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We show that the Kelvin-Helmholtz instability excited by a localized perturbation yields a self-similar

wave. The instability of the mixing layer was first conceived by Helmholtz as the inevitable growth of any

localized irregularity into a spiral, but the search and uncovering of the resulting self-similar evolution

was hindered by the technical success of Kelvin’s wavelike perturbation theory. The identification of a

self-similar solution is useful since its specific structure is witness of a subtle nonlinear equilibrium among

the forces involved. By simulating numerically the Navier-Stokes equations, we analyze the properties

of the wave: growth rate, propagation speed and the dependency of its shape upon the density ratio of

the two phases of the mixing layer.
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Wind over water yields waves. Similarly, a liquid jet
destabilizes and atomizes into a cloud of droplets. This
mechanism is the shear-layer instability. Herman Ludwig
von Helmholtz in 1868 publishes a controversial approach
to fluid dynamics where surfaces of discontinuity play a
central role [1]. He makes use of the recent theories of
complex variables to manage his singular fields within the
differential framework of the Euler equation. The incentive
for this novel approach was his interest in sound generation
in pipe organs. He found that these surfaces of disconti-
nuity—vortex sheets—are highly unstable, this instability
being the key element linking the continuous flow in the
organ mouth to oscillating motion and sound. He showed
as well how atmospheric convection cells at the planetary
scale dissipate their energy in large vortices through the
destabilization of sheared surfaces. In his pioneering ar-
ticle, Helmholtz states that ‘‘wherever an irregularity is
formed on the surface of an otherwise stationary current,
this must give rise to a progressive spiral unrolling of the
corresponding part of the surface’’ but neither Helmholtz
himself nor anyone to our knowledge ever published a
description of this response to a localized perturbation.
The goal of the present Letter is to report this experiment
and describe the self-similar growth we have observed.

The difficulty which Helmholtz encountered in quanti-
fying mathematically the evolution of a localized pertur-
bation opened the way for the successful approach which
Kelvin made popular through his 1871 paper: small am-
plitude perturbations combined with sinusoidal initial con-
ditions [2]. Indeed, the nonlinear and localized conception
of Helmholtz is critically opposed to the linear and wave-
like theory of Kelvin. The difference between these two
approaches is illustrated in Fig. 1 where we see the re-
sponse of a mixing layer to a localized initial perturbation
(Helmholtz) and a wavelike initial perturbation (Kelvin).

For a detailed account of fluid mechanics in the times of
Helmholtz and Kelvin, see [3]. There has been a renewed

interest for the mathematical analysis of vortex sheets,
following the analysis by Moore [4] of the formation
of a shape singularity in finite time. Also, for a review of
singularities in fluid mechanics, see [5]. For a book on
the dynamics of vorticity; see Saffman [6].
Our numerical experiment consists of a two-phase

mixing-layer with interface initially at height y ¼ 0. The
two fluids have the same viscosity �, and density �gas and

�liq ¼ 1. The bottom fluid is at rest and the top fluid

has free-stream velocity U ¼ 1. Gravity is not included.
Owing to viscosity, the shear profile varies continuously
through the interface. We use an initial velocity profile in
the form of an error function in the liquid and the gas, with

FIG. 1 (color online). Kelvin-Helmholtz instability excited by
two types of initial perturbation, shown by the deformation of the
interface. We ¼ 1000, Re ¼ 100. The two fluids have the same
density (r ¼ 1). For the wavelike initial condition, we observe
the familiar roll-up of the interface in vortices whose size is fixed
by the initially imposed wavelength. For the localized initial
perturbation, we observe the creation of a system of two vortices
growing in size without alteration in shape.
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matching at the interface satisfying the stress continuity.
The height of the mixing-layer is defined by the parameter
� ¼ 1 in both fluids. The Reynolds number for both fluids
is Re ¼ U�=� ¼ 100, based on the mixing-layer height
and velocity difference. We will see that the density ratio
r ¼ �gas=�liq will play a central role in the dynamics.

The interface is characterized by its surface tension �.
The capillary resistance of the interface to aerodynamic
deformation forces is quantified by the Weber number
We ¼ �gasU

2�=� ¼ 1000.

We simulate the evolution of this system using the
Navier-Stokes equations for a two-fluid system. The equa-
tions are discretized using a finite volume scheme, and the
interface is traced in the framework of the volume of fluid
method (VOF) [7]. The open source software GERRIS FLOW

SOLVER is used which allows for octree adaptive grid

refinement [8]. Results obtained with this code have been
compared to stability theory for mixing layers in [9]. The
refinement criterion is based on a combination of interface
curvature and fluid vorticity with a smallest cell size of
0.0635. The numerical simulations are performed in a
large domain (width 260, height 130) with periodic bound-
ary conditions in the streamwise direction and symmetry
boundary conditions at top and bottom. A perturbation is
induced at initial time in the center of the domain, in the
form of a localized upward force of extent L0 ¼ 1 and
amplitude low enough such as to initiate the instability
without creating a vertical jet.

A first quantitative description of the wave growth is
given in Fig. 2. The size of the wave is measured from the

simulation output as L ¼ ffiffiffiffi
A

p
with A the area of liquid

which has crossed through the initial interface location
y ¼ 0. We observe an algebraic growth, whose slope de-
creases with the density ratio r.

Let us first ignore capillarity and viscosity. The evolving
vorticity field for instance is parameterized as ! ¼
!ðx; y; t; U; �gas; �liq; �; L0Þ, function of the two spatial

coordinates and time, as well as five parameters specifying
the system and the initial excitation. There are three inde-
pendent physical dimensions, ! can thus be written
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where f is a dimensionless function. As the wave is grow-
ing, the inertial length Ut becomes arbitrarily larger than
the initial mixing-layer thickness �=Ut ! 0which appears
at the scale of the wave as a vorticity sheet. Similarly, the
initial forcing appears as a Dirac; the vorticity thus be-
comes ðU=�Þfðx=Ut; y=Ut; r; 0; 0Þ where time enters ex-
clusively through the length scale: the wave is steady in the
coordinates x0 ¼ x=Ut, y0 ¼ y=Ut; this is the self-similar
law. The density ratio r is the single remaining parameter.
We will see that the shape and phenomenology change

very much with r. We can nevertheless attempt to derive a
scaling for one particular wave property: its size L. For this
we need to model the forces in balance. To this aim, an
idealized wave anatomy is proposed in Fig. 3. In essence,
the head of the wave is an obstacle to the gas stream,
leading to an acceleration of the gas above. Thanks to
self-similarity, the streamline pattern does not change in
time, thus the speed above the wave remains proportional
to U. We denote Pþ the ambient pressure, and P� the low
pressure above the wave. This low pressure is communi-
cated to the liquid in the wave head as shown on the figure.
The Bernoulli equation relating pressure and velocity in
the gas yields Pþ � P� / �gasU

2 if we neglect the non-

stationary terms. The same law applied inside the wave,
gives Pþ � P� / �liqv

2, where v is the velocity at which

the liquid feeds the wave. Since the pressure drop is the

same in the liquid and the gas, we have v /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gas=�liq

q
U:

the suction velocity v depends linearly on U and is im-
pacted by the density ratio through a square root law. Note
also that v is constant in time throughout the evolution
of the wave, just like U.
We may now derive the evolution law for the wave size:

the wave area A grows in time as liquid is sucked through

FIG. 2 (color online). Measured wave size L ¼ ffiffiffiffi
A

p
growing in

time for several density ratios. We observe an algebraic growth
of the wave. The speed of growth depends on the density ratio
r: the lighter the gas, the slower the growth. As inset, we scale
the growth with the law in square root of r according to the
theoretical analysis L / ffiffiffi

r
p

Ut. The wave shapes for r � 1 are
shown in Fig. 4.

FIG. 3 (color online). Schematic representation of the wave as
an obstacle to the gas stream. The acceleration of the gas stream
above the wave induces a pressure drop. The pressure gradient
ðPþ � P�Þ=L sucks liquid into the wave.
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its bottom of size L, thus @tA / Lv. Also, A / L2, and
since v is a constant, we obtain a differential equation for
the wave size @tL / v, thus our final result

L /
ffiffiffiffiffiffiffiffiffi
�gas

�liq

s
Ut:

This law is confronted against simulated data in the inset of

Fig. 2 by drawing the measured
ffiffiffiffiffiffiffiffi
A=r

p
as a function of Ut.

We observe indeed collapse of the slopes for values of the
density ratio up to 0.1. For two phases of similar densities
(r > 0:1), our model anatomy is not representative: the
wave tends to a symmetric shape with respect to y ¼ 0
and cannot be reduced to an obstacle against the gas flow.

Based on dimensional analysis, we know that the wave
cannot be self-similar if viscosity, capillarity or gravity is
large compared to inertia, at least not self-similar in the
way we describe in this paper. Capillarity imposes a mini-
mum wave size: the wave cannot grow when it is so small
that the fixed driving pressure drop �gasU

2 is balanced

by the capillary pressure jump �=L across an interface
with radius of curvature L. This lower bound is Lcap /
�=�gasU

2. Viscosity will slow down the growth of small

waves for which the driving is of the order of the Poiseuille
pressure drop �v=L. Gravity on the other hand imposes
a maximum size, that for which the hydrostatic pressure
�gL from foot to head equals the driving. This upper
bound is Lgrav / rU2=ð1� rÞg. The self-similar wave so-

lution is thus allowed as an intermediate asympotics (see
[10]) between the small capillary and viscous scales, and
the large gravity scale. This intermediate range is made

comfortable for fixed fluid properties �, �, g by choosing
an intense free-stream velocity. These results in terms of
characteristic lengths can equivalently be expressed with
the Reynolds, Weber, and Froude numbers built on the
wave size: the evolution of a wave of size L is self-similar
if ReL ¼ �gasUL=�>

ffiffiffi
r

p
, WeL ¼ �gasU

2L=� > 1 and

FrL ¼ U2=gL > ð1� rÞ=r.
We now turn to the description of the wave shape as r

varies. Being a self-similar shape, the wave has a virtual
origin (x0, t0). We measure t0 by extrapolating back in time
the algebraic law for its size. For the origin in space we
need an other robust characteristic of the wave: we chose
the position of the point b at its back as shown on Fig. 3.
The downstream location of this point is found to increase
algebraically as the wave advances and grows; it can be
extrapolated back in time to yield the location x0 of the
virtual origin. Figure 4 represents the evolution of the
wave in time for three density ratios, in the form of
spatiotemporal diagrams.
We now define the characteristic cone: it originates

from the virtual origin and is delimited by two character-
istic lines, the line of the fastest speed of the system—the
speed of a gas particle—and the slowest speed in the
system—that of a liquid particle. At equal density of liquid
and gas (r ¼ 1), the wave must be symmetric with respect
to the point b as indeed observed. The wave is large and
occupies most of the cone width. For smaller gas densities,
the wave is asymmetric, with a shape resembling that of
our model analysis. Its position remains close to the
upstream limit of the cone: the wave grows slowly.
Unlike gravity or capillary waves, this structure does not

FIG. 4 (color online). Evolution of the wave represented as a spatiotemporal diagram for three representative density ratios. The
characteristic cone delimited from the virtual origin by the liquid and gas speed is represented as a frame of reference. The speed of
advancement of the wave is compared to the Dimotakis speed, characteristic of propagation in this two-phase system. The origin of
the self-similar shape (x0, t0) is visualized as the tip of the characteristic cone. We observe that it differs from (0,0). This effect is due to
the transient from the initial forcing.
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propagate at its own phase speed, it merely grows, with
its back pinned at the cone upstream edge. To provide a
further velocity reference for the wave displacement, we
have indicated the Dimotakis speed VD ¼ U

ffiffiffi
r

p
=ð ffiffiffi

r
p þ 1Þ

with a red line (see [11]).
The scaling law for the measured wave area is now

verified. We must proceed to assess whether the complete
shape grows homothetically. We make use once more of
the virtual origin. The wave height and width are rescaled
as x0 ¼ ðx� x0Þ=Uðt� t0Þ, y0 ¼ y=Uðt� t0Þ. The scaled
wave interfaces are represented overlapped in time in
Fig. 5 for r ¼ 0:1.

The flow structure is represented in Fig. 4 by instanta-
neous streamlines at time t ¼ 100. For r ¼ 1 it consists in
a pair of corotating vortices reminiscent of two consecutive
vortices of the usual wavelike scenario, except that here the
two vortices are not aligned horizontally (see Fig. 1 for a
comparison). This configuration is reminiscent of the si-
multaneous roll-up of two semi-infinite vortex sheets into
Kaden spirals (see [6]). When reducing the gas density—
here for r ¼ 0:1—the upstream vortex no longer forms and
is replaced with an elongated gas recirculation bubble. The
downstream vortex also fails to roll gas and liquid together,
but takes the form of a gas vortex sheltered from the main
stream by the liquid body of the wave. The wave grows a
tongue which undergoes flapping. Liquid drops are torn
from the wave through this flapping motion, and sent partly
off to the gas stream and partly into the vortex core. For
still lower gas densities, r ¼ 0:01, the wave grows much
slower and is found pinned at the upstream limit of the
characteristic cone. The tongue flaps and detaches from
time to time; the liquid being now completely thrown out to
the fast gas stream. We observe periodic detachment of the
downstream vortex in a typical vortex shedding sequence.
The streamline pattern of Fig. 4 shows two gas vortices:
one is in the instance of leaving the shelter of the wave, and
the second further downstream is the fruit of the previous
shedding event.

This vortex shedding for low r is to our knowledge a new
mechanism which the study of the self-similar wave allows
us to identify. Indeed, we understand now that the wave

grows slowly for low r and that its back travels at the speed
of the liquid. There must thus be a qualitative transition
when reducing r, toward a regime where the wave appears
to the gas stream as a fixed obstacle, with the ensuing
vortex shedding. The wave’s tongue is a fragile object,
periodically teared into drops through the interaction of
its own inertia and violent vortex departures. The ejection
angle, drop size and frequency could be analyzed along
the lines of this atomization scenario.
‘‘Since a general solution must be judged impossible

from wants of analysis, we must be content with the
knowledge of some special cases, and that all the more,
since the development of various cases seems to be the
only way of bringing us at last to a more perfect knowl-
edge.’’ (Euler in [12], cited from Craik [13]). The self-
similar response of the Kelvin-Helmholtz instability to a
localized perturbation may indeed be a special case in this
spirit. The growth law in the square root of the density ratio
L / ffiffiffi

r
p

Ut was derived from an idealized wave anatomy.
The quantitative success of this simple analysis tells that
Fig. 3 depicts a realistic idealized configuration, ensuring
that the underlying nonlinear mechanism for growth was
indeed uncovered. We have described the intimate struc-
ture of the wave in Fig. 4, showing the mutations of the
system of two vortices accompanying the liquid wave,
and its impact on the dynamic behavior of the wave.
We are grateful to Marco Fontelos, Christophe

Josserand, and Sergio Chibbaro for comments on the
manuscript.
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FIG. 5 (color online). Wave interface overlapped in time,
recast in the self-similar reference frame (x0, y0) for density ratio
r ¼ 0:1. We can observe the self-similar shape of the wave,
disturbed by instationarity at the wave tip and drop shedding.
We see on Fig. 4 that the initial transient for r ¼ 0:1 lasts until
about t ¼ 70.
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