corresponds to the drag in-
crease. As increasing the wave number, the peak of the RSS
is found to decrease and becomes negative which leads to the
drag reduction.

The phase relationships in the lower half of channel for
k=0.5 and k=2.0 are shown in Figs. 19�a� and 19�b�, respec-
tively. In both cases, nonquadrature appears in the region
near the wall due to the positive phase shift of arg û �vis-
cous�. Whereas the nonquadrature in k=2.0 results in drag
reduction similar to that in the varicose mode that for k
=0.5 leads to the drag increase. This is due to the difference
of the base phase relationship, i.e., û=−
 /2 for k=2.0 �simi-
larly to the varicose mode�, arg û=
 /2 for k=0.5 �opposite
to the varicose mode�. This difference can better be under-
stood by the streamlines, as shown in Fig. 20. Whereas the
blowing from both walls �i.e., varicose mode� accelerate the

bulk flow similarly to a contraction, blowing and suction
from each wall �i.e., the sinuous mode� laterally displaces the
fluid to result in deceleration �acceleration� of the bulk flow
on the blowing �suction� side.

The distributions of velocity disturbances and their prod-
ucts for k=0.5 are shown in Fig. 21. Large v� appears in the
center region of the channel as shown in Fig. 21�a� because
the wall-normal velocity blown from the lower �upper� di-
rectly penetrates into the upper �suction� region due to the
small wave number, k=0.5 �i.e., long wavelength�. The ver-
tical fluid motion induces u� as shown in Fig. 21�b�. Unlike
the cases of varicose mode �Figs. 11 and 12� and the cases of
sinuous mode at higher wave numbers �Fig. 22�, the base
phase of u� delays and leads 
 /2 from that of v� in the upper
and lower half region, respectively. Although, the near-wall
phase shift of u� in the region near the wall is induced in
exactly the same manner as that for the varicose mode, the
difference in the base phase relationship results in the domi-
nance of positive −u�v� �Fig. 21�c�� and the drag increase.

C. Parametric study

The dimensionless influence layer thickness and the phase
relationship are computed for wider range of parameters. We
compute about 500 000 cases for the varicose and the sinu-
ous modes, in the range of 0.01�k�5 and −5�c�5. The
intervals of k and c are set to be 0.01.

Figures 23�a� and 23�b� show the maps of the dimension-
less influence layer thickness by the varicose and sinuous
mode traveling waves, respectively. The dimensionless influ-
ence layer thickness is found to be constant, except for the
region near c
0, which confirms that the analogy between
present control and Stokes’ second problem holds in wider
ranges of parameters.

In the previous subsections, the phase analysis explains
the mechanism: the nonquadrature between velocity distur-
bances creates the RSS which generates �D. The nonquadra-
ture appears as the phase difference, 	. In order to make a
unified explanation for all cases studied, we propose the fol-
lowing decomposition of 	:

	 = � +  . �16�

Here, � is the base phase difference defined as the departure
from quadrature determined by the inviscid disturbance, i.e.,
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FIG. 19. �Color online� Profile of the phase of the Fourier coef-
ficients for viscous and inviscid disturbance induced by the sinuous
mode traveling wave �c=−1.5 and Re=2000�: �a� k=0.5; �b� k
=2.0.
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FIG. 20. Streamline by the wave of �a� varicose mode and �b�
sinuous mode �k=0.5, c=−1.5, and Re=2000�.
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FIG. 21. �Color online� Disturbance fields at k=0.5 �sinuous
mode, c=−1.5, and Re=2000�: �a� v� /a; �b� u� /a; �c� −u�v� /a2.
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� = arg û�inviscid� − arg v̂�inviscid� +



2
, �17�

and  is the near-wall phase shift, which is defined as the
difference between the arg û �viscous� and the arg û �invis-
cid�, i.e.,

 = arg û�viscous� − arg û�inviscid� . �18�

This decomposition enables us to easily overview the effect
of the base and the near-wall phase relationship on the drag
for different parameter sets of c and k. For convenience, the
base phase difference, �, and the near-wall phase shift, ,
are computed where �−u�v�� takes maximum value in the
lower half of the channel.

Figure 24 shows the distributions of �, , and �D by the
varicose mode traveling wave at Re=2000. The phase and
�D are normalized by 
 and a2, respectively. Figure 24�a�
shows that � is zero in the most regions in accordance with
Fig. 10.

Figure 24�b� shows the distribution of the near-wall phase
shift,  /
: the upstream traveling wave �c�0� creates the
positive phase shift of streamwise velocity as visualized in
Fig. 11 and the downstream traveling wave �c�0� induces
negative phase shift. The sign of  /
 does not depend on k.
The phase difference, 	, which consists of � and , results
in

0 � 	 � 
 �c � 0� , �19�

− 
 � 	 � 0 �c � 0� , �20�

in the lower half region of the channel. According to Eqs.
�14� and �15�, the drag reduction and increase are obtained
by the upstream and the downstream traveling waves, re-
spectively, as confirmed by Fig. 24�c�.

The phase relationship and �D in the case of sinuous
mode traveling wave are shown in Fig. 25. Although the
phase relationships, � and , are basically similar to those of
the varicose mode, a region of � /
=1 is found for small k
and c�0. This is due to the penetration of wall-normal ve-
locity as observed in Fig. 21. Accordingly, the phase differ-
ence, 	, becomes

0 � 	 � 
 �c � 0,small k� , �21�

− 
 � 	 � 0 �otherwise� , �22�

in the lower half region of the channel. These 	 lead the drag
reduction and increase as shown in Fig. 25�c�, respectively.

IV. CONCLUSIONS

The skin-friction drag reduction mechanism by the
traveling-wave-like blowing or suction control of Min et al.
�8� is investigated in the two-dimensional laminar Poiseuille
flow. The velocity disturbances are computed by the linear
analysis with the Chebyshev collocation point method. The
drag increment by the control input is predicted by using the
identity equation between the skin-friction drag increment
and the Reynolds shear stress �6,7�.

It is confirmed that the analogy between the present con-
trol and the Stokes’ second problem holds. The dimension-
less influence layer thickness is found to be constant, for
different parameters, k, c, and Re, and the wave modes �the
varicose and the sinuous modes�. This scaling is similar to
that used for the analysis of drag reduction by spanwise wall
oscillation.

The phase analysis shows the mechanism of the drag re-
duction and increase. The Reynolds shear stress, which con-
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FIG. 22. �Color online� Disturbance fields at k=2.0 �sinuous
mode, c=−1.5, and Re=2000�: �a� v� /a; �b� u� /a; �c� −u�v� /a2.
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tributes to the drag increment from the laminar level, is in-
duced by the nonquadrature between velocity disturbances.
This nonquadrature is decomposed to the base phase rela-
tionship and near-wall phase shift. The base phase relation-
ship agrees with that by the solution of the inviscid distur-
bance equations. For the case of the varicose mode, the base
phase relationship is found to be independent of wave num-
ber, i.e., v� leads 
 /2 from u� in the lower half region of the
channel. For the sinuous mode, the phase reversal of u� is
observed at the small wave numbers �i.e., long wavelength�.
In the region near the walls, the viscosity induces the near-
wall phase shift. The upstream and downstream traveling

waves induce the negative and positive phase shift of stream-
wise velocity, respectively, for the both wave modes.
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APPENDIX: NUMERICAL DISCRETIZATION

The detailed procedure to solve the linearized Navier-
Stokes equation �Eqs. �7�–�9�� under the boundary condition
�Eq. �5�� is explained here.

Due to the periodic boundary condition assumed in the
streamwise direction, the Fourier transformation can be ap-
plied for the state variable vector, q�= �u� ,v� ,p��T, as

q� = R�q̂�y�exp�ikx�� , �23�

where R is a real part. In the wall-normal direction, the
Fourier coefficients are discretized by using the Chebyshev
collocation point method: the Chebyshev differentiation ma-
trix of a MATLAB function, chebdif.m provided by Wiedman
and Reddy �28�, is applied for the y-derivative operators to
obtain the discretized state vector,

q̂ = �û, v̂,p̂�T. �24�

As a result of these transformations, Eqs. �7�–�9� are ex-
pressed as a system matrix equation,

Aq̂ = b , �25�

of which concrete form is graphically shown in Fig. 26,
where the operator L1 reads

L1 = ik�U − cI� −
1

Re
�D2 − k2I� , �26�

and D1 and D2 are the Chebyshev first- and second-order
differentiation matrices, respectively, and I is the unit matrix.
The boundary conditions read

v̂w� = ��a varicose mode

�a sinuous mode.
� �27�

The boundary conditions are included in the system matrix,
A, and the right-hand side, b, as shown in Fig. 26. Thus, the
solution of the matrix equation can be simply obtained by

q̂ = A−1b , �28�

and spatial distributions of u�, v�, and p� are computed by
the inversed Fourier transform to the solution. Finally, �D is
computed by using Eq. �1�.
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