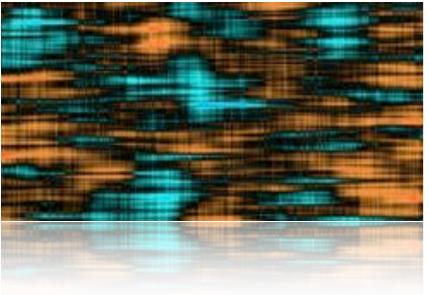
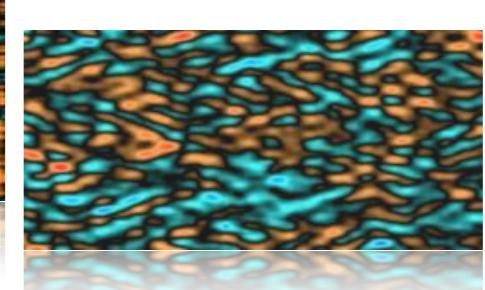
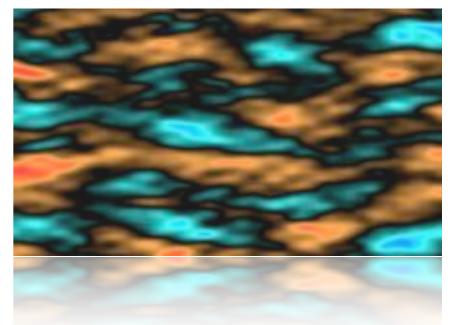


Feedback control of fluid flow and stochastic methods

Jérôme Hœpffner Post-Doc, Fukagata Lab. Keio university







Stochastic disturbances

Flow systems of engineering interest are often exposed to disturbances that are erratic, unpredictable, and thus conveniently described by their statistics.

- wall roughness
- Free-stream turbulence
- Acoustic waves

Random vector
$$w = \begin{pmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_N(t) \end{pmatrix}$$
, White noise if: $Ew_i(t)\overline{w_j(t')} = W_{ij}\delta(t-t')$

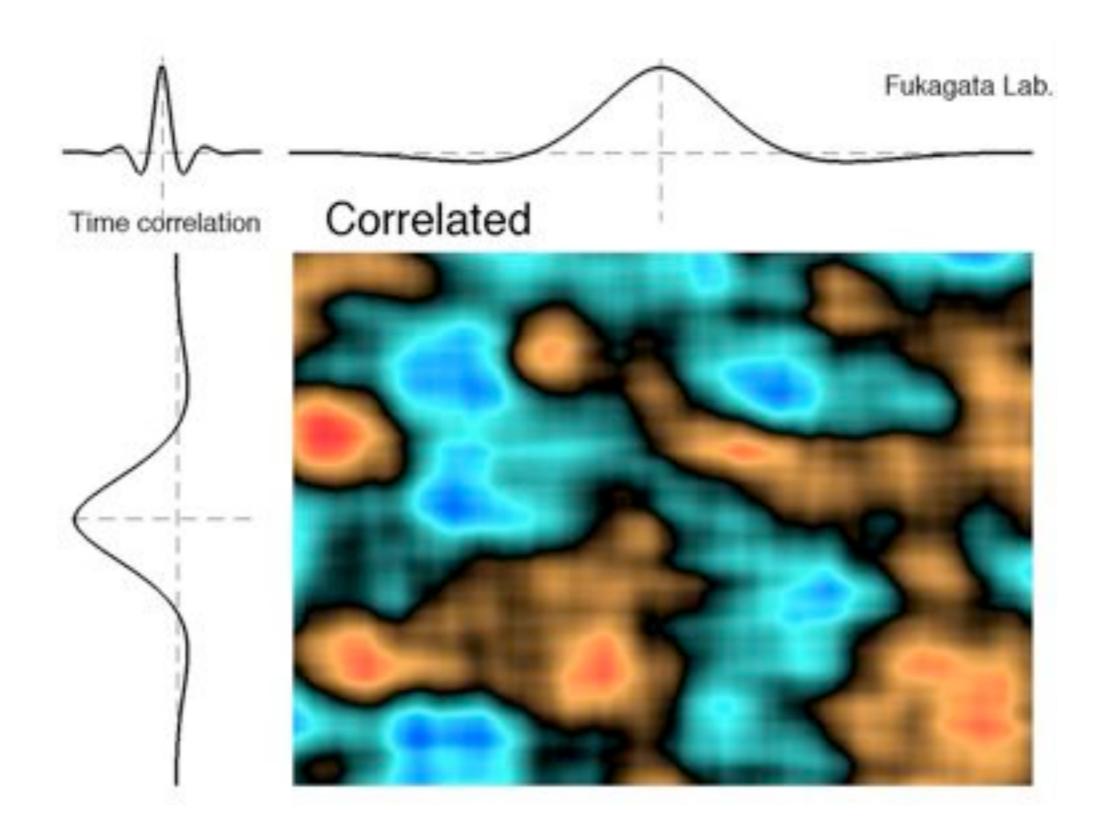
Covariance matrix:

$$W \triangleq Eww^{H} = \begin{pmatrix} E|w_{1}|^{2} & Ew_{1}\overline{w_{2}} & \dots & Ew_{1}\overline{w_{N}} \\ Ew_{2}\overline{w_{1}} & E|w_{2}|^{2} & \vdots \\ \vdots & \ddots & \vdots \\ Ew_{N}\overline{w_{1}} & \dots & \dots & E|w_{N}|^{2} \end{pmatrix}$$

.

Diagonal elements: variance Off-diagonal elements: covariance

Illustration of spatial and temporal statistics



1) Stochastic flow systems

 $\dot{q} = Aq + w$, $\operatorname{cov}(w) = W$

stochastic excitation→ stochastic state

q should now be described by its covariance matrix P.

How to get P from A and W?

Lyapunov equation

Explicit state solution:

$$\dot{q} = Aq + w \Rightarrow q(t) = \int_{\tau=0}^{\infty} e^{A(t-\tau)} w(\tau) d\tau + e^{At} q_0$$

State covariance:

$$\underbrace{Eq(t)q(t)^{H}}_{P(t,t)} = \int_{0}^{\infty} \int_{0}^{\infty} e^{A(t-\tau)} \underbrace{Ew(\tau)w(\tau')^{H}}_{W(\tau)w(\tau')} e^{A^{H}(t-\tau')} d\tau d\tau'$$
$$= \int_{0}^{\infty} e^{A(t-\tau)} W e^{A^{H}(t-\tau)} d\tau$$

Differentiating this convolution integral:

$$\dot{P} = AP + PA^H + W$$

Numerical solution of the Lyapunov equation

Solve: $AX + XA^H + W = 0$

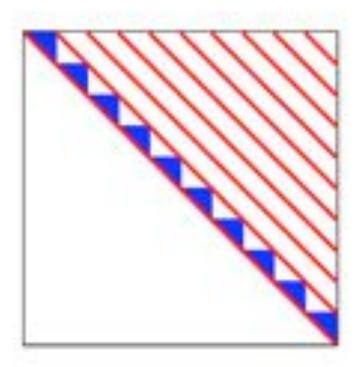
1. Schur decomposition $A = UA'U^H$, $\rightarrow A'$ upper diagonal, U orthogonal.

2. Resulting equation
$$A' \stackrel{X'}{U^H} \stackrel{XU}{XU} + \stackrel{X'}{U^H} \stackrel{XU}{XU} A'^H + \stackrel{W'}{U^H} \stackrel{WU}{WU} = 0$$

Use Kronecker product ⊗

$$A \otimes B \triangleq \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1m}B \\ a_{21}B & a_{22}B & \dots & a_{2m}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \dots & a_{nm}B \end{pmatrix}$$

$$\operatorname{vec}(A'X' + X'A'^{H} + W') = 0$$
$$= \underbrace{(I \otimes A' + \overline{A'} \otimes I)}_{\mathcal{F}} \operatorname{vec}(X') + \operatorname{vec}(W')$$



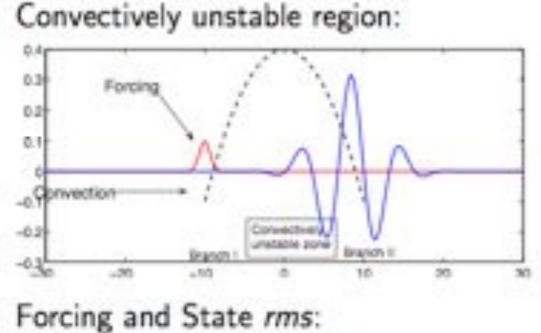
 $\mathcal F$ has upper diagonal structure

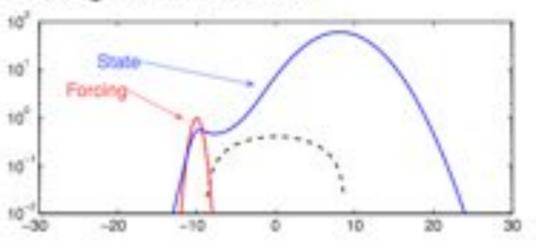
4. Solve by backward substitution

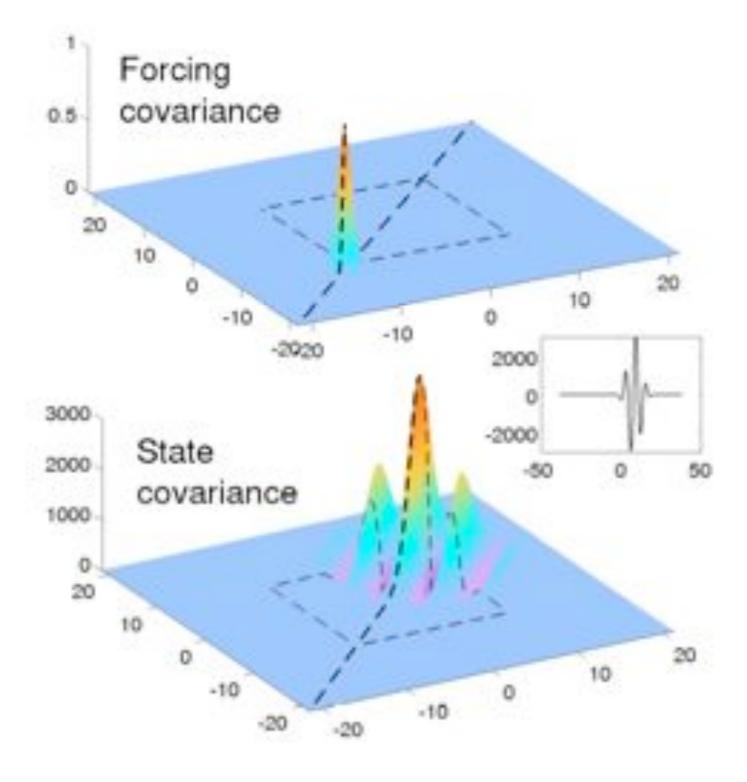
1D example: Ginzburg-Landau

 $\dot{q} + Uq_x = \gamma q_{xx} + \mu(x)q$

Excitations: $w(x,t) = f(x)\lambda(t)$, $\lambda \in \mathbb{R}$ is white noise, $E|w|^2 = 1$.

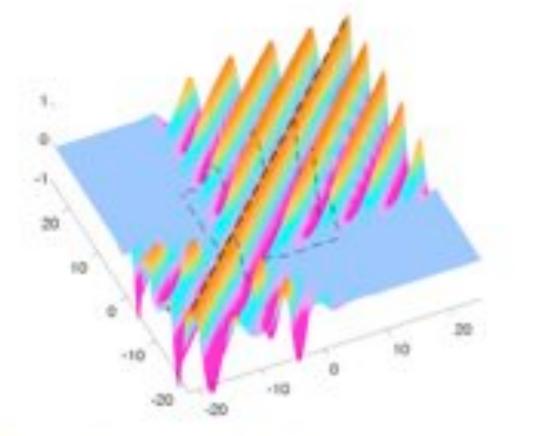






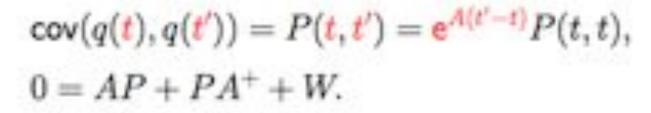
1D example: Ginzburg-Landau

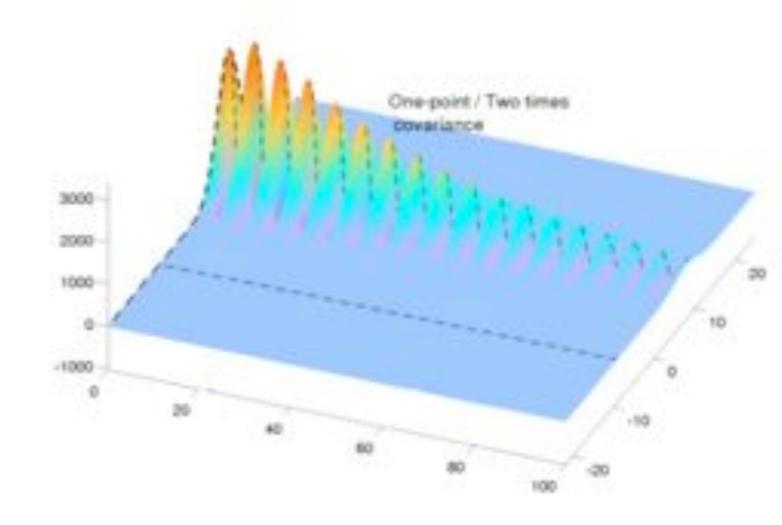
One point/Two times covariance:



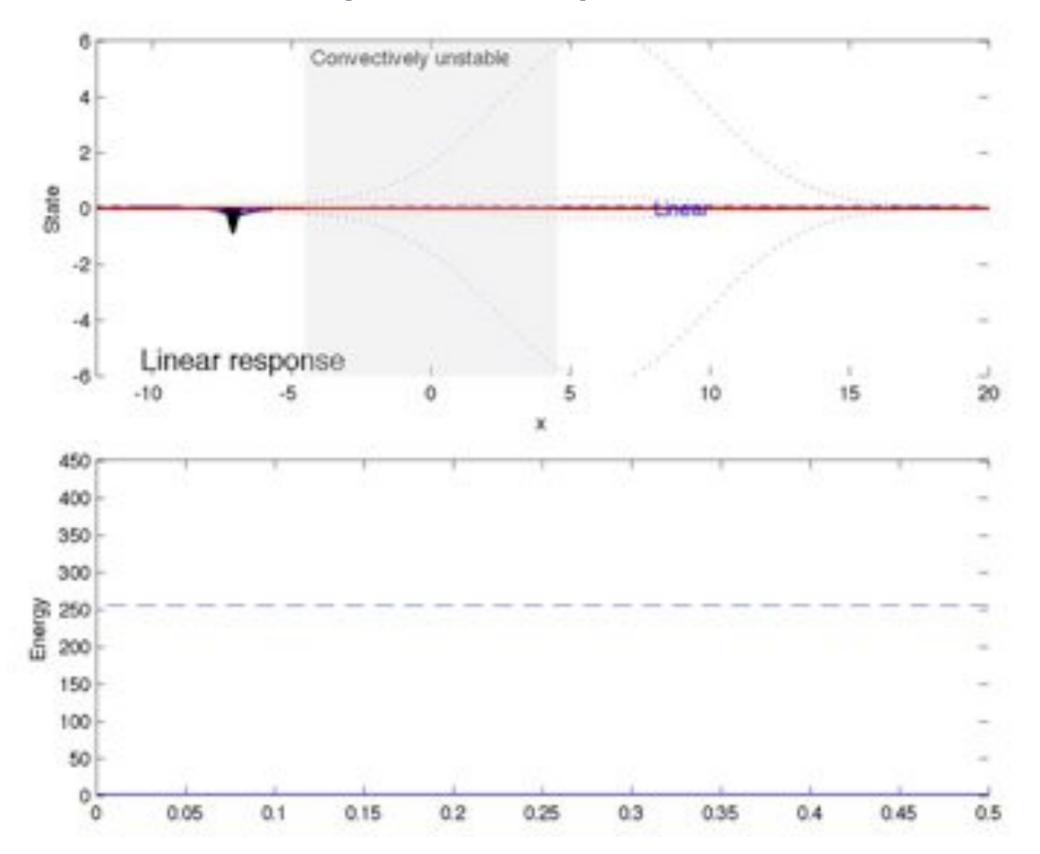
Two points correlation (normalized to unit rms):

$$\operatorname{corr}(q_i, q_j) = E \frac{q_i \overline{q_j}}{|q_i||q_j|} = \tilde{P}_{ij}$$



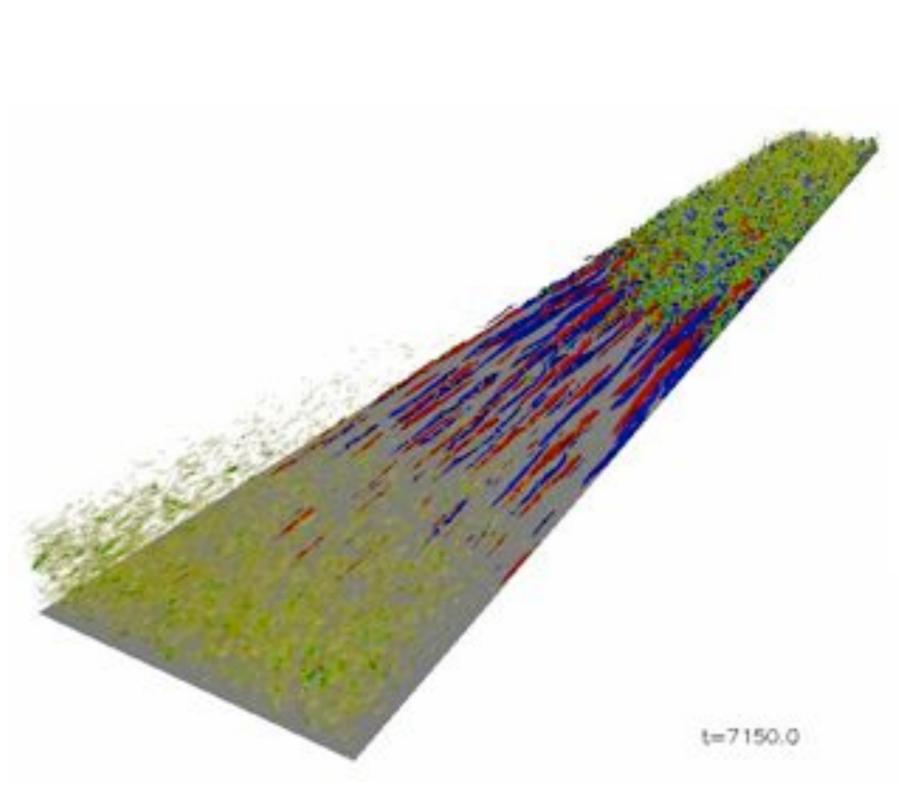


Example: Ginzburg landau excited by random perturbations



A flow example: transition to turbulence in boundary layers

With Luca Brandt



Fully turbulent inflow and flat plate

Turbulent free-stream

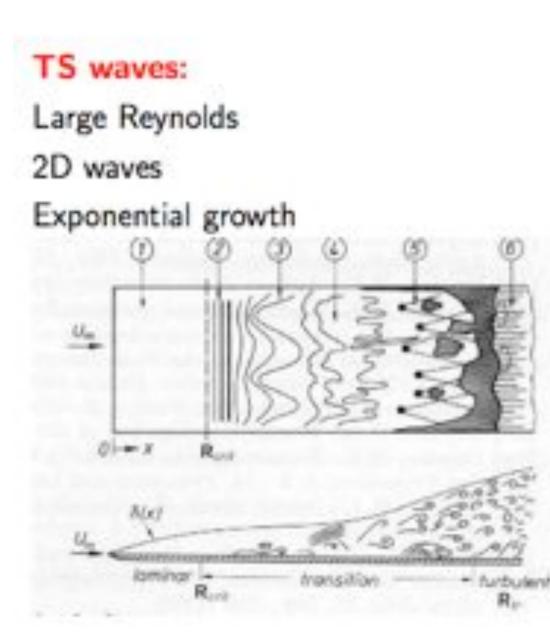
→ receptivity

 \rightarrow streaks

- → streak instability
- → turbulent spots
- → turbulent boundary layer

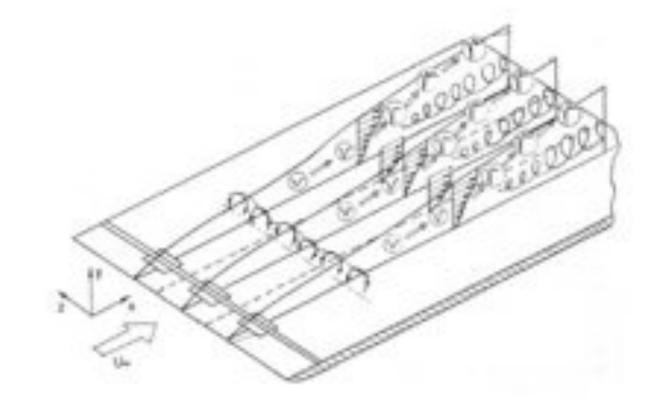
LES: Schlatter & Brandt

Boundary layer stability

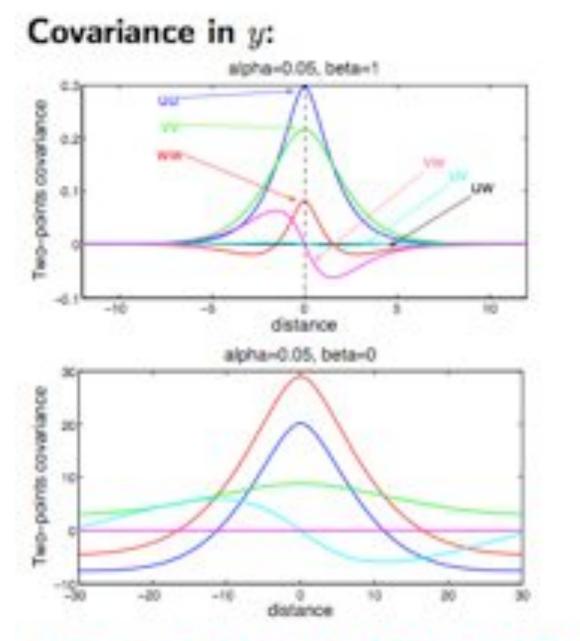


Streaks:

Subcritical Reynolds Large external disturbances Transient growth

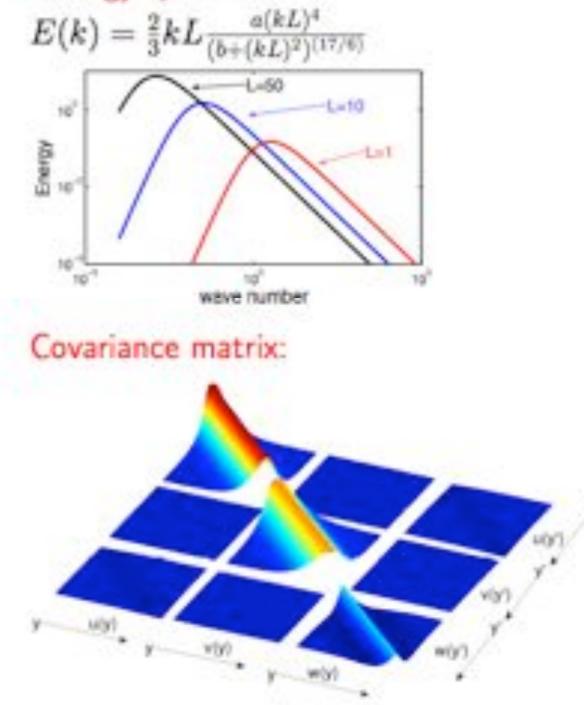


Two-point correlation of FST

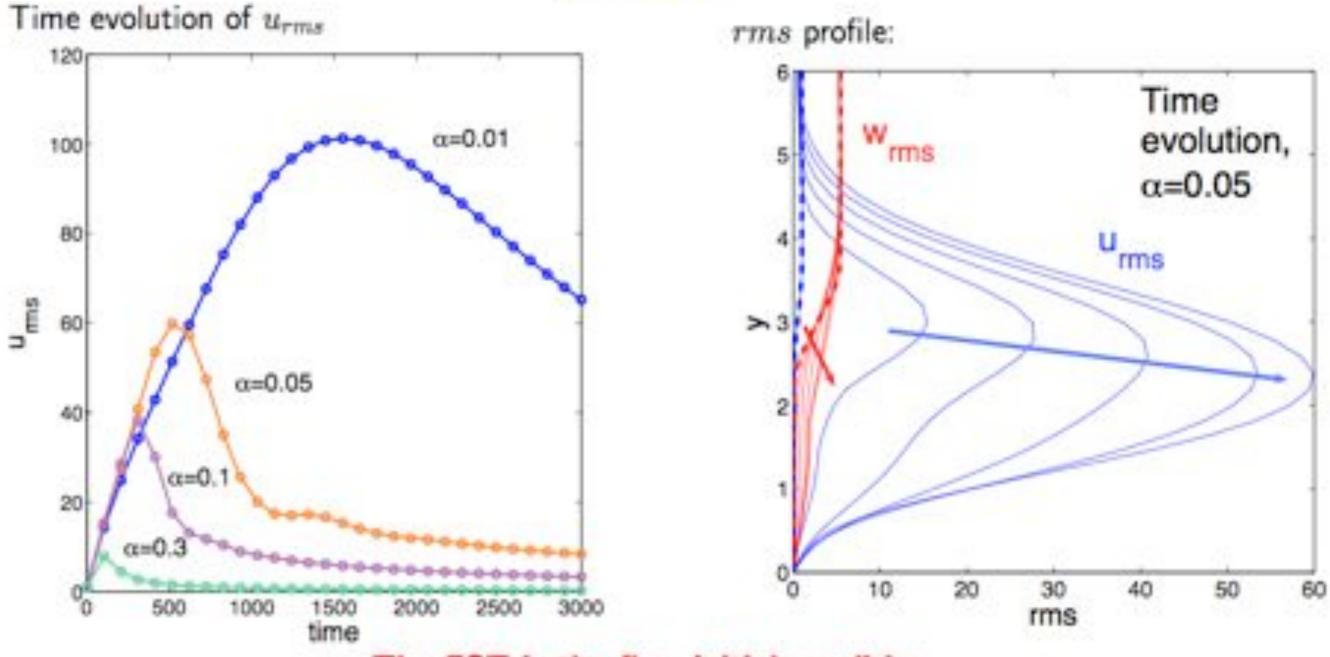


Isotropic turbulence: Von-Karman spectrum

Energy spectra:



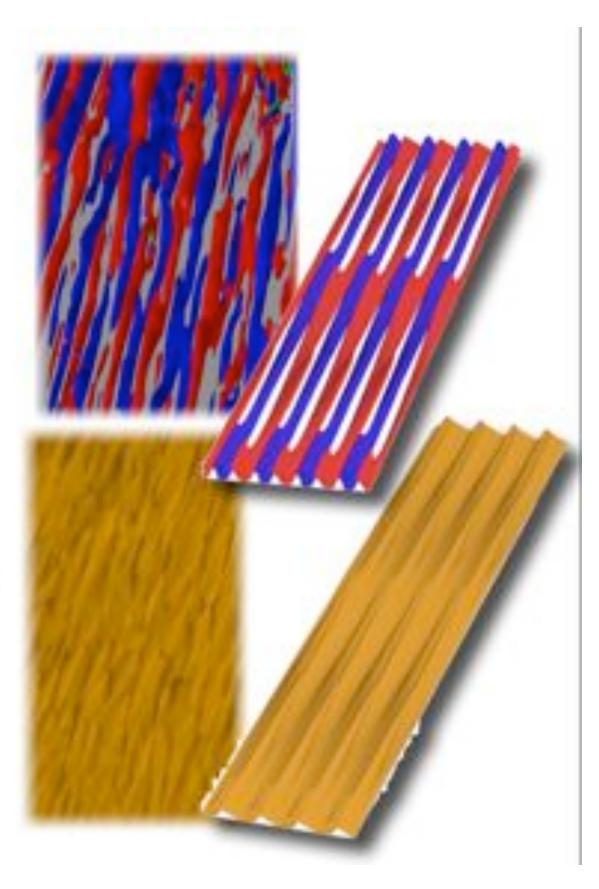
Streaky flow excited by FST: Stochastic initial value problem



The FST is the flow initial condition

Comparison of flow structures: Streamwise velocity

Comparison of flow structures: Streamwise shear



An other example of flow system with statistical analysis: Channel with compliant walls

With Bottaro & Favier (Genova, Italy)

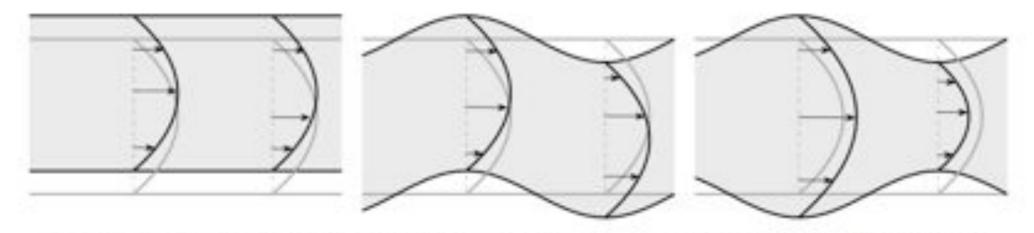


FIGURE 6. Sketch of the flow deformation for the sinuous mechanism at infinite (left) and finite (center) wavelengths, On the right the varicose mechanism is sketched.

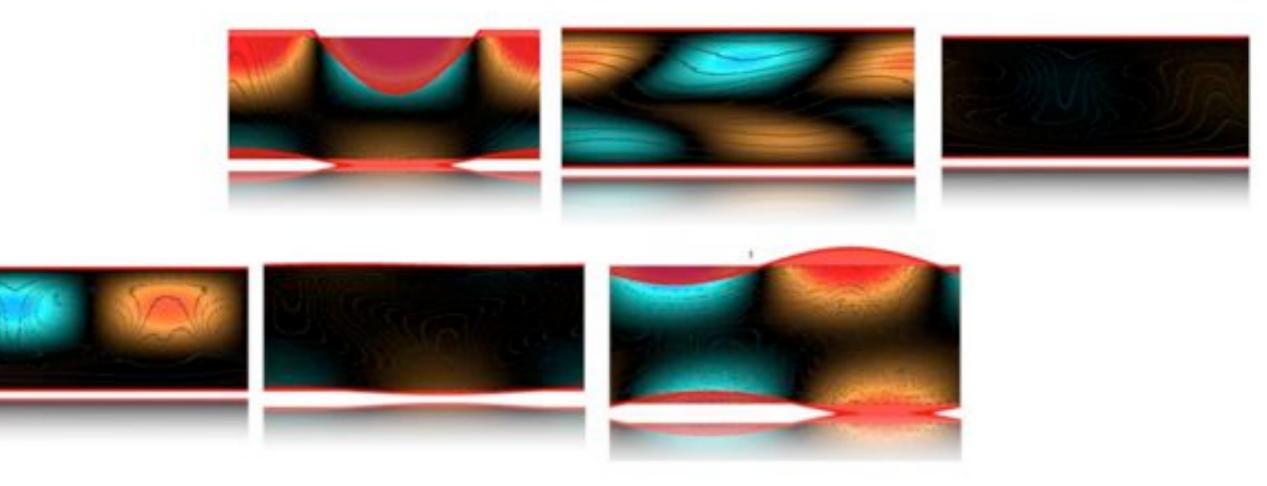
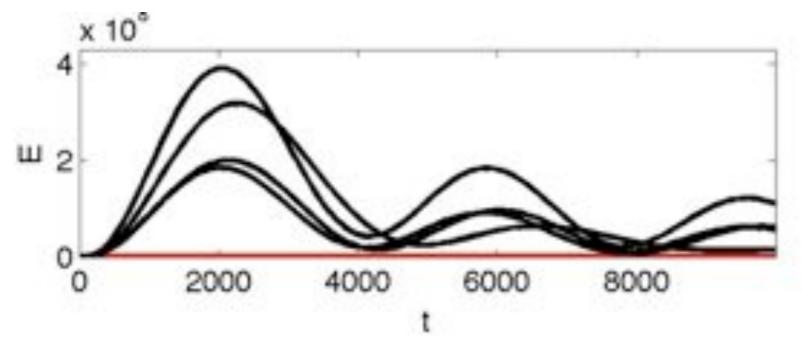


Illustration of response to random initial conditions



K=10¹ Flexible channel: slow oscillations Large amplitude

Now, using these methods to do control

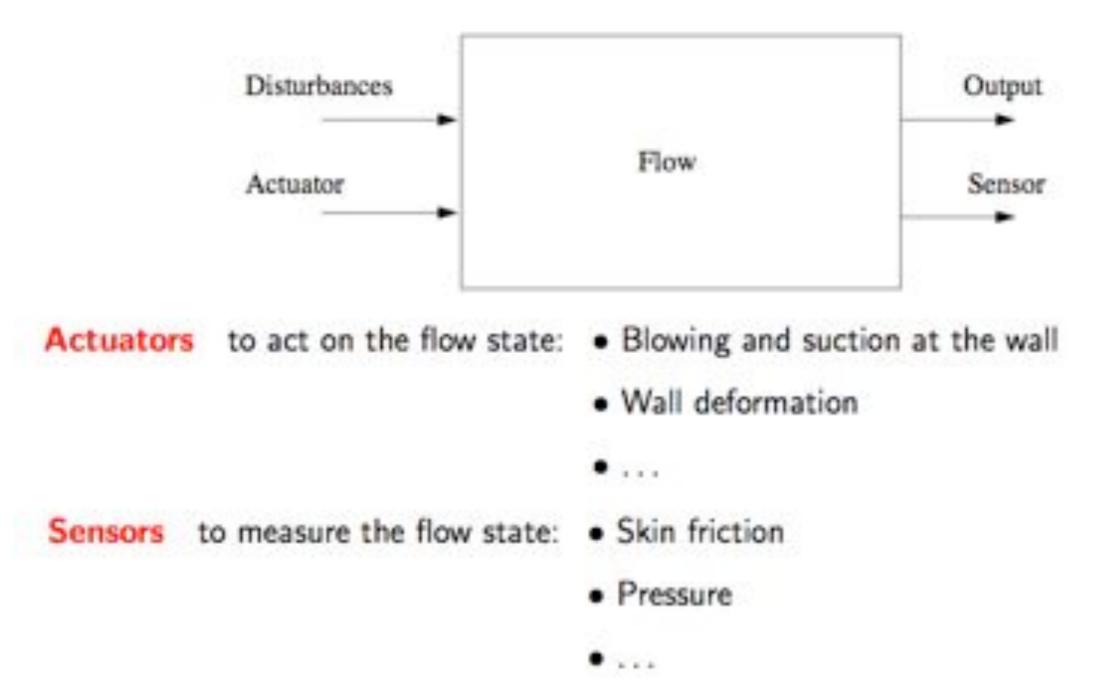
2) Control of stochastic flow systems

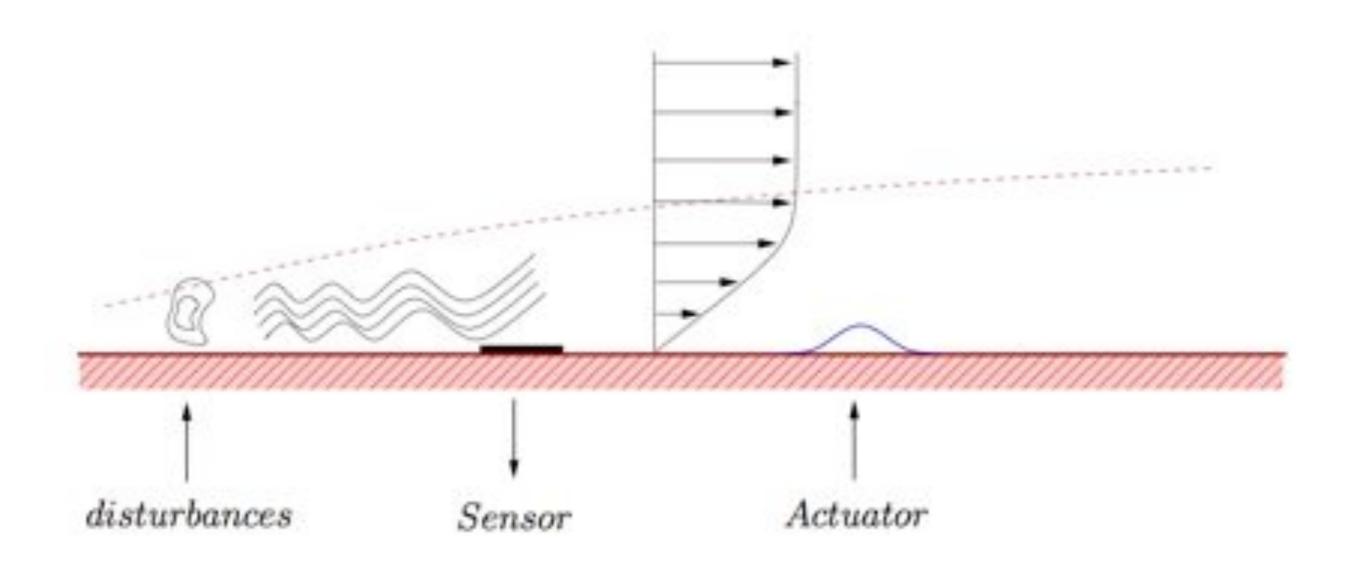
Control to reduce flow rms

→ Actuators, sensors, feedback law

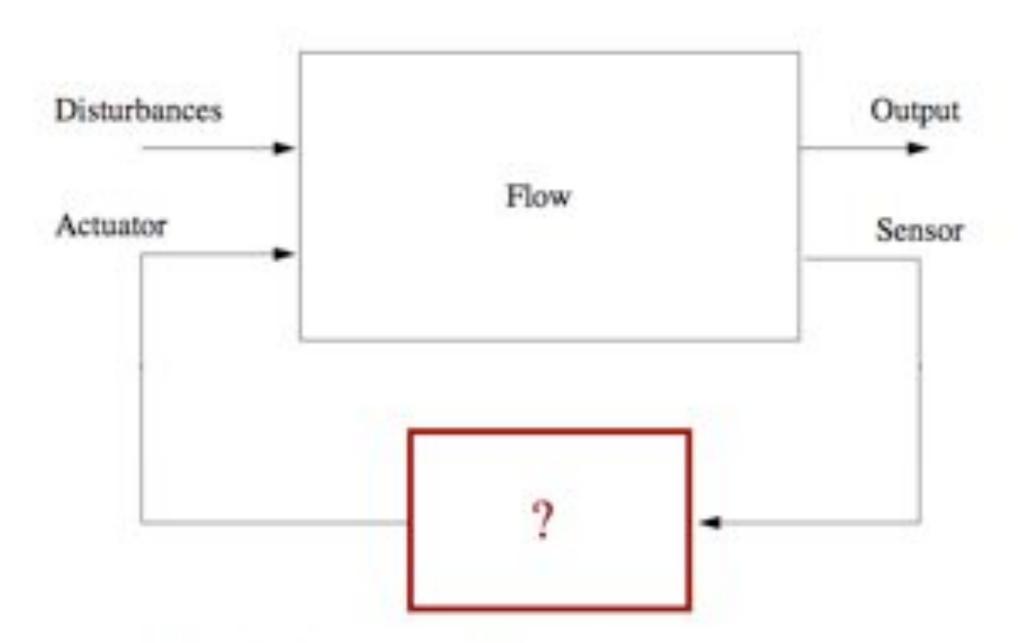
Minimize for stochastic properties

Actuators and sensors



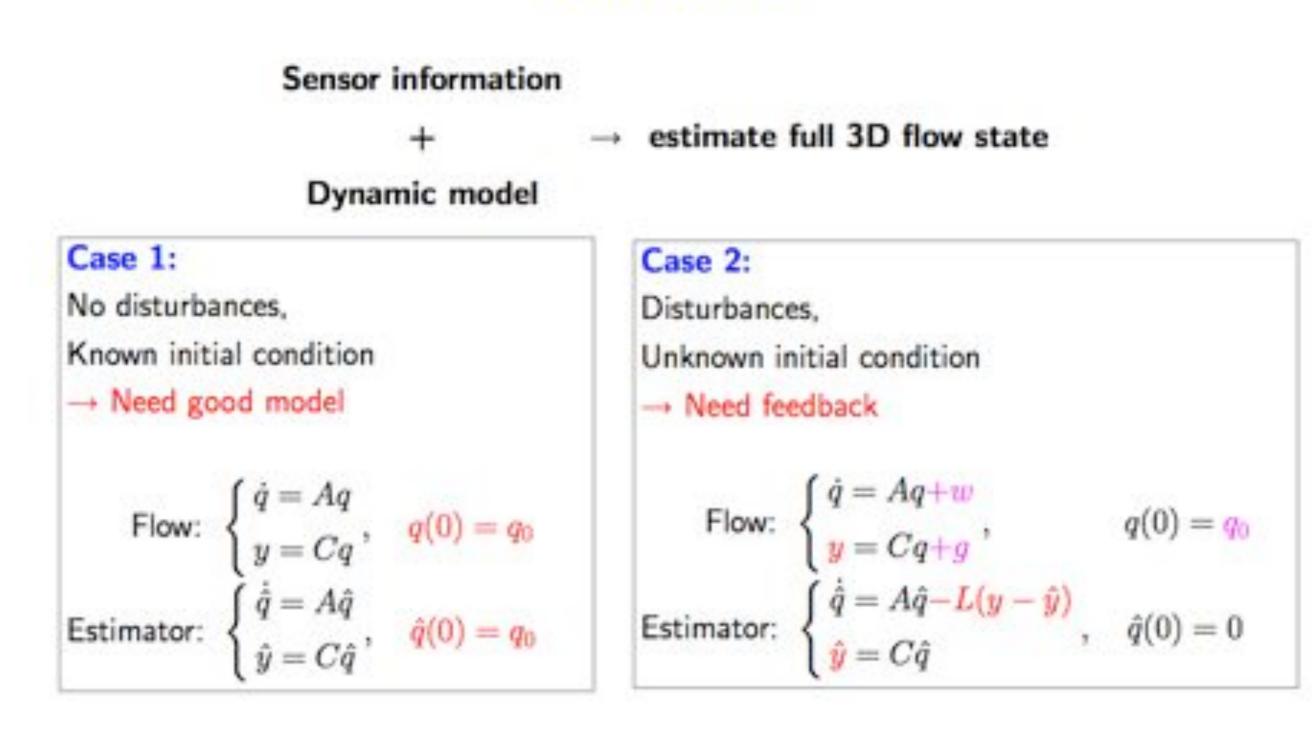


Feedback



Use optimization for the feedback law

Estimation



Control and estimation

$$\begin{cases} \dot{q} = Aq + w + Bu, \\ y = Cq + g \end{cases}, \quad \text{estimator} \begin{cases} \dot{\hat{q}} = A\hat{q} - L(y - \hat{y}), \\ \hat{y} = C\hat{q} \end{cases}$$

Full information control:EstimationFeedback: u = KqEstimationClosed loop: $\dot{q} = (A+BK) + W$ $\dot{\bar{q}} = (A+BK) + W$ $A_c = A + BK$ is stable? $A_e = A + BK$

Estimation: Estimation error $\tilde{q} = q - \hat{q}$: $\dot{\tilde{q}} = \underbrace{(A+LC)}_{A_e} \tilde{q} + w - Lg$ $A_e = A + LC$ is stable?

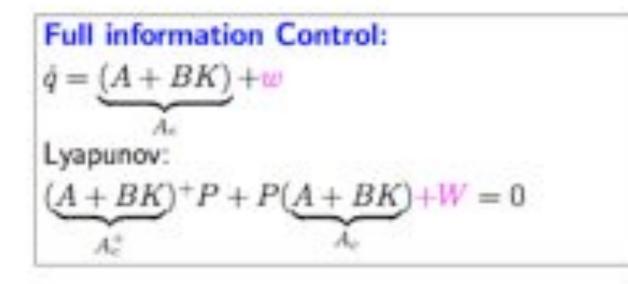
Output feedback control: $u = K\hat{q}$.

Lyapunov equations for control and estimation systems

Mean energy= integral of rms

 $E_K = Tr(P)$

System is sensitive or unstable --- large energetic response to external disturbances



Estimation:

$$\dot{\tilde{q}} = \underbrace{(A + LC)}_{A_{*}} \tilde{q} + w - Lg$$
Lyapunov:

$$\underbrace{(A + LC)}_{A_{*}} \tilde{P} + \tilde{P} \underbrace{(A + LC)}_{A_{*}^{*}}^{+} + W + \alpha^{2}LL^{+} = 0$$

Now: find optimal feedback K and L

Optimization

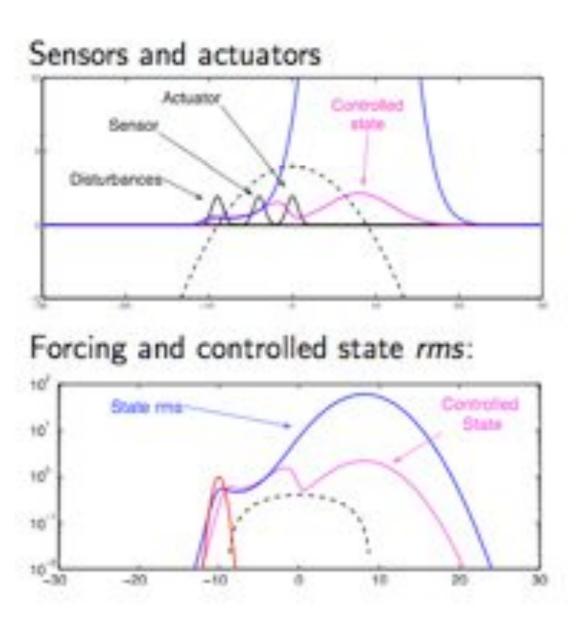
Constrained minimisation \rightarrow Lagrange multiplier Λ Minimax problem for Lagrangians \mathscr{L}_c and \mathscr{L}_c .

Control: minimize $E(q ^2 + \ell^2 \underbrace{ u ^2}_{ Kq ^2}) = \operatorname{Tr}(PQ + \ell^2 KPK^+)$	$\mathcal{L}_{e} = \operatorname{Tr}(PQ + KPK^{+}) + \operatorname{Tr}[\Lambda]$	$(A + BK)P + P(A + BK)^+ + W$
		$A^+\Lambda + \Lambda A - \Lambda BB^+\Lambda/\ell^2 + Q,$ $B^*\Lambda/\ell^2.$
Estimation: minimize $E(q - \hat{q} ^2) = Tr(\tilde{P})$ $\ \tilde{q}\ ^2$	$\mathcal{L}_{e} = \overbrace{Tr(\tilde{P})}^{Objective} + Tr[\Lambda((A + LC)\tilde{P}$	$\vec{P} = \vec{P}(A + LC)^{+} + \alpha^{2}LL^{+} + W)$ $= A\vec{P} + \vec{P}A^{+} - \vec{P}C^{+}C\vec{P}/\alpha^{2} + W$ $= -\vec{P}C^{+}/\alpha^{2},$

Same structure for control and estimation -> two Riccati equations

1D example: Controlled Ginzburg-Landau

$$\begin{cases} \dot{q} + Uq_x = \gamma q_{xx} + \mu(x)q + b(x)u(t) \\ y(t) = \int_x c(x)q(x)\mathrm{d}x \end{cases}$$



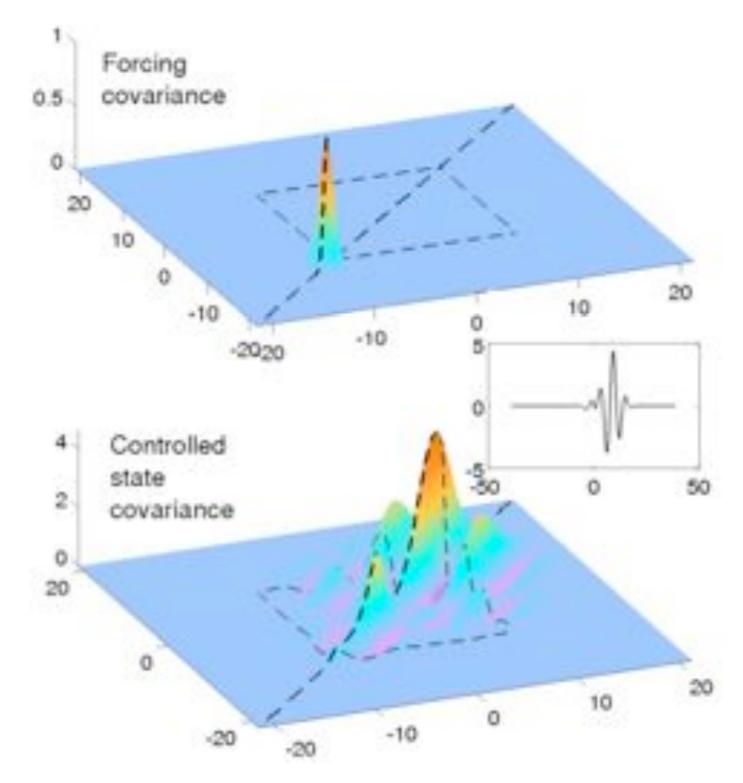
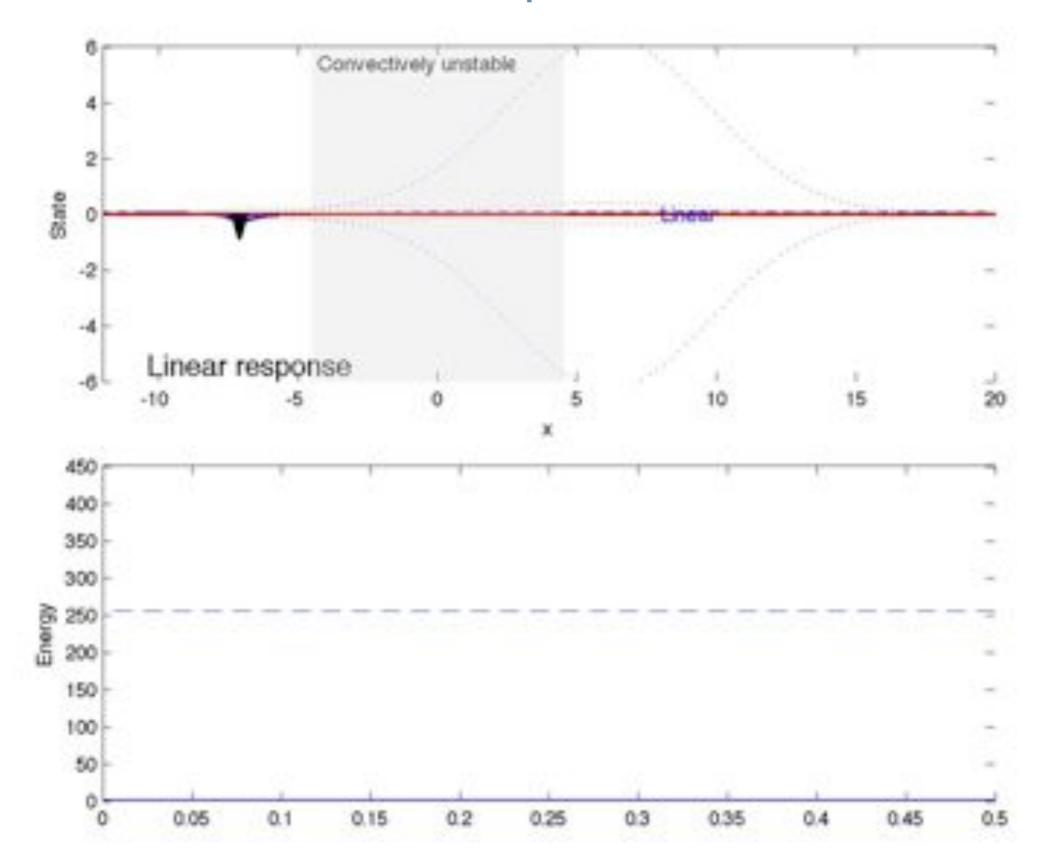
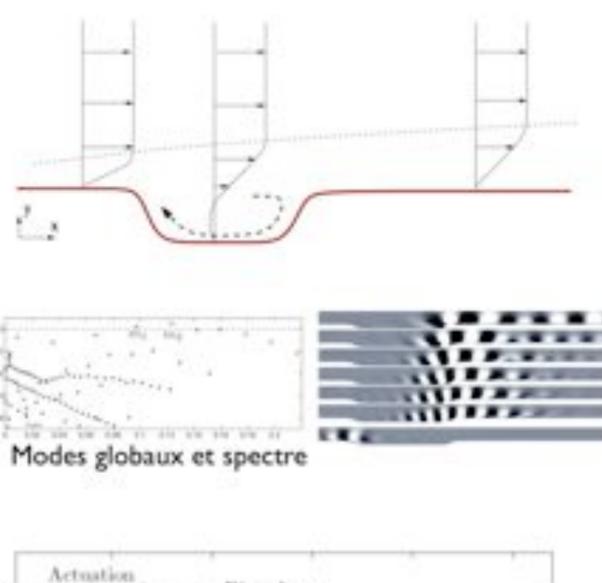


Illustration: control of system subject to random perturbations



Controle retroactif:

ecoulement fortement non-parallele



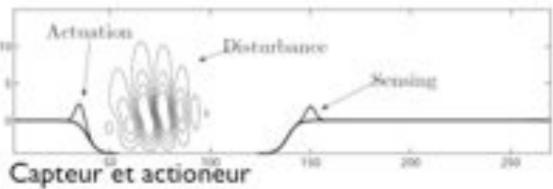
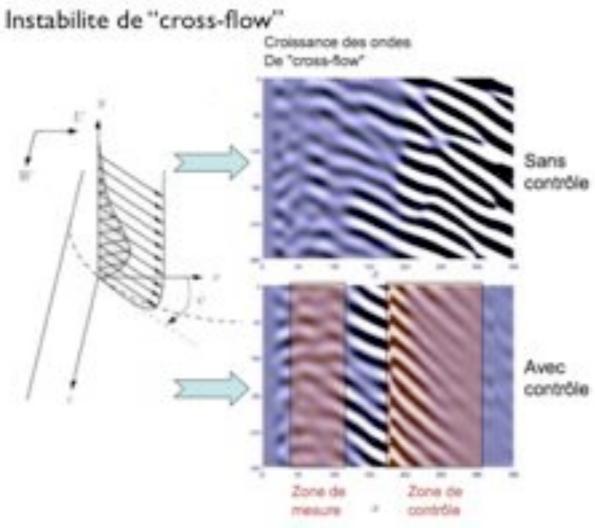
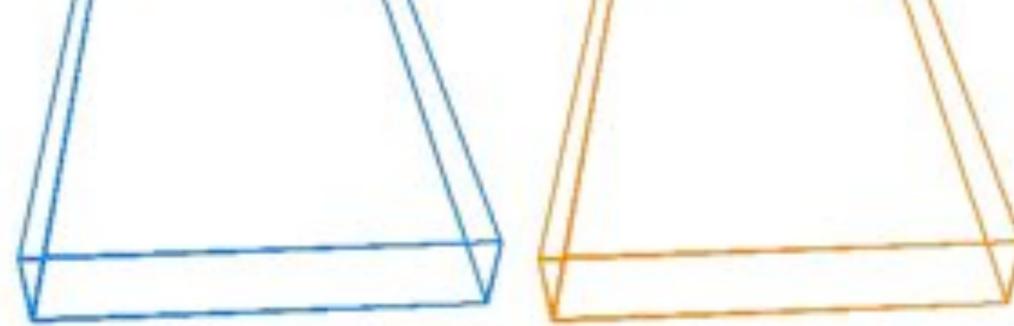


Illustration of control result

Couche limite 3D:



Boundary layer subject to harmonic point-source excitation ×10



Animation: Hogberg, Chevalier, Henningson

Conclusions

- Stochastic methods to study flow response to complex perturbations
- For linear system: solve directly for the statistics: Lyapunov equation
- The response properties should be used for control: mixed dynamic/statistical approach