
Input-Output Analysis and Control Design Applied to

a Linear Model of Spatially Developing Flows

S. Bagheri and D.S. Henningson
Department of Mechanics and Linné Flow Center,
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This review presents a framework for the input-output analysis, model reduction and control
design for fluid dynamical systems using examples applied to the linear complex Ginzburg-Landau
equation. Major advances in hydrodynamics stability, such as global modes in spatially inhomo-
geneous systems and transient growth of non-normal systems is reviewed. Input-output analysis
generalizes hydrodynamic stability analysis by considering a finite-time horizon over which energy
amplification, driven by a specific input (disturbances/actuator) and measured at a specific output
(sensor), is observed. In the control design the loop is closed between the output and the input
through a feedback gain. Model reduction approximates the system with a low-order model, mak-
ing modern control design computationally tractable for systems of large dimensions. Methods from
control theory are reviewed and applied to the Ginzburg-Landau equation in a manner that is read-
ily generalized to fluid mechanics problems, thus giving a fluid mechanics audience an accessible
introduction to the subject.

PACS numbers:

I. INTRODUCTION

Whereas stability theory has long occupied a cen-
tral role in fluid mechanics research, control theory has
only recently been applied to fluid systems. Despite its
long history, stability theory has undergone remarkable
changes over the past decades. The incorporation of
short-term instabilities into a traditionally asymptotic
stability concept, the equal treatment of stability and
response behavior within the same mathematical frame-
work, and use of system-theoretical tools to probe the
disturbance behavior of fluid systems have reinvigorated
hydrodynamic stability theory and developed it into a
modern tool of fluid dynamic research. Especially the for-
mulation of the governing equations in state-space form
combined with an input-output viewpoint of the pertur-
bation dynamics has brought the two fields of stability
and control theory closer together. Whereas stability the-
ory is concerned with all aspects of the open-loop dynam-
ics of the governing equations, control theory connects
the output to the input and focuses on the closed-loop
characteristics — including optimal design and perfor-
mance analysis — of the underlying dynamical system.
These two closely related disciplines, and the unifying
formulation that connects them, are the subject of this
review. Due to the vastness of these two fields, we restrict
ourselves to concepts of direct relevance to fluid dynam-

ical systems as well as to a simple model equation. The
Ginzburg-Landau equation, a well-known model equa-
tion displaying a great variety of phenomena observed
in fluid systems, will be used to demonstrate and exem-
plify concepts and techniques from stability, systems and
control theory.

The recognition that short-term instabilities play an
important role in fluid dynamical systems can be traced
back nearly two decades when scientists searched for
disturbances that optimize energy amplification over a
finite time span [18, 35, 89, 90]. These disturbances
did not resemble the most unstable eigenvectors of the
system which led to the development of a theoretical
foundation to describe short-term nonmodal phenom-
ena [37, 93, 94, 102]. In fact, even if the flow is asymptot-
ically stable, substantial amplification of the input signal
(initial condition or external forcing) into an output sig-
nal (energy) can occur. By now, the associated theory
has matured into an important component for under-
standing the transition process from laminar to turbu-
lent fluid motion and has been able to explain a variety
of observed fluid structures in transitional and turbulent
shear flows [94]. In a further step, an input-output frame-
work has been suggested [60] which brings the analysis of
stability characteristics closer to a system theoretic inter-
pretation, with impulse response, frequency response and
transfer functions as the principal tools of investigation.



At the same time, flow control based on control the-
ory has emerged as a new discipline of fluid mechanics
([5, 13, 19, 20, 50, 52, 53, 58, 71, 82]). Starting with
simple feedback control laws and full-state information
control, it has progressed toward more realistic config-
urations by incorporating the estimation problem and
partial-state information control. During the control de-
sign process, a strategy is determined that feeds informa-
tion from the measurements (sensors) back to the input
signal (actuators) such that a given control objective is
achieved. The accompanying theoretical basis, adapted
from control theory [7, 66, 73, 106], to determine these
strategies has evolved substantially, and flow control has
advanced into an independent and active field of fluid
dynamics. Comprehensive accounts on recent progress in
the rapidly expanding field of flow control can be found
in [12, 38, 64, 65].

The input-output framework provides not only a con-
venient way of analyzing stability and receptivity char-
acteristics [46, 75] of fluid systems, it represents the nat-
ural starting point for control design. Stability and re-
ceptivity analysis as well as control design can thus be
accomplished within the same formal setting. This uni-
fied analysis shall be exemplified in this review article by
investigating the stability and response properties of the
Ginzburg-Landau equation and by devising effective con-
trol strategies including the evaluation of their efficiency
and performance. The Ginzburg-Landau equation has
frequently been used as a model for instabilities in fluid
systems, see e.g. [22, 55]. We will use it here with two
different sets of parameters: one set to model globally un-
stable flows (so-called oscillators), and another set to de-
scribe convectively unstable flows (so-called noise ampli-
fiers). The Ginzburg-Landau equation has also been the
subject to several flow control studies [27, 68, 69, 79, 86].

The review is organized as follows (see also Figure 1):
we start with a summary of stability results for the
Ginzburg-Landau equation in section II where results
for both asymptotic behavior and transient growth will
be presented. In section III we investigate the input-
output behavior of linear systems in general, and the
Ginzburg-Landau equation in particular. The response
to impulsive, harmonic and stochastic forcing will be con-
sidered, and the concepts of controllability and observ-
ability will be introduced. In section IV we review the
projection method of model reduction using global eigen-
modes, POD modes and balanced truncation. Section V
deals with the control design for the Ginzburg-Landau
equation. We present a detailed derivation of the LQG
(Linear Quadratic Gaussian) control framework, raise the
important issue of actuator and sensor placement, and
conclude by discussing robust control. Concluding re-
marks and a summary of the presented material are of-
fered in the last section.

FIG. 1: Overview of the open-loop and closed-loop analysis
performed in this review. The response in terms of the flow
state, kinetic energy and sensor signal to impulse, harmonic
and stochastic inputs of the parallel, non-parallel, convec-
tively unstable and globally unstable Ginzburg-Landau equa-
tion is investigated in Sections II and III. Model reduction
of the system is performed in section IV followed by opti-
mal (LQG), robust (H∞) and reduced-order control design in
section V.

II. ASYMPTOTIC AND TRANSIENT
BEHAVIOR

A. Parallel flows — fundamental concepts

Before applying modern techniques of hydrodynamic
stability theory [94] to the full Ginzburg-Landau model
describing spatially varying flows, we will first intro-
duce and analyze a simpler version of the Ginzburg-
Landau equation. By neglecting the spatial dependence
of the flow, thus arriving at the parallel (i.e. constant-
coefficient) Ginzburg-Landau equation, we will apply
concepts of linear stability analysis to describe the growth
and decay of disturbances in time and/or space.

The parallel Ginzburg-Landau equation on the infinite
interval −∞ < x <∞ reads

∂q

∂t
= Aq =

(

−ν ∂
∂x

+ γ
∂2

∂x2
+ µ

)

q, (1a)

q(x, t) < ∞ as x→ ±∞, (1b)

with initial condition q(x, 0) = q0(x) and A as the
Ginzburg-Landau operator. The solutions q(x, t) are
functions in C with the inner-product defined as 〈f, g〉 =
∫∞

−∞
g∗fdx. We occasionally refer to the this norm as

the energy norm. The superscript ∗ denotes the com-
plex conjugate. The convective and the dissipative na-
ture of the modeled flow is represented by the complex
terms ν = U + 2icu and γ = 1 + icd, respectively. The
above equation is of convection-diffusion type with an ex-
tra real-valued term µ = µ0−c2u to model the presence of
exponential instabilities. The significance of the complex



FIG. 2: Local stability concepts based on the linear response of the parallel Ginzburg-Landau equation to a temporally and
spatially localized pulse at t = 0 and x = 0, displayed in the x-t-plane. (a) stable configuration µ0 ≤ 0 : the solution at
t = t1 > 0 is damped everywhere; (b) convectively unstable configuration 0 < µ0 < µt : the solution at t = t1 is amplified, but
is zero along the ray x/t = 0; (c) absolutely unstable configuration µt ≤ µ0 : the state is amplified at t = t1 and nonzero along
the ray x/t = 0.

terms cd and cu will become clearer when we decompose
the system into wave-like solutions.

We first investigate the linear stability of the parallel
Ginzburg-Landau equation, i.e. the spatio-temporal evo-
lution of the perturbation q(x, t) about the basic state
qB(x, t) = 0. As introduced by [17], this spatio-temporal
evolution of perturbations in fluid flow can be described
by three basic types of local behavior: (i) stable, (ii)
convectively unstable and (iii) absolutely unstable. Our
model equation, in fact, has by construction the mini-
mum number of required terms to give rise to a successive
transition through the three types of instability.

The three types of disturbance behavior can be probed
by computing the response to a spatially and temporally
localized pulse as this pulse evolves in space and time.
Figure 2 demonstrates the three types of responses that
may be observed. First, the amplitude may asymptot-
ically decay in time throughout the entire domain (see
Figure 2a). In this case, the basic flow is deemed linearly
stable. Second, a convectively unstable flow is shown in
Figure 2b; in this case, the perturbation grows in time,
but is convected away from the location at which it was
generated, so that the response eventually decays to zero
at every spatial location. Finally, for an absolutely un-
stable flow (see Figure 2c) the perturbation is amplified
both upstream and downstream of the location it was
generated and thus contaminates the entire spatial do-
main over time.

The response behavior to a δ-function applied at
(x, t) = (0, 0) is equivalent to the Green’s function or
impulse response of the complex Ginzburg-Landau equa-
tion. We will return to this concept in a subsequent sec-
tion of this review. In what follows, we will first exploit
the homogeneity in space and time and seek solutions
in the wavenumber/frequency (Fourier) space. The dis-
persion relation linking wavenumber and frequency then
fully describes the evolution of wavelike (and by super-
position) non-wavelike solutions. Criteria for stability or
instability of the solutions, as well as the type of insta-
bility, follow easily from the dispersion relation.

We express the solutions q(x, t) as a superposition of
normal modes q̃(k, ω) exp(ikx− iωt) with wavenumber k,
frequency ω, and (complex) amplitude q̃. The imaginary
part of k and ω determines the stability of the associated
solution, whereas the real part describes the oscillatory
behavior in x and t, respectively. Introducing this nor-
mal mode decomposition into (1) results in the dispersion
relation, D(k, ω;µ0) = 0, which takes the form

ω = Uk + cdk
2 + i(µ0 − (k − cu)2). (2)

Within the temporal framework, an initial periodic per-
turbation with real wavenumber k grows exponentially in
time when µ0 in (2) exceeds (k−cu)2, i.e. when exponen-
tial growth exceeds diffusion. In this case, ωi(k) > 0 and
the associated normal mode q̃ exhibits exponential tem-
poral growth. Furthermore, we observe a finite interval
k ∈ [cu−√

µ0, cu+
√
µ0] of unstable spatial wavenumbers.

A simple criterion for linear stability of the flow can be
deduced by considering the growth rate ωi = ωi,max of
the most unstable wave k = kmax in this interval. For
the dispersion relation (2), we observe that kmax = cu
and the corresponding growth rate is ωi,max = µ0. Thus,
the condition for a local linear instability becomes,

µ0 ≤ 0 locally stable, (3a)

µ0 > 0 locally unstable. (3b)

In Figure 3, the neutral curve, defined by ωi,max = 0,
is displayed as a function of µ0 and k. We see that the
range of unstable wavenumbers increases as µ0 increases.

To further investigate the two types of locally unstable
configurations — convectively unstable and absolutely
unstable — it is instructive to consider perturbations
that consist of a superposition of normal modes near
k = cu which form a travelling wavepacket. From the
dispersion relation (2) we conclude that individual wave
components of this wavepacket travel at the phase veloc-
ity
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FIG. 3: The neutral stability curve for the parallel Ginzburg-
Landau equation (with cu = 0.2) in the (µ0, k)-plane.
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FIG. 4: The neutral absolute stability curve for the parallel
Ginzburg-Landau equation (with γ = 1− i) in the (µ0, Umax)-
plane.

ωr/k = U + cdk, (4)

whereas the wavepacket itself, and therefore the pertur-
bation, travels at the group velocity

Umax =
∂ω

∂k
= U + 2cdcu. (5)

In general, the group velocity is complex but carries a
physical meaning when it is real, which is always the
case for the most unstable wavenumber cu.

The disturbance behavior in the unstable region de-
pends on the competition between convection and insta-
bility. For the Ginzburg-Landau equation we find that
the flow is convectively unstable if Umax > 2

√
µ0|γ|, i.e.,

when the group velocity exceeds the exponential instabil-
ity of the unstable region (for constant diffusion). This
means that, for convection-dominated flows, perturba-
tions grow as they enter the unstable domain but are

quickly convected downstream, beyond the unstable re-
gion where they decay, and the basic state relaxes back
to its original state (see Figure 2b). However, when µ0

exceeds the critical value of

µt =
U2

max

4|γ|2 , (6)

there exists an unstable wavelength with zero group ve-
locity. As the perturbation is amplified in the unstable
domain, it will gradually contaminate the entire physical
domain and render the flow absolutely unstable. In Fig-
ure 4, the neutral curve, defined by µt = 0, is displayed as
a function µ0 and Umax. The critical value µt is obtained
by considering a wavepacket with a zero group velocity
∂ω/∂k = 0 (see [54] for an exact derivation). The asso-
ciated growth rate ωi = ωi,0 is the absolute growth rate.
Unlike for our case, the absolute frequency ω0 for realistic
flow configurations can seldom be found in analytic form.
Instead, one has to resort to Briggs’ method ([17], see also
[54]) which amounts to locating pinch points in the com-
plex k-plane. In addition to the criterion of zero group
velocity, one must ensure that the two spatial branches
k+(ω) and k−(ω) (for real ω) in (2) originate from the
upper and lower halves of the complex k-plane.

B. Spatially developing flows — a global approach

Despite the limitations of a parallel flow assumption,
the above results carry over to weakly non-parallel flows
as described in Refs. ([26, 55, 70, 80]). Within a Wentzel-
Kramers-Brillouin-Jeffreys (WKBJ) approximation, one
can draw conclusions about the global stability behavior
from investigating the dispersion relation locally. Many
realistic flows, however, are strongly non-parallel which
requires us to resort to a global stability analysis. In
this section, we will adopt this global point of view to in-
vestigate the stability properties of a simple model flow
which depends on the flow direction x. We will see that
a rich disturbance behavior is uncovered which has its
roots in the non-normality of the underlying evolution
operator [31, 99, 101]. As a first step, one solves a global
eigenvalue problem. Assuming completeness, any pertur-
bation can then be decomposed into the global eigenfunc-
tions of the governing operator. If there exists an unsta-
ble global mode, it is amplified until it saturates due to
nonlinearity and may lead to self-sustained oscillations in
the flow (Figure 5). The short-time, or transient, behav-
ior can also be captured by global modes [29, 45], if one
considers a superposition of them. For non-normal sta-
bility operator with corresponding non-orthogonal global
modes a superposition of decaying global modes can re-
sult in a large transient amplification of perturbation en-
ergy (Figure 6). As demonstrated by [29], this transient
behavior often corresponds to a localized convective in-
stability when using a local approach.



FIG. 5: (a) The spatio-temporal evolution of a disturbance in
a globally unstable flow. The disturbance grows exponentially
until the cubic nonlinear term −|q|2q (see [22, 25] for details
of the nonlinear Ginzburg-Landau equation) causes the dis-
turbance to saturate and oscillate. (b) The energy that corre-
sponds to the evolution in (a) is shown in red, and the linear
exponential growth for the linear Ginzburg-Landau equation
is shown in dashed black.

The linear complex Ginzburg-Landau equation serves
as a simple model for capturing both the short-time and
long-time evolution of small perturbations q(x, t) in spa-
tially developing flows. We will use this model equa-
tion to illustrate fundamental concepts of linear global
stability analysis. If the parameter µ, responsible for
the local instability in equation (1), is now taken as a
function of x, the Ginzburg-Landau equation becomes a
variable-coefficient partial differential equation modeling
non-parallel flows [56]. The Ginzburg-Landau equation
with µ as a linear function in x can be used to mimic
flows on the interval [0,∞) as shown in [24]. We will
adopt the commonly used quadratic function [29, 56],

µ(x) = (µ0 − c2u) + µ2
x2

2
, µ2 < 0. (7)

The flow is now susceptible to instabilities only when
µ(x) > 0, which defines a confined unstable region in

the x-direction given by −
√

−2(µ0 − c2u)/µ2 < x <
√

−2(µ0 − c2u)/µ2. The upstream and downstream edge
of the unstable domain are referred to as branch I and II,
respectively, and are indicated by the two black dashed
lines in Figure 5 and 6. The extent of this region de-

FIG. 6: (a) Linear transient growth of a perturbation in space
and time: an optimal initial perturbation grows as it enters
the unstable domain at branch I at x = −8.2 until it reaches
branch II at x = 8.2. The two dashed lines depict branch I
and II. (b) The corresponding optimal energy growth of the
convectively unstable flow in (a).

pends on the parameter µ2 which can be interpreted as
the degree of non-parallelism of the flow. The operator A
in (1) with q(x, t) bounded for x = ±∞ is non-normal if
both the term involving µ2 and the convection term ν are
non-zero. As demonstrated in Refs. [22, 29] the smaller
µ2 and/or the larger ν the stronger the non-normality of
the operator A. The parameter µ2 thus plays a dual role:
for large values of µ2 the system is strongly non-parallel
but weakly non-normal, while for very small values of µ2

the system represents weakly non-parallel but strongly
non-normal flow. For the latter case, a local analysis may
be more appropriate as the resulting global eigensystem
is rather ill-conditioned [22, 101].

A global mode of the Ginzburg-Landau equation is de-
fined as

q(x, t) = φ(x) exp(λt) (8)

and is a solution to the eigenvalue problem

λφ(x) = Aφ(x) φ(x) <∞ as x→ ±∞, (9)

where A is the operator defined in (1). The flow is glob-
ally unstable when the real part of any eigenvalue λ is
positive which results in self-excited linear oscillations in



the flow of a frequency given by the imaginary part of
λ. For the case µ2 6= 0 the eigenvalue problem (9) for
the Ginzburg-Landau equation (1) can be solved analyt-
ically [23]. One obtains

λn = (µ0 − c2c) − (ν2/4γ) − (n+ 1/2)h, (10a)

φn(x) = exp{(ν/2γ)x− χ2x2/2}Hn(χx), (10b)

with h =
√−2µ2γ, n = 0, 1 . . . and Hn as the nth Her-

mite polynomial, scaled with χ = (−µ2/2γ)
1/4. Global

instability is determined by the sign of the first eigenvalue
(n = 0) which yields the criterion for global instability
as µ0 > µc where

µc = µt +
|h|
2

cos

(
Argγ

2

)

(11)

and µt is the threshold value for absolute instability (6).
The term Arg denotes the phase angle of γ. We therefore
conclude from (11) that the threshold for a global insta-
bility is higher than the one for an absolute instability.
Formulated in another way, an absolute instability is a
necessary condition for a global instability.

The short-time behavior of a disturbance cannot be
predicted by studying individual eigenmodes. Instead,
a more detailed analysis of the properties of the stabil-
ity operator A is necessary. When µ2 6= 0 and ν 6= 0
the Ginzburg-Landau operator A is non-self-adjoint [31],
i.e., 〈q1,Aq2〉 6= 〈Aq1, q2〉. As a consequence, the global
modes are non-orthogonal 〈φn, φm〉 6= δnm, and although
they may form a complete basis, they are nearly colin-
ear and their superposition may lead to large transient
growth (Figure 6b). We will study this issue in more de-
tail by considering an expansion in global modes. To this
end, we find the adjoint global modes as

ψn(x) = exp{(−ν∗/γ∗)x}φ∗n(x) (12)

which satisfy the adjoint eigenvalue problem

λ∗nψn(x) = A+ψn(x), (13)

where

A+ = ν∗
∂

∂x
+ γ∗

∂2

∂x2
+ µ∗(x) (14)

with boundary condition ψn(x) < ∞ as x → ±∞. The
superscript ∗ denotes the complex conjugate. The adjoint
global modes ψn are bi-orthogonal to the global modes
(10) according to

〈ψn, φm〉 = Nnmδn,m (15)

−30 −20 −10 0 10 20 30

−1

−0.5

0

0.5

1

−30 −20 −10 0 10 20 30

−1

−0.5

0

0.5

1

x

(a)

(b)

FIG. 7: The first (a) and second (b) global (black lines) and
adjoint eigenmode (red lines) of the Ginzburg-Landau equa-
tion with the absolute value shown in solid and real part in
dashed. The gray area marks the region of instability

with Nnm as a normalization factor that we choose such
that ‖φn‖ = ‖ψn‖ = 1. The adjoint mode (12) distin-
guishes itself from its direct counterpart (10b) mainly by
the sign of the basic flow convection term ν. This mani-
fests itself by a characteristic separation of the direct and
adjoint global mode in space. In Figure 7a and b, the two
first direct and adjoint global modes of the Ginzburg-
Landau equation are shown where the separation in x is
seen to increase for higher modes, until the support of
the direct and adjoint mode is nearly disjoint. Conse-
quently, Nnn = 〈φn, ψn〉 becomes increasingly small, a
phenomenon we shall investigate further in what follows.

We continue by stating that a sequence of global modes
{φn}∞n=0 forms a basis if any solution of the Ginzburg-
Landau equation has a norm-convergent expansion

q(x, t) =
∞∑

n=0

κnφn(x) exp(λnt), (16)

where the expansion coefficients κn are obtained using
the adjoint global modes and the initial condition q0 ac-
cording to

κn =
〈q0, ψn〉
〈φn, ψn〉

. (17)

The denominator of the above expression, i.e. Nnn, be-
comes very small when the direct and adjoint global
modes have nearly disjoint spatial support. In this case,
the expansion coefficients (17) of q become large. Al-
though the amplitude of all stable global modes decreases
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monotonically in time, their superposition produces a
wavepacket that transiently grows in time as it propa-
gates in space.

Although it is possible [4, 5, 34, 45], in practice the
short-time amplification of disturbances is rarely com-
puted using global modes. Instead one computes the
norm of the exponential matrix [100], ‖eAt‖, as we shall
demonstrate next.

C. Optimal energy growth and resolvent norms

For sufficiently large transient amplifications nonlinear
effects can no longer be neglected, and, in real flows, more
complex instabilities or transition to turbulence are often
triggered. For this reason it seems important to investi-
gate the most dangerous initial condition that results in
a maximum energy amplification over a specified time
interval [8, 28, 35, 74, 89, 90].

For simplicity, we will formulate and present results
using the discrete Ginzburg-Landau operator A. See ap-
pendix A for details of the numerical approximation of
the operator A. The continuous approach can be found
in Ref [101]. The values of the Ginzburg-Landau param-
eters used in the computations that follows can be found
in Table I.

The discrete energy norm given by (A3) can, after
a Cholesky decomposition of the energy weight matrix
M = FHF, be related to the standard Euclidean norm
of a disturbance by

E(t) = ‖q‖2
M = ‖Fq‖2

2. (18)

We can now define the maximum transient growth of
the perturbation energy at time t as
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FIG. 9: Optimal energy growth, Emax, as a function of time.
(S) stable configuration µ0 < 0: the perturbation energy de-
cays exponentially for all time; (CU) convectively unstable
configuration 0 < µ0 < µc: the perturbation energy is am-
plified initially but decays to zero asymptotically; (GU) glob-
ally unstable configuration µc < µ0: the perturbation energy
grows exponentially asymptotically. The values of the param-
eters used in the computations are listed in Table I.

Emax(t) = max
‖q0‖>0

‖q(t)‖2
M

‖q0‖2
M

(19)

= max
‖q0‖>0

‖FeAtq0‖2
2

‖Fq0‖2
2

= ‖FeAtF−1‖2
2 = σ2

1

where σ1 is determined from a singular value decompo-
sition,

FeAtF−1 = UΣV H , Σ = diag{σ1, . . . , σn}. (20)

The above expression contains an optimization over all
possible initial conditions, and the peak value of σ2

1(t) is
the maximum energy amplification over time. Optimal
initial disturbances can be calculated according to q0 =
F−1V1 where V1 is the right principal singular vector of
the SVD in equation (20). The maximum growth and the
corresponding optimal disturbance can also be obtained
from power iterations [8, 94].

The optimal initial disturbance of the Ginzburg-
Landau equation shown in Figure 8 is located at the
upstream boundary of the unstable domain. As time
evolves it traverses the unstable domain (gray region),
where it can exhibit either decay, transient growth or
asymptotic exponential growth as illustrated in Figure 9
depending on the value of bifurcation parameter µ0 (i.e.
the Reynolds number for Navier-Stokes equations). The
optimal energy growth curves shown in Figure 9 corre-
sponds to a stable (S), convectively unstable (CU) and
globally unstable (GU) flow configuration. Note that,
for both (S) and (CU) configurations, all global modes
are stable. However, only for the latter case do we have



Subcritical Supercritical

{µ0, µ2} {0.38,−0.01} {0.41,−0.01}

{ν, γ} {2 + 0.2i, 1 − i} {2 + 0.2i, 1 − i}

{xI , xII} {±8.2} {±8.2}

{xw, xs, xu, s} {−11, 0,−3, 0.4} {−11, 9,−9, 0.1}

{R,W,G, γ0} {1, 1., 0.1/1.0, 9} {1, 0.1, 9}

TABLE I: Parameters {µ0, µ2}, {ν, γ} of the Ginzburg-
Landau equation given in (1) and (7). The critical values for
global and absolute stability are µc = 0.3977 and µt = 0.32,
respectively. External disturbances (B1), sensor (C2) and ac-
tuator (B2) are Gaussian functions (see equations (A4)) with
mean given by xw, xs and xu, respectively and a width of
s = 0.4. Design parameters {R,W,G, γ0} for the LQG- and
H∞-compensators are the control penalty (R), the covariance
of the disturbance (W ) and sensor noise (G), and a bound on
the ∞-norm, (γ0).

µ0 > 0 yielding a locally convectively unstable spatial
region. Consequently, a transient energy growth of two
orders of magnitude can be observed before asymptotic
decay sets in [29].

To conclude this section, we investigate the effect on
global modes and on the global spectrum as the opera-
tor A is discretized. The spectrum of A is displayed in
Figure 10 by the green symbols using the analytical ex-
pression (10). The spectrum of the discretized Ginzburg-
Landau operator A is shown by the blue symbols. A
characteristic split of the eigenvalue branch is observed
which is rather common in finite-precision stability com-
putations of strongly non-normal flows. The reason for
this split is the insufficient resolution to accurately cap-
ture the increasingly oscillatory behavior of the associ-
ated eigenfunctions. These observations are closely re-
lated to the notion of pseudospectra [101].

It is misleading to assume that if Aφ ≈ sφ, then s is
close the spectrum of A. If s is taken as an approximate
eigenvalue in the sense that ‖Aφ−sφ‖M < ǫ‖φ‖M , we can
conclude that, for normal systems, ǫ can be as chosen as
small as one wishes. For non-normal systems, however,
the minimum value of ǫ can become very large. This ob-
servation suggests the definition of the pseudospectrum
of A as the sets in the complex plane such that

{s ∈ C : ‖R(s)‖M = ‖(sI −A)−1‖M > ǫ−1}. (21)

The pseudospectrum of A (shown in Figure 10) is visu-
alized as a contour plot of the norm of the resolvent

‖R(s)‖M = ‖FR(s)F−1‖2 = σ1(s) (22)

where σ1(s) is the largest singular value of FR(s)F−1. It
is then straightforward to conclude that the eigenvalues
of the discretized Ginzburg-Landau operator A are in fact
ǫ-pseudoeigenvalues for ǫ equal to machine precision and
thus align with the 1015-contour of the resolvent norm in
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FIG. 10: Global spectrum of the subcritical Ginzburg-Landau
equation (see Table I), where all the eigenvalues (blue dots)
are in the stable half-plane. The unstable domain is in gray
and the exact global spectrum is indicated in green. The
numerically computed global eigenvalues (blue dots) exhibit
a characteristic split, aligning with the resolvent contour that
approximately represents machine precision. The resolvent
norm contours range from 10−1 to 1015.

Figure 10. For an alternative approach to characterize
the system sensitivity see Ref. [16].

The resolvent contours moreover give an indication of
the existence of non-normal effects, since the amount by
which the contours protrude into the unstable half-plane
can be used to estimate the maximum transient growth
of energy [93, 101]. We will return to this concept and
use the resolvent norm from an input-output viewpoint
in the next section, where we generalize the resolvent to
transfer functions — one of the most central concepts in
the design of control strategies.

D. Stability of supercritical and subcritical flows

Based on the global and local stability concepts intro-
duced in the previous sections we are now in a position to
define two fundamentally different scenarios that model
the behavior of disturbances in a large number of flows.

The first model is known as the supercritical case, in
which any flow disturbance will grow exponentially until
it saturates due to nonlinearities, as shown in Figure 5.
A global analysis shows at least one unstable eigenmode
of A, yielding a globally unstable flow. This type of sce-
nario prevails when the bifurcation parameter µ0 of the
Ginzburg-Landau equation is larger than the threshold
µc. A local analysis confirms an absolutely unstable re-
gion since µc > µt in (11) with µt as the threshold for
a local absolute instability (given by equation (6)). For



more details on how the absolutely unstable region acts
as a “wavemaker” that sheds waves in the downstream
and upstream direction, see Ref. [22]. Here, we will sim-
ply state the fact that linear local stability theory can
predict the occurrence of unstable global modes and pro-
vide an estimate of the frequency at which these modes
oscillate. The Karman vortex street behind a circular
cylinder is a generic supercritical flow configuration, and
a global and local analysis of the cylinder wake can be
found in [40, 87]. It was first shown [88] that the tran-
sition in a wake behind a cylinder close to the critical
Reynolds number is described by the Landau equation,
i.e. the nonlinear Ginzburg-Landau equation without dif-
fusion term. Since then, the Ginzburg-Landau equation
(often in its nonlinear form) has been used extensively to
model cylinder wakes, see Refs. [6, 27, 69, 81, 91]. Other
globally unstable flow examples that have been investi-
gated as to their self-sustained oscillatory behavior are,
among others, hot jets [72, 84] and a separated boundary
layer flow over a bump [77].

The second model is known as the subcritical case and
describes the behavior of disturbances in convectively un-
stable flows (Figure 6). As a result of the non-normality
of A, a global analysis reveals the presence of transient
energy growth (Figure 6b) which cannot be captured
by considering individual eigenmodes of the operator A.
Instead, one has to consider a superposition of global
modes or the norm of the exponential matrix to accu-
rately describe this short-term phenomenon. Transient
growth is observed for the Ginzburg-Landau equation
when 0 < µ0 < µc. A local analysis shows that this cor-
responds to a region where the flow is convectively un-
stable. The wavepacket in Figure 6 travels with a group
velocity (Umax) composed of a dominant wave (cu) which
is associated with the local dispersion relation (2) ana-
lyzed in section IIA. Prototypical convectively unstable
flow configurations contain, among others, the boundary
layer on a flat plate [4, 34], homogeneous jets and mixing
layers [47].

The Ginzburg-Landau parameters {ν, µ0, µ2, γ} for
modeling the linear stability of a subcritical or supercrit-
ical flow are listed in Table I. The critical value which
delineates the two scenarios is µc = 0.4.

III. INPUT-OUTPUT BEHAVIOR

Input-output analysis is a type of analysis of linear sys-
tems that is common-place in systems theory [62]. It is
concerned with the general response behavior to various
excitations of the linear system. In its generality, it goes
beyond the concept of classical stability theory commonly
practiced in fluid dynamics, as it is not only concerned
with issues of stability (i.e., the response to various initial
conditions), but also with the short-term dynamics, the
response to external (deterministic or stochastic) excita-
tions and the influence of uncertainties in the underlying
system [60, 93]. As such, it is thought of as an extension

of stability analysis and helps reveal a more complete
picture of the behavior of disturbances governed by the
linear system.

The temporal response of the Ginzburg-Landau equa-
tion to initial conditions (both short-term transient and
long-term asymptotic) has been considered in the pre-
vious section. In this section, we recast the Ginzburg-
Landau model into an input-output framework. The
analysis is applied to the convectively unstable case only,
since these types of flows are sensitive to forcing and act
as noise amplifiers [54]. Globally unstable flows behave
as flow oscillators with a well-defined frequency that is
rather insensitive to external forcing.

This framework will build the foundation for the subse-
quent design of control schemes, since it allows the quan-
titative description of the open-loop dynamics, i.e. the
response to, for example, excitation in the free-stream or
to blowing/suction at the wall. We will denote the in-
put sources by u(t) and the measured outputs by y(t). In
many realistic flow cases, the output y(t) will only be a
subset of the state variable q(t). For example, only shear
or pressure measurements at the wall (or another specific
location) will be available.

The common format for an input-output analysis is
given by the state-space formulation

q̇(t) = Aq(t) +Bu(t) (23a)

y(t) = Cq(t) (23b)

q(0) = q0 (23c)

where A represents the discrete Ginzburg-Landau oper-
ator, the matrices B and C govern the type and location
of the inputs u(t) and outputs y(t), respectively, and q0
stands for the initial condition. For the state-space for-
mulation of the linearized incompressible Navier-Stokes
equations see Refs. [36, 60].

The continuous equations are discretized in space us-
ing a spectral Hermite collocation method described in
appendix A. The inputs B = {B1, . . . , Bp} and outputs
C = {C1, . . . , Cr}H have spatial distributions of the form
of Gaussian functions given by equation (A4). In what
follows, we will formulate and present results based on
matrices and the discrete Ginzburg-Landau operator A.

The corresponding adjoint state-space equations of
(23) describing the evolution of adjoint state variable r(t)
can be written as (see also Ref. [103])

ṙ(t) = A+r(t) + C+v(t) (24a)

z(t) = B+r(t) (24b)

r(0) = r0. (24c)

The discrete adjoint matrices are not simply the complex
conjugate transpose (in other words, (A+, B+, C+) 6=
(AH , BH , CH)), unless the inner-product used to derive
the adjoint operator (13) has an associated weight M
which is unity. For the more general case, M 6= I, we
have



FIG. 11: Example of the input-output behavior of the Ginzburg-Landau equation with one input and two outputs. In (a)
the evolution in space and time of the state when forced by random noise is shown. The region between the dashed lines is
convectively unstable. The locations of the forcing B (x = −11), the first output C1 (at branch I) and the second output C2

(at branch II) are marked by arrows. In (b) and (c) the output signals y1 = C1q and y2 = C2q and in (d) the input signal u
are shown. Note that, in (c) the amplitude of the output signal y1 is less than one, but further downstream in (b), the second
output signal y2 has an amplitude close to 10. This illustrates the amplifying behavior of the system.

A+ = M−1AHM, (25a)

B+ = BHM, (25b)

C+ = M−1CH , (25c)

where M is a positive-definite and Hermitian weight-
matrix. In this work, M is chosen such that the inner-
product produces the energy of the state variable (see
appendix A).

The system of equations (23) has the formal solution

y(t) = CeAtq0 + C

∫ t

0

eA(t−τ)Bu(τ) dτ (26)

where we identify the first part of the right-hand side with
the homogeneous solution and the second part with the
particular solution stemming from the forcing term Bu.
Having covered the homogeneous solution (for C = I) in
detail in the previous section, we now turn our attention
to the particular solution. Setting q0 = 0 leaves us with
the input-output relation

y(t) = C

∫ t

0

eA(t−τ)Bu(τ) dτ (27)

from which we will develop tools to capture and charac-
terize aspects of the transfer behavior of an input signal
u(t) as it is passes through the linear system given by A.

Before analyzing the above input-output relation in
all generality, a first simple numerical experiment shall
demonstrate the response behavior of the convectively
unstable Ginzburg-Landau equation (see Figure 11). As

an input signal u(t) we choose white noise — drawn from
a normal distribution with zero mean and unit variance
— introduced at a location just upstream of the unsta-
ble region; the corresponding response y(t) = Cq(t) is
extracted at the two boundaries of the unstable domain,
i.e., at branch I and II. A first observation confirms the
amplification of the signal as it traverses the unstable
domain as well as the emergence of a distinct frequency
from the noisy input. The system, thus, seems to act
as both a noise amplifier [55] and a filter. These two
characteristics will be analyzed in more detail below.

A. Impulsive and harmonic forcing

The above introductory example has shed some light
on the response behavior of the Ginzburg-Landau equa-
tions to external forcing. Even though the signal has
demonstrated amplification and frequency selection of
the linear system, a more general analysis is pursued that
parameterizes the input-output behavior more precisely.

For this reason, we will consider two distinct input
signals: an impulsive signal applied at a specified location
xw = −11 which will trigger what is referred to as the
impulse response, and a harmonic signal, again applied
at a given location, that yields the frequency response of
the linear system.

For the impulse response we thus assume

u(t) = δ(t) (28)

which, according to (27), results in

y(t) = CeAtB = g(t). (29)



FIG. 12: Impulse response of the Ginzburg-Landau equation:
(a) The state response to an impulse introduced at t = 0 and
xw = −11. (b) The impulse response at branch II. The con-
vective character of the instability is evident: a wavepacket
grows as it enters the unstable domain, but is gradually con-
vected away from this domain before it begins to decay.

The spatial localization of the impulsive input signal
is contained in the matrix B (see equation (A4a)). For
C = I, the above solution (29) represents the Green’s
function of the Ginzburg-Landau equation. It forms the
fundamental solution of the linear system since particu-
lar solutions to more general external excitations can be
constructed by a simple convolution of the input signal
with the Green’s function. The input-output system (23)
is defined as stable if and only if the impulse response
(29) decays as time tends to infinity. Consequently, the
convectively unstable flow is input-output stable, which
is in contrast to the globally unstable flow where an im-
pulse will trigger the growth of an unstable global mode
with a well defined frequency. For the convectively un-
stable case, the state impulse response q(t) = eAtB for a
pulse introduced at xw = −11 is displayed in Figure 12a;
the impulse response (29) is shown in Figure 12b. We
observe the rise of a wavepacket with a distinct spatial
wavenumber and propagation speed. As expected from
the introductory example (Figure 5), the amplitude of
the wavepacket grows throughout the unstable domain
before it decays as the wavepacket passes branch II. For
larger times, only the remnants of the wavepacket near
branch II are observed.

The impulsive signal u(t) = δ(t) contains all tempo-
ral frequencies with equal amplitude. It is thus ideally
suited to extract and analyze a frequency selection behav-
ior from an unbiased input. On the other hand, we could
choose an input signal with only one frequency (rather
than all frequencies), i.e.

−4 −3 −2 −1 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s
i

s r

FIG. 13: Input-output pseudospectra where the black transfer
function contour levels are {100, 101, 103, 104, 105, 106}. The
red contour (with level 208) represents the largest contour
value that crosses the imaginary axis. The blue symbols in-
dicate the eigenvalues of A.

u(t) = est s ∈ C. (30)

Inserting the above input into (27), assuming A is glob-
ally stable and t = ∞ yields

y(t) =

∫ ∞

0

g(τ)es(t−τ) dτ = (31)

=

∫ ∞

0

g(τ)e−sτ dτ

︸ ︷︷ ︸

G(s)

est = |G(s)|e(st+φ).

We can identify the transfer matrix of dimension r × p

G(s) = C(sI −A)−1B s ∈ C, (32)

as the Laplace transform of the impulse response g(t).
Due to the linear nature of the Ginzburg-Landau equa-
tion an input est will generate an output with the same
frequency but with a phase shift φ = Arg G(s) and an
amplitude of |G(s)|. Since G(s) is usually a rectangular
matrix, the amplitude is defined as

|G(s)| = σ1, (33)

where σ1{·} denotes the largest singular value of G(s).
The transfer function G(s) fully describes the input-
output behavior of the system, whereas the state-space
formulation (23) describes the dynamics of flow.



FIG. 14: (a) The state response to harmonic forcing lo-
cated upstream of branch I (lower of the two dashed lines).
The largest response is at branch II (upper dashed line) for
ω = −0.65. (b) The frequency response, where the output is
a Gaussian function (see appendix A) located at branch II. In
the gray area all forcing frequencies are amplified in the un-
stable domain, all other frequencies are damped illustrating a
filtering effect. This response corresponds to the thick dashed
line representing the imaginary axis in the pseudospectra plot
in Figure 13, and the peak value ‖G‖∞ = 208 corresponds to
the red contour level.

The transfer function can be regarded as a general-
ization of the resolvent (21) introduced earlier. In fact,
the pseudospectra in Figure 10 are contours of |G(s)| for
the case B = I which corresponds to a uniform distribu-
tion of the input and C = F (where M = FHF ) which
corresponds to the measurement of the flow energy. As
discussed in section IID, the contours represent locations
in the complex plane where approximate eigenvalues of A
can be found for a given error norm (ǫ = 1/|G(s)|). Fig-
ure 13 displays pseudospectra of the input-output system
with B defined as in (A4) and C = F. In this case, the
contour levels correspond to the response amplitude of
the output for a unit amplitude input of the form est.

As an example, we will concentrate on a purely har-
monic forcing and set s = iω. The response of the linear
system to this type of excitation is given by the expres-
sion

G(iω) = C(iωI −A)−1B ω ∈ R, (34)

and the largest response to a harmonic input can be de-
fined as the maximum value of |G(iω)|,

‖G‖∞ = max
ω

|G(iω)|. (35)

A remark on the choice of notation seems necessary: in
the stability section, we defined the energy norm of the
state vector q(t) as ‖q‖2

M = qHMq, whereas the defini-
tion (35) of ‖G‖∞ represents a norm of all stable transfer
functions in the complex frequency space.

For normal systems the largest response to harmonic
forcing is proportional to the distance of the real part of
the largest eigenvalue of A to the imaginary axis, i.e.,

‖G‖∞ ∼ 1/|Re(λ1)|. (36)

For non-normal systems, however, the response of the
system can be substantial even though the forcing fre-
quency is nowhere close to an eigenvalue. The largest re-
sponse ‖G‖∞, in this case, is proportional to the largest
value of the contour |G(s)| that crosses the imaginary
axis.

This feature is exemplified on the Ginzburg-Landau
equation in Figure 13 and 14. The state response (i.e.,
the special case with C = I) to spatially localized, har-
monic forcing at xw = −11 is shown in Figure 14a. The
largest response is obtained for a frequency of ω = −0.65,
and the location of the most amplified response in space
is — not surprisingly — in the vicinity of branch II. In
Figure 14b the frequency response |G(iω)| is shown which
corresponds to the dashed line in the contour plot of Fig-
ure 13. The peak of this response ‖Gc‖∞ = 208 is as-
sociated with the red contour in the pseudospectra plot
(Figure 13). The response computed from the distance
to the nearest eigenvalue (36) has a value of only 56. It
is thus confirmed that the frequency response for non-
normal systems is substantially larger than what can be
inferred from the distance of the forcing frequency to the
nearest eigenvalue.

B. Stochastic forcing

Under realistic conditions we rarely possess the exact
knowledge of the disturbances influencing the flow sys-
tem, and it is therefore essential to account for a cer-
tain amount of uncertainty. In this section we present
fundamental techniques to characterize the response be-
havior within a statistical framework. This framework
also gives insight into inherent stability properties of the
flow [48, 93], as for example in the case of channel flow
studied by [11, 36, 60] and boundary layer [49]. When
a fluid system is externally excited by stochastic distur-
bances, its response is best characterized by the state
statistics, for instance, the rms values of the velocity
components, the mean energy, or two-point correlations.
In the context of aerodynamic flows, stochastic excita-
tion can be attributed, among others, to free-stream tur-
bulence, wall roughness, or incident acoustic waves.

A naive statistical analysis may consist of performing
a large number of simulations by choosing sample real-
izations of the forcing and by subsequent averaging of



the resulting flow quantities to obtain the desired statis-
tics. A more direct approach involves the derivation of
evolution equations for the statistical properties, such as
e.g. two-point correlations, of the flow quantities. For
linear systems it is possible to solve directly for the two-
point correlations of the flow quantities in terms of the
two-point correlations of the external excitation. The key
equation relating second-order statistics of the excitation
to second-order statistics of the state is the Lyapunov
equation. In this section we will derive the Lyapunov
equation and give examples of how to extract relevant
information from its solution.

An introductory example can be seen in Figure 15a
where the temporal evolution of the state energy is dis-
played as a random forcing with zero mean and unit vari-
ance applied upstream of branch I. The results of five sim-
ulations are shown. Due to the stochastic nature of the
forcing each simulation yields different results but, nev-
ertheless, reveals a general trend: no energy is observed
at the beginning of each simulation (since the initial con-
dition is identically zero), but considerable energy levels
are reached after an initial transient of approximately
100 time units and a quasi-steady regime in which the
energy fluctuates about a mean value is established. Be-
cause of this observed noise amplification, convective un-
stable flows are also referred to as noise amplifiers. Fur-
thermore, the dashed line shows the average of 50 sim-
ulations, representing the evolution of the mean energy.
This curve is compared to the mean energy (red solid
line) computed from the algebraic Lyapunov equation;
this mean energy level is increasingly better approached
as the number of simulations comprising the average is
increased.

Although the above experiment already demonstrates
the amplification behavior of a convectively unstable lin-
ear system driven by stochastic forcing, the relation be-
tween the forcing covariance and the resulting state co-
variance will be established next.

We again consider the linear system given by equa-
tion (23), now driven by a stochastic process u(t), i.e.
a random time-varying input signal. We assume that A
is globally stable but convectively unstable. To simplify
the analysis, we also assume that the random variable u
is normally distributed, i.e., that the probability density
function of the stochastic process is Gaussian, completely
characterized by its mean and its variance.

To represent the mean and the variance of a random
variable, we introduce the expectation operator E . The
mean of a scalar random variable ξ is then m = E{ξ}, its
variance is the quadratic expression σ = E{ξξH}. From
a statistical point of view, E can be thought of as an
averaging operator (for example the action of an integral
in time.)

We can similarly characterize the covariance of two
random variables ξ and η as Pξη = E{ξηH}. The covari-
ance of two random variables gives information about the
degree of similarity of the two signals. The above defi-
nition of the covariance is readily extended to vectors of
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FIG. 15: The response to stochastic forcing. (a) The evolution
of the state energy for five different simulations (black lines),
the mean state energy given by the solution of the algebraic
Lyapunov equation (red solid line) and the energy averaged
over 50 simulations (thick dashed line). (b) The thick red line
shows the rms-value of the Ginzburg-Landau equation when
excited by random forcing w at the location marked with an
arrow. Five representative snapshots of the response to this
forcing are shown by black thin lines; the average over 50
simulations is displayed by a thick blue dashed line.

random variables. The covariance of two random vector
variables f(t) and g(t) of dimension n is simply the n×n
matrix,

Pfg(t) = E{f(t)g(t)HM}. (37)

Using the energy weight matrix M , we recover the ki-
netic energy of a state by simply taking the trace of the
covariance matrix,

E(t) = E{trace(q(t)q(t)HM)} = trace(Pqq). (38)

Furthermore, the diagonal elements of Pqq are the vari-
ance of the individual elements of q(t). In particular,
we define the root-mean-square (rms-value) of the dis-
turbance as

qrms(t) =
√

diag{Pqq} (39)

From the above equations (38) and (39), it is clear
that the covariance of the state contains all the essential



statistics that is necessary for evaluating the response
to stochastic forcing. We now return to our dynami-
cal system (23) and derive an explicit expression of the
state covariance in terms of the forcing covariance. For
simplicity, we will assume that the applied forcing is un-
correlated in time, that is, it is a temporal white noise
process:

E{u(t)u(t′)HM} = WMδ(t− t′) (40)

where t and t′ are two instances in time, and W denotes
the spatial covariance of u. For example, if u is a vector
of random variables, Wij = E{uiuj

H}.
To derive an evolution equation for the covariance of

the state, we start with the expression describing the time
evolution of the state forced by u (i.e. equation (27) with
C = I),

q(t) =

∫ t

0

eA(t−t′)Bu(t′)dt′. (41)

As before, we have assumed a zero initial condition q0 =
0.

We begin with the definition of the covariance matrix
Pqq of the state at time t

P = E{q(t)q(t)HM}

=

∫ t

0

∫ t

0

eA(t−t′)B E{u(t′)u(t′′)HM}
︸ ︷︷ ︸

WMδ(t′−t′′)

BHeAH(t−t′′)dt′dt′′

=

∫ t

0

eA(t−t′)BWB+eA+(t−t′)dt′ (42)

where we have used the fact that u is uncorrelated in
time and omitted the subscript qq. We can differentiate
this last expression in (42) with respect to time to obtain
an evolution equation for P of the form

Ṗ = AP + PA+ +BWB+ P (0) = 0. (43)

In this expression Ṗ denotes the time derivative of the
covariance matrix. The above equation is referred to as a
differential Lyapunov equation. Given the covariance W
of the forcing term u, we obtain the time evolution of the
state covariance P. If the system A is asymptotically sta-
ble and, furthermore, A,W and B are time-independent,
the stochastically driven system relaxes after an initial
transient into a statistical steady state. To obtain this
steady state, we set Ṗ = 0 and recover the algebraic
Lyapunov equation

AP + PA+ +BWB+ = 0. (44)

This statistical steady state is of interest if we study a
system that is exposed to external forcing for a long time

horizon, e.g., the flow over a wing under cruise conditions.
We like to emphasize that despite the presence of a steady
statistical state, the state vector of the system as well as
the external forcing is varying in time.

To illustrate the above statistical description of the sys-
tem dynamics, we revisit the Ginzburg-Landau equation
forced at the upstream edge of the convectively unstable
region where we apply the external excitation of Gaus-
sian form shown in equation (A4a), with u(t) as a scalar
white noise process with zero mean and unit variance
W = 1. The covariance of the state obtained by solving
the algebraic Lyapunov equation [30] is depicted in Fig-
ure 16. The rms-value of this state-covariance is shown
with a red line in Figure 15b and the gray area marks
the region of convective instability. In addition, we have
represented the instantaneous state of five realizations of
the forcing as well as the mean of 50 of these realizations,
as we did in Figure 15a for the total energy evolution in
time. We see that the average of 50 realizations is close
to the mean obtained from the Lyapunov equation, but
a sample set of 50 realization is not yet enough for a con-
verged statistical result. We will see more examples of
this kind in the control section where we will quantify
the performance of the controller using mean energy.

We conclude this section by stressing that transient
growth mechanisms in hydrodynamic stability theory as
well as the spatio-temporal evolution of disturbances can
be recast into an input-output framework. For exam-
ple, in this framework, the output signal y(t) to random,
impulsive or harmonic inputs shown in Figures 11, 12
and 14, respectively, exhibits an initial growth in time
before the signal either decays to zero or stabilizes around
a steady state.

C. Controllability and observability

An important issue in the analysis of linear systems
in state-space form concerns the mapping between input
signals and the state vector and between the state vector
and the output signals. Since for many realistic configu-
rations the matrices B and C are rectangular, reflecting
the fact that we force the system only at a few points
in space and/or measure the system only at a limited
number of sensors, we need to address the topic of con-
trollability and observability [62].

In this section we will characterize the controllability
and observability of a system in terms of covariance ma-
trices of the state and the adjoint state, which in this con-
text are called Gramians. We will continue to consider
one input and one output and assume that A is stable
(subcritical Ginzburg-Landau equation), even though the
theory extends to unstable systems as well [107].



1. Controllability — the POD modes

The controllability of a system is concerned with find-
ing the flow states most easily influenced by a given in-
put. It can be shown [10, 73] that the minimum amount
of input energy ‖u‖2

2 to bring the state from zero to the
given initial condition q0 is given by the expression

qH
0 P

−1q0 (45)

where P is the unique n× n matrix

P =

∫ ∞

0

eAτBB+eA+τ dτ, (46)

referred to as the controllability Gramian (for a deriva-
tion of this result in terms of an optimal control prob-
lem see [73].) Also note that the adjoint operators with
superscript + are related to the conjugate transpose H

according to (25).
Since for linear systems the state for an impulsive

input at any given time is q(t) = eAtB, we recognize
that the controllability Gramian (46) equals an infinite-
horizon state covariance (42) with covariance W = I.
This is not very surprising since one can interpret white
noise as a set of impulse inputs that are uncorrelated in
time. Furthermore, assuming A is stable, the controlla-
bility Gramian can be computed by solving the algebraic
Lyapunov equation (44). In Figure 16 the controllability
matrix of the Ginzburg-Landau equation is shown graph-
ically. The state components that respond to an input
located just upstream of the unstable region are situated
downstream of the unstable domain.

By diagonalizing the matrix P we obtain a measure
of controllability for each component of the state vec-
tor. The diagonalization of the covariance matrix or, in
the linear framework, the controllability Gramian is com-
monly referred to as the proper orthogonal decomposi-
tion (POD) [76] but is also known as empirical eigenfunc-
tion (EOF) decomposition, Karhunen-Loève decomposi-
tion or principal component analysis (PCA). The eigen-
vectors and eigenvalues of P are given by

Pφi = λiφi, λ1 ≥ · · · ≥ λn ≥ 0. (47)

Since P is positive semidefinite, the eigenvalues are real
and positive and the eigenvectors are orthogonal. The
first two POD modes of the Ginzburg-Landau equation
are shown in Figure 17. Traditionally, the interpretation
of these modes is that they represent decorrelated energy-
ranked flow states. For example, the first POD mode
φ1 is the most energetic structure in the flow contain-
ing λ1/

∑n
i=1 λi of the total flow energy. From a linear

systems point of view, POD modes can be considered as
the most controllable structures of the system for a given
input. In this case the eigenvalue λi is a measure of how

FIG. 16: The state covariance/controllability Gramian P of
the Ginzburg-Landau equation. The Gramian describing how
the state components are influenced by an input corresponds
in a stochastic framework to the state covariance for white
noise as input. The red circle signifies the forcing location
(xw = −11), the dashed box marks the region of instabil-
ity. The states that are most sensitive to forcing, and thus
controllable, are located downstream, at branch II.
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FIG. 17: The first (a) and second (b) proper orthogonal de-
composition (POD) mode obtained from an eigenvalue de-
composition of the controllability Gramian in Figure 16. Note
that these modes are orthogonal. The absolute value is shown
in solid and real part in dashed. The gray area marks the re-
gion of instability.



FIG. 18: The observability Gramian Q of the Ginzburg-
Landau equation. The red circle markes the location of the
output C at branch II. The initial states that contribute most
to the output are located upstream, at branch I.

much the state φi is influenced by the input. In particu-
lar, if P is rank deficient, there exists a zero eigenvalue,
λi = 0, which would mean according to equation (45)
that the energy required to influence the corresponding
state is infinite. If P is not rank-deficient, we say that
(A,B) is controllable.

2. Observability — the adjoint POD modes

The POD modes capture the response to input and
thus span a controllable subspace of the state-space.
Equally important in the input-output analysis is to take
into account the observable subspace by considering the
relation between the outputs and flow states. A simi-
lar analysis as in the previous section for POD modes is
thus performed, but this time for the adjoint system (24).
Comparing the direct state-space equations (23) with
their corresponding adjoint state-space equations (24) we
observe that the output of the direct equations is related
to the input of the adjoint equations.

The observability of a system is concerned with finding
the initial conditions q0 that will produce the largest out-
put energy. For zero input the solution to the state-space
equations is

y = CeAtq0. (48)

The output energy is then given by

‖y‖2
2 = qH

0 Qq0 (49)

where the observability Gramian,

Q =

∫ ∞

0

eA+τC+CeAτ dτ, (50)

is a unique matrix of dimension n× n.
If we note that the impulse response of the adjoint

state-space equations (24) is given by

r(t) = eA+tC+ (51)

the observability Gramian can be written as the state
correlation matrix of the adjoint system

Q = E{rrHM}, (52)

and the Gramian can be computed by solving the alge-
braic Lyapunov equation

A+Q+QA+ C+C = 0. (53a)

In Figure 18 the observability matrix of the Ginzburg-
Landau equation is shown. The observable components
of the state vector are located upstream of the unstable
domain when the output location is at branch II (red dot
in Figure 18).

By diagonalizing the observability Gramian,

Qψi = λiψi, λ1 ≥ · · · ≥ λn ≥ 0, (54)

we obtain an orthogonal set of functions called the ad-
joint POD modes or the most observable modes. These
modes are flow structures that are ranked according to
their contribution to the output energy. The correspond-
ing eigenvalues λi provide a means to measure how ob-
servable the corresponding eigenvectors are. If there ex-
ist zero eigenvalues, λi = 0, Q is rank deficient, which
means according to equation (49) that the corresponding
adjoint POD mode does not contribute to sensor output.
If Q has full rank, we say that (C,A) is observable.

It should be evident that in order to build an effective
control system, both sufficient controllability and observ-
ability has to be established. Only in this case will the
actuation have an appreciable effect on the flow system
whose response, in turn, will be detectable by the sensors.
Without adequate controllability or observability the flow
of information from the system’s output to the system’s
input will be compromised, and any control effort will be
futile. Within the LQG-based feedback control frame-
work, the controller will always stabilize the system if
the unstable global eigenmodes are both controllable and
observable. We will show how the controllability and ob-
servability of global eigenmodes can be determined in the
next section.



IV. MODEL REDUCTION

Any type of significant flow control applied to the dis-
cretized two- or three-dimensional Navier-Stokes equa-
tions requires some form of model reduction. Model re-
duction is concerned with the transformation of a sys-
tem with a large number of degrees of freedom to an ap-
proximately equivalent system of markedly smaller size.
The term “approximately equivalent” is often difficult to
quantify and usually encompasses a measure of preserva-
tion of important system characteristics under the model
reduction transformation. In this sense, model reduction
becomes problem-dependent: for example, a transforma-
tion that preserves the inherent dynamics of the system
may be inappropriate in capturing the input-output be-
havior.

Model reduction techniques for fluid systems typically
rely on physical insight into the specific flow situation
rather than on a systematic approach detached from the
application. For instance, for spatially invariant systems
it is possible to decouple the linear state space equations
in Fourier space. Control, estimation and other types
of optimization can then be performed independently for
each wavenumber and then transformed back to physical
space. This approach has been adopted in Refs. [19, 20,
50, 52, 53, 82].

The model reduction (or projection) technique [10, 85]
discussed in this paper involves three steps.

The first step consists of finding an expansion basis
{φi}r

i=1 that spans an appropriate subspace of order r
of the state space of order n, with r ≪ n. We will
present and compare three different subspaces using the
Ginzburg-Landau equation: the subspace spanned by the
least stable global eigenmodes, POD modes and the bal-
anced modes (described in the next section).

In a second step, the state-system given by (23) is
projected onto this subspace yielding the reduced-order
model

κ̇(t) = Âκ(t) + B̂u(t) (55a)

y(t) = Ĉκ(t) (55b)

κ(0) = κ0. (55c)

When the expansion basis is non-orthogonal, we can use
a set of adjoint modes {ψi}r

i=1 associated with {φi}r
i=1,

to obtain the entries of κ, Â, B̂ and Ĉ,

κ̂i =
〈q,Aφi〉
〈ψi, φi〉

(56a)

Âi,j =
〈ψi, Aφj〉
〈ψi, φi〉

(56b)

B̂i =
〈ψi, B〉
〈ψi, φi〉

(56c)

Ĉi = Cφi (56d)
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FIG. 19: The spatial support of the first 20 global (a), POD
(b) and balanced modes (c). The spatial support is defined
as the region where the amplitude of a particular mode is
larger than 2% of its maximum amplitude. The location of
the input (just upstream of branch I) and output (at branch
II) is marked with red and green dashed lines, respectively.
The global modes span only the region around branch II. The
first POD modes (b) are located at branch II, even though
the higher modes quickly recover the input. The balanced
modes (c) cover the region between input and output with
only two modes. The areas marked with light gray in (a) and
(c) represent the spatial support of the adjoint modes for the
global and balanced modes. The spatial separation in x of
the direct and adjoint modes, shown in (a) for global modes,
is absent in (b) for the balanced modes.

with i, j = 1, . . . , r. The term 〈ψi, φi〉 is a normalization
factor that we choose such that ‖φn‖ = ‖ψn‖ = 1 and is
smaller than one if the modes are non-orthogonal, that
is ψi 6= φi. The subscript M in the above inner products
is omitted for brevity and we have assumed that B is a
column vector and C a row vector, i.e. we continue to
consider one input and one output.

The third and final step consists of estimating the error
of the reduced order model (55). For control purposes it
is not necessary for the reduced-order model to capture
the entire dynamics described by the general state-space
formulation (23), rather it suffices to accurately capture
the input-output behavior described by the transfer func-
tion G(s) = C(sI − A)−1B. It thus seems reasonable to
estimate the error of a reduced-order system by compar-
ing the norms of the transfer function (34) of the full

system G and the reduced system Gr = Ĉ(sI − Â)−1B̂,
e.g., ‖G−Gr‖∞ [42, 85, 106]. This is equivalent to calcu-
lating the difference of the peak values of the frequency
response between the two models.
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FIG. 20: The controllability modal residuals (black line) of
the first 20 global modes given by equation (56c) which is
the product of the overlap of the actuator and adjoint mode
〈ψi, B〉 (red) and the sensitivity defined by (〈ψi, φi〉)

−1 (blue).
Although, the overlap of the spatial support of the actuator
decreases for higher modes, the controllability still increases
due to the rapid growth of the receptivity of higher modes to
forcing, quantified by the inverse of 〈ψi, φi〉.

A. Global modes and input/output residuals

Global modes (Figure 7a,b) preserve the dynamical
characteristics of the system matrix A. Model reduction
using global modes simply consists of an expansion of
the state vector q into the leading global eigenmodes (9),
where eigenmodes with substantial decay rates will be
neglected. By this process, the resulting new system ma-
trix Â in (55) will consist of a diagonal matrix of the
retained global eigenvalues. The new reduced state vec-
tor κ is given by the eigenfunction expansion coefficients,
and the expansion coefficients of B (56c) and C (56d) are
called the controllability modal residuals and the observ-
ability modal residuals, respectively (see also [13]).

It is clear that if 〈ψi, B〉 is zero in (56c), we will not be
able to act on the corresponding state component κi and
therefore on the global mode φi. Thus, we can use the
controllability modal residual as a measure of controlla-
bility of the global mode by considering the amount of
overlap between the support of the input and the support
of the corresponding adjoint global mode. If this overlap
is zero, the global mode is not controllable [22, 69].

A similar derivation based on (56d) shows that in order
for (C,A) to be observable, the spatial support of the
sensor and the support of the global mode must overlap.
If Ĉi = Cφi is zero, we will not be able to detect the
eigenmode φi using a sensor characterized by C. This
eigenmode is thus unobservable.

Owing to the term 〈ψi, φi〉 in the denominator of (56c),
additional attention has to be paid to the system’s sensi-
tivity due to non-normal effects: the forcing response or
controllability of φi is inversely proportional to 〈ψi, φi〉,
i.e. the separation of global and adjoint modes. This
separation is illustrated in Figure 19a, where the spatial

support — defined as the region where the amplitude of
a particular mode is larger than 2% of its maximum am-
plitude (see also [68]) — of the first 20 global and adjoint
modes is shown. We see that the global modes only span
a small part of the domain, which is located near and
downstream of the unstable domain (green dashed line),
whereas the corresponding adjoint modes are located up-
stream of the unstable domain (red dashed line); this
results in a large sensitivity, 〈ψi, φi〉 ≪ 1.

In Figure 20 we display the controllability as the num-
ber of global modes is increased, together with the nu-
merator and denominator of expression (56c). Whereas
the numerator represents a measure of overlap between
the input and the adjoint global modes, the denominator
measures the degree of non-normality. The marked rise
in controllability as more global modes are added is thus
a compound effect of these two components. It illustrates
that non-normal systems can be very sensitive to the ex-
ternal perturbation environment and that it is possible
to manipulate the flow using very small actuator effort.

An upper limit of the error for reduced-order models
based on global modes is given by [10, 97]

‖G−Gr‖∞ ≤
n∑

i=r+1

|ĈiB̂i|
|Re(λi)|

. (57)

From the above expression it is evident that choosing
a subspace based on the criterion of dominant eigenval-
ues may not be appropriate if one wishes to approximate
the input-output behavior. The reason is that the error
norm (57) depends on the matrices B and C. Although
the eigenvalues may exhibit substantial decay, for highly
non-normal systems B̂ is large yielding a large model re-
duction error as shown in Figure 21 using green circles.

In Figure 22 we compare the frequency response of the
full model |G(iω)| of order r = 220 (blue dashed line) to
the frequency response of the reduced models |Gr(iω)|
of order r = 2, 4 and 6 (green solid line). As before, the
input B (at branch I) is located upstream and the output
C (at branch II) downstream. The frequency response
of the reduced models shows a large deviation from the
true frequency response, even as the number of included
modes is increased.

B. POD modes

For an improved transfer behavior of the reduced
model we can base our subspace on the response of the
linear system to external forcing. In this case, both the
system matrix A and the control matrix B determine
the dynamics of the driven system. To reduce a driven
model, we will expand the state vector into the POD
modes (47) (Figure 17). The expansion in POD modes
will be truncated at a convenient level that results in
a significantly lower-dimensional system matrix but still
retains the most energetic structures. These modes are
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FIG. 21: Model reduction error of the POD (black), balanced
(red) and global (green) modes. For the balanced modes the
error always decays by increasing the number of modes, in
contrast to the error of POD modes. The error does not
decay at all for the first 50 global modes due to the failure
to project the input B located upstream of branch I onto the
global eigenmodes located close and downstream to branch
II.

ideal in detecting and extracting coherent fluid structures
in a hierarchical manner that is based on their contribu-
tion to the overall perturbation energy of the flow. How-
ever, for control and input-output behavior low-energy
features that are not captured by this expansion may be
critically important.

We like to point out that the controllable subspace ad-
equately spans the response to inputs but not necessarily
the inputs themselves. This is illustrated in Figure 19b,
where the spatial support of the first 20 POD modes are
shown. The first POD modes capture the largest struc-
tures, located at branch II; however, in contrast to the
global modes, the higher modes eventually cover the en-
tire unstable domain including our input location. For
this reason the error norm shown with black circles in
Figure 21 is not decreasing for the first three POD-modes;
only when the fourth mode, which captures some of the
input structure, is included in the expansion basis does
the error norm begin to decrease. An explicit error esti-
mate does not exist for POD modes; only after computing
the frequency response of the two systems can one deter-
mine the error (given by the difference of the peak values
in the frequency response).

Finally, in Figure 22 the frequency response of the
POD-based reduced model (black line) |Gr(iω)| of or-
der r = 2, 4 and 6 is observed to gradually approach the
response of the full model.

C. Balanced modes

The third subspace is based on balancing the system
and involves the three matrices A,B and C. It is based
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FIG. 22: Comparison of the frequency response of the full
Ginzburg-Landau equation with three reduced-order models.
Blue dashed lines represent the full model of order n = 220.
The performance of reduced-order models based on r = 2, 4
and 6 modes are shown in the (a), (b) and (c), respectively.
Red lines represent the balanced modes, black lines the POD
modes and green lines the global eigenmodes. We observe
that the balanced modes capture the peak value of the fre-
quency response which represents the main characteristic of
the input-output behavior. The approximation of the fre-
quency response for the open-loop case is unsatisfactory for
POD models of order 2 and 4 and for all global-mode models.

on the idea of reducing the dimensions of the original
system by (i) removing the redundant states for charac-
terizing the input-output behavior — the uncontrollable
and unobservable states — and (ii) removing the states
that are nearly uncontrollable and unobservable. This
technique of model reduction is referred to as balanced
truncation [83].

The balanced modes {φi}r
i=1 are defined as the eigen-

vectors of the product of the two Gramians,
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FIG. 23: The first (a) and second (b) balanced mode. The
modes are non-orthogonal and the adjoint balanced modes are
shown in red. The absolute value is shown in solid and real
part in dashed. The gray area marks the region of instability.

PQφi = φiσ
2
i , σ1 ≥ · · · ≥ σr ≥ 0. (58)

The eigenvalues σi are called the Hankel singular values
(HSV). First two balanced modes are shown in Figure 23.

To illustrate what balancing refers to, let us consider
the projection of the Gramian matrices P and Q on a set
of modes, for instance any of the modes introduced in
this section. The projected matrices, denoted by P̂ and
Q̂, have the elements

P̂i,j = 〈ψi, Pψj〉 (59a)

Q̂i,j = 〈φi, Qφj〉 (59b)

where ψi denotes the adjoint mode associated with φi.
Balancing refers to the fact that if P̂ and Q̂ are obtained
from a projection onto balanced modes, they become di-
agonal and equal to the Hankel singular values, i.e.

P̂ = Q̂ = Σ = diag(σ1, . . . σr). (60)

The balanced modes are flow structures that are ranked
according to their contribution to the input-output be-
havior. These modes are influenced by the input and, in
turn influence the output by the same amount, given by
the corresponding Hankel singular values σi.

A very attractive feature of balanced truncation is the
existence of an a priori error bound that is of the same
order as the lowest bound achievable for any basis,
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FIG. 24: Hankel singular values of the approximate balanced
truncation are marked with colored symbols and the exact
balanced truncation with black symbols. The number of sin-
gular values that are correctly captured increases with the
number of snapshots (red: 1000, green: 500 and blue: 70
snapshots).

σr+1 < ‖G−Gr‖∞ ≤ 2
n∑

j=r+1

σj . (61)

In contrast to equation (57) the above error norm is in-
dependent of the input and output matrices B and C.
The error norm for the balanced truncation model in
Figure 21 shows a rapid decay. In Figure 22 we notice
that the performance of balanced reduced-order models
(red lines) |Gr(iω)| is very good, and only two balanced
modes are required to capture the peak response of the
full system.

In summary, we would like to recall that each of the
three sets of basis vectors (global modes, POD modes,
balanced modes) span different subspaces of the state
space and are therefore suitable for different applications.
The spatial support is shown in Figure 19 for the first 20
modes of each of the three sets. The balanced modes
(right plot), by construction, cover the region between
the input and the output with very few modes and are
thus the appropriate set of functions to accurately cap-
ture the input-output behavior of our linear system.

D. The snapshot method

To compute the POD modes or balanced modes we
must first solve Lyapunov equations. This becomes
prohibitively expensive as n exceeds approximately 105

which usually is the case when discretizing the Navier-
stokes equations in two or three dimensions. Recently,
numerous iterative methods to solve these equations have
appeared [9, 10].

A different approach to approximate the Gramians
without solving the Lyapunov equations — the so-called
snapshot-based balanced truncation — has recently been



introduced [92, 105]. It is based on the snapshot tech-
nique first introduced by [95] for computing POD modes.
We will demonstrate the method for one input and one
output, see Ref. [92] for additional details.

We begin with collecting r snapshots q(tj) at discrete
times t1, . . . , tr, of the response of the system (23) to an
impulse δ(t). These snapshot are gathered as columns in
a n× r matrix X, i.e.

X = [eAt1B, eAt2B, . . . , eAtrB]
√

∆r, (62)

where ∆r stands for the quadrature coefficients of the
time integral in equation (46). Instead of solving the
Lyapunov equation (44), we can approximate its solution,
i.e. the controllability Gramian P as

P ≈ XXHM. (63)

If we observe that eA+tC+ is the impulse response of
the adjoint state-space equation (24), we can construct
an approximation of the observability Gramian Q

Q ≈ Y Y HM (64)

by collecting a sequence of snapshots of the adjoint im-
pulse response in the n× r matrix

Y = [eA+t1C+, eA+t2C+, . . . , eA+trC+]
√

∆r. (65)

In the method of snapshots, instead of solving the large
n× n eigenvalue problem (58) one can form the singular
value decomposition of the r × r matrix,

Y HMX = UΣV H . (66)

The approximate Hankel singular values (HSV) are given
in the diagonal matrix Σ. The normalized balanced
modes and the associated adjoint balanced modes are
recovered from

T = XV Σ−1/2, S = Y UΣ−1/2. (67)

Usually the number of snapshots r is significantly
smaller than the number of states n, which makes this
method computationally tractable for systems of very
large dimensions.

Figure 24 shows the HSVs for the exact balanced trun-
cation (solving two Lyapunov equations) and the approx-
imate HSVs (using the snapshot method). For improved
results more snapshots may be taken during periods of
large transient energy growth and fewer snapshots as the
energy decreases. Snapshot-based balanced truncation
has been applied to channel flow [57] and to the flow
around a pitching airfoil [3].

V. CONTROL

The natural extension to the investigations of the pre-
vious sections — the response behavior of a linear sys-
tem to initial conditions and external excitations — is
concerned with attempts to manipulate the inherent dy-
namics of a system or to control it. A substantial body of
literature on flow control has accumulated over the past
decade, with topics ranging from laminar flow control [59]
to control of turbulence [78], from opposition control [21]
to suboptimal [15] and nonlinear control [14, 43, 108].
Reviews on the subject of flow control can be found in
Refs. [12, 38, 39, 44, 64, 65].

The framework laid out in the following sections falls in
the category of linear feedback control [7, 66, 96, 97, 106].
In particular, our objective is to minimize the perturba-
tion energy resulting from asymptotic or transient in-
stabilities of the uncontrolled system during the tran-
sition process in order to suppress or delay turbu-
lence [13, 52, 58]. Since the disturbance energy growth is
initially a linear process [94] it seems prudent to design
control schemes for the linearized governing equations.
However, linear control has also been applied with con-
siderable success to the full Navier-Stokes equations [19],
and attempts have been made to relaminarize a fully de-
veloped turbulent flow [53].

We will consider two fundamentally different stability
scenarios for the evolution of perturbations q governed
by the non-parallel Ginzburg-Landau equation: (i) local
convective instabilities and (ii) global instabilities. The
parameters for the two cases are listed in Table I.

A. The concept of feedback

The actuation on the flow can be accomplished by var-
ious means, such as, for example, the injection of fluid
through blowing/suction holes in the wall. Within the
region of validity of our underlying physical model, it is
possible to compute a control strategy in advance that
will retain the flow in a laminar state. This procedure
is referred to as open-loop control. However, under the
presence of uncertainty over the exact disturbance envi-
ronment (or the validity of our physical model), open-
loop control will fail. Instead, one can monitor the flow
through measurements and adjust the actuation accord-
ingly such that predefined objectives are met. A control
setup of this type is known as closed-loop control. It
uses feedback to establish a connection between the out-
put from the system (i.e. the measurement signal) and
the input to the system (i.e. the control signal). Un-
der realistic conditions, we are faced with a wide range
of unknown variations, such as modeling errors or sensor
noise, and a feedback-type control system is required to
efficiently compensate for these uncertainties.

The main idea of linear feedback control is shown in
Figure 1. The entire system is described in state-space
form as follows



q̇ = Aq +B1w +B2u, (68a)

z = C1q +Du, (68b)

y = C2q + g. (68c)

This set of equations is commonly referred to as the plant.
The first equation (68a) describes the dynamics of our lin-
ear system captured in the system matrix A as external
forces, modeled by B1w and B2u, are applied. We have
decomposed the input into two terms with B1w(t) de-
scribing the effect of external sources of excitations and
B2u(t) representing the control input. The variable z(t)
given by the second equation (68b) represents the ob-
jective function as described below. The third equation
(68c) describes a connection between the state q and the
measurements y, where the additional term g accounts
for noise contaminating the measurements. In general,
the objective is to find a control signal u(t) such that
the influence of the external disturbances w and g on the
output z is minimized. The above set of equations (68)
has been discretized using a Hermite collocation method
as described in appendix A.

Our objective is to find a control signal u(t) such that
the perturbation energy contained in the state variable
q(t) is minimized. Furthermore, the energy input ex-
pended by the control must be smaller than the amount
of energy gained by it. Thus, in addition to focusing on
the perturbation energy we also have to penalize our con-
trol effort. This results in a objective (or cost) functional
of the form

‖z‖2
2 = ‖C1q‖2

2+‖Du‖2
2 =

∫ T

0

qH CH
1 C1
︸ ︷︷ ︸

M

q+uH DHD
︸ ︷︷ ︸

R

u dt

(69)
where M and R are positive semi-definite matrices; we
have furthermore assumed that DH [C1 D] = [0 I] in or-
der to get zero cross terms [106]. It is important to realize
that the 2-norm in the above expression is defined both
over time and space. Note that if C1 is chosen as F in
equation (18) then the kinetic energy of the disturbance
will be minimized. In the above setup we have assumed
that the full state q is known, but for realistic flow sit-
uations the complete instantaneous velocity field is not
available for determining an appropriate feedback. We
thus have to estimate the full state vector resulting in an
approximate state vector q̂, reconstructed from the mea-
surements y(t) via an estimation problem. A controller
based on an estimated state vector is known as an output
feedback controller or a compensator.

B. The LQG framework

If we assume that the unknown disturbance noise w
and the measurement noise g are given by white-noise

stochastic processes with zero mean and respective co-
variances W and G, a compensator can be found that
minimizes the cost functional (69). In addition, the
closed-loop control is guaranteed to be stable, if the plant
is both observable and controllable. In fact, a sufficient
condition for a global minimum value of (69) is that the
system is stabilizable and detectable. A system is stabi-
lizable (detectable) if all unstable global modes are con-
trollable (observable).

The control will be optimal in minimizing (69) which
stems, in one part, from the optimal filtering of noise
that has corrupted our signal [63] and, in another part,
from the optimal control when the entire state vector
is assumed to be available. These two separate prob-
lems — the estimation problem and the full-information
problem — can then be combined to construct a compen-
sator. This two-step procedural framework matured in
the 1960’s into what we now refer to as Linear Quadratic
Gaussian (LQG) control [7, 66]. The assumption that
w(t) and g(t) are white-noise stochastic processes may be
far from reality in some applications; it is, however, pos-
sible to describe a plant with colored-noise input in terms
of an augmented system with white-noise input [73].

In applications LQG control is particularly successful
when the system operator A (in our case the Ginzburg-
Landau equation) accurately describes the modeled phys-
ical phenomenon. The remaining uncertainties in the
overall model are thus restricted to the inputs repre-
sented by stochastic disturbances with known statistical
properties. For this reason, the LQG framework is ap-
propriate when we can rely on an accurate plant, while
a precise knowledge of external disturbances and the de-
gree of noise contamination of the measurements are not
available.

If the external disturbances are stochastic variables,
the state will as well be a stochastic process, and the
objective function (69) can therefore be written as

‖z‖2
2 = E

{
qHMq + uHRu

}
. (70)

As alluded to above, we will determine the optimal
control u(t) in (68) based on noisy measurements y(t)
such that the cost functional (70) is minimized. The first
step in constructing such a compensator is to estimate the
full state q(t) given only the noisy measurements. After
the state has been successfully estimated, we assume, in
a second step, that the control u(t) and the estimate of
the state q̂(t) satisfy a linear relation involving some yet
unknown matrix K, i.e.,

u(t) = Kq̂(t). (71)

The goal of this second step is then to find such a matrix
K, which is referred to as the control gain.

At the heart of the LQG-framework is the separation
principle [97] which states that the controller that mini-
mizes (69) can be computed in two independent steps: (i)



we can solve the estimation problem to obtain an approx-
imation q̂ of the true state q without any reference to the
control problem; (ii) to find the control gain K in (71)
we do not need the estimate q̂ in (71) but instead can
assume the full-information relation u(t) = Kq(t). One
of the important consequences of the separation principle
is the fact that the final compensator, using (71) based
on the control gain K obtained by considering q(t) (not
q̂), will always yield a closed-loop system that is stable
if and only if each of the two separate problems (estima-
tion and full-information control) are themselves stable
(see [106]). In addition to stability, the closed-loop sys-
tem will be optimal. To simplify the expressions in the
following analysis we assume that the adjoint system is
derived using a standard Euclidean inner-product, i.e.
the dual or the adjoint of the plant (68) is given simply
by its complex conjugate transpose.

1. The estimation problem

Under the assumption that the measurements capture
a sufficient amount of the system’s dynamics (i.e. that we
have significant observability), it is possible to estimate
or observe the state vector by using a Kalman filter [63].
In this section we derive the algebraic Riccati equation for
estimation and show examples on the Ginzburg-Landau
equation. For additional details see e.g. [7, 73].

We assume zero initial conditions, since we are inter-
ested in the controller performance as an average over
long time while the system is excited by external pertur-
bations. We further assume white-noise stochastic pro-
cesses for w(t) and g(t) with zero mean. The estimator
then takes on the form

˙̂q = Aq̂ +B2u− L(y − ŷ), (72a)

ŷ = C2q̂. (72b)

In the above expression, we compare the measurement y
from the state and the measurement ŷ from the estimated
state and feed back the mismatch in these two quantities
using the estimator gain L. To analyze the performance
of the estimation problem, it is instructive to derive the
dynamics of the estimation error q̃ = q − q̂. Combining
(68) and (72) we obtain

˙̃q = Aq̃ +B1w + L(y − ŷ). (73)

Substituting the explicit dependence of the two measure-
ments on the state q and estimated state q̂, respectively,
we obtain

˙̃q = (A+ LC2)q̃ +B1w + Lg (74)

where the estimation error dynamics is governed by the
matrix Ae = A+LC2 and is driven by two source terms,

namely the external excitation w and the sensor noise g.
We aim at finding an estimator gain L such that Ae is
asymptotically stable and is not sensitive to the external
perturbations B1w+Lg. Since (68) is driven by noise, the
state q(t) and the output y(t) are consequently random
processes whose stochastic properties have to be consid-
ered in finding the estimator gain L. The error covariance
is given as

P (t) = E{q̃q̃H} (75)

which represents a measure of uncertainty in the esti-
mate. Smaller values of P (t) indicate a better estimate
as the estimation error is more tightly distributed about
its mean value of zero. If the estimator (74) is stable,
the error q̃(t) will eventually reach a steady-state with a
constant mean and covariance. The steady-state covari-
ance can be readily obtained by solving the Lyapunov
equation

AeP + PAH
e + LGLH +B1WBH

1 = 0 (76)

where G and W are the covariance matrices of g(t) and
w(t), respectively. The optimal estimation feedback gain
L is then chosen to both keep (74) stable and to minimize
the mean of the steady-state estimation error. We obtain
the mean estimation error from the covariance (75) using
the expression (38),

J = E{q̃} = trace(PM), (77)

where the mean is chosen as the kinetic energy. This min-
imization has to be accomplished under the constraint
that P satisfies the above Lyapunov equation (76). We
add this constraint to the cost functional J via a La-
grange multiplier Λ and obtain the Lagrangian M

M = trace(PM) +

+trace[Λ(AeP + PAH
e + LGLH +B1WBH

1 )].

We thus minimize J subject to the constraint (76) by
equivalently finding stationary points of M without im-
posed constraints. The necessary conditions for a mini-
mum are given by:

∂M
∂P

= AH
e Λ + ΛHAe +M = 0, (78a)

∂M
∂Λ

= AeP + PAH
e + LGLH +B1WBH

1 = 0,(78b)

∂M
∂L

= 2Λ(PCH
2 + LG) = 0. (78c)

We can eliminate Λ from equation (78c) to obtain an
expression for the estimator gain



L = −PCH
2 G

−1. (79)

Inserting the expression above into the second condition
(78b) leads to a quadratic matrix equation for the error
covariance P

AP + PAH − PCH
2 G

−1C2P +B1WBH
1 = 0 (80)

which is referred to as an algebraic Riccati equation. In
Refs. [30, 67] efficient methods of solving the Riccati
equations can be found. We can thus determine the opti-
mal estimation gain L by solving (80) for the error covari-
ance P which, using (79), results in L. No requirements
of observability or controllability have to be explicitly
imposed on the estimation problem; however, if we place
the input describing external disturbances B1 and the
sensor C2 such that (C2, A) is observable and (A,B1) is
controllable, then the resulting Riccati equation (80) will
have a unique positive definite solution. Moreover, the
closed-loop estimator will then be asymptotically stable.

One way to investigate the performance of the estima-
tor, is to compare the energy of the true flow state with
the energy of the estimation error. In Figure (25a) the
temporal evolution of the state energy (red line) and of
the estimation error (blue line) are shown. The energy of
the estimation error is nearly three orders of magnitude
smaller than the energy of the true state. In the same fig-
ure, the mean energy of the estimation error — obtained
by solving the Riccati-equation (80) — and the mean en-
ergy of the state — obtained by solving the Lyapunov
equation (44) — are plotted with dashed lines. We ob-
serve that the solutions of the Riccati equation and the
Lyapunov equation provide the mean energy in which,
respectively, the estimation error and state energy fluc-
tuate about. In Figure (25b), the corresponding rms of
the error q̃rms together with the rms of state qrms are
shown.

2. Full-information control

The second step in the design of an LQG-compensator
involves the solution of an optimal control state-feedback
problem. We show in this section that the optimal solu-
tion is, again provided by the solution of a Riccati equa-
tion. The reader is directed to Refs. [7, 73] for more
detailed derivations.

We seek a control u(t) as a linear function of the flow
state q(t) that minimizes the deterministic cost func-
tional

J =
1

2

∫ T

0

qHMq + uHRu dt, M,R > 0, (81)

while satisfying the initial value problem
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FIG. 25: (a) The mean of the error covariance trace(PM)
(lower dashed line) obtained by solving the Riccati-equation
(80) is compared to the estimation error (blue line) obtained
by marching the estimator in time (72). Also, the mean value
of the state (top dashed line/red line) is shown and found to be
nearly three orders of magnitude larger than the estimation
error. It is evident that both the state and the estimation
error reach a steady state. (b) The rms-value of the error
and the state are shown in blue and red lines, respectively.
The red and green Gaussian functions represent the location
of the input (stochastic disturbances) and the sensor. The
error attains its minimum value just downstream of the sensor
location and increases upstream as well as downstream of it.

q̇ = Aq +B2u, q(t = 0) = q0. (82)

We perform the steps analogous to the estimation prob-
lem by first defining an augmented Lagrangian N of the
form (see [73])

N =
1

2

∫ T

0

(qHMq+uHRu)+λT (−q̇+Aq+B2u) dt (83)

where λ is again a Lagrange multiplier which enforces the
initial value problem (82). The necessary conditions for
a minimum of N result in the following set of equations



∂N
∂λ

= −q̇ +Aq +B2u = 0, (84a)

∂N
∂q

= λ̇+Mq +AHλ = 0, (84b)

∂N
∂u

= Ru+BH
2 λ = 0. (84c)

We proceed by assuming a linear relation between the
state q(t) and the Lagrange multiplier λ(t)

λ(t) = X(t)q(t), (85)

where X(t) is self-adjoint and positive semidefinite. Us-
ing this linear relation and the optimality condition (84c)
yields the following feedback law:

u(t) = −R−1BH
2 X(t)

︸ ︷︷ ︸

K(t)

q(t). (86)

To find X(t) we differentiate (85) and use the state equa-
tion (84a) to obtain

−λ̇ = Ẋq +X(Aq −BH
2 R

−1B2Xq). (87)

Substituting equation (84b) into this last expression leads
to a quadratic matrix equation for X(t) that (assuming
controllability of (A,B2)) asymptotically converges to

AHX +XA−XB2R
−1BH

2 X +M = 0. (88)

As before, we obtain a Riccati equation for the linear
mapping X. The solution to this equation provides the
optimal steady feedback gain via the relation (86).

Moreover, stabilizability of (A,B2) and detectability of
(A,C1) imply additional desirable properties: the feed-
back gain K is guaranteed to stabilize the plant and to
yield a global minimum value of (81). We recall that a
system is stabilizable (detectable) if all unstable global
modes are controllable (observable). In other words, if we
place our actuators such that we ensure controllability of
the unstable global modes and if we choose M as the ki-
netic energy weight matrix, then the closed-loop system
is guaranteed to be stable. In the limit as T → ∞ the
cost functional is given by (see [51])

J = qH
0 Xq0, (89)

and any other stabilizing controller will result in a larger
value of this objective functional.

3. The LQG-compensator

Combining the estimator and controller we can now
control our plant by solely relying on the measurements
y(t). To validate the separation principle, we may write
the control (71) in terms of the full state q and the esti-
mation error q̃,

u = Kq −Kq̃. (90)

We can combine the plant (68) and the equation for the
estimation error (74) into the augmented system

(

q̇
˙̃q

)

=

(

A+B2K −B2K

0 A+ LC2

)(

q

q̃

)

+

(

B1 0

B1 L

)(

w

g

)

.

(91a)

Since this augmented system is block-triangular, the
eigenvalues of the augmented closed-loop system consist
of the union of the eigenvalues of Ac = A + B2K and
Ae = A + LC2. Thus, if the full-information controller
Ac and the estimator Ae are stable, then the closed-loop
system, i.e., the compensator, obtained by combining the
plant (68) and estimator (72),

(

q̇
˙̂q

)

=

(

A B2K

−LC2 A+B2K + LC2

)

︸ ︷︷ ︸

A

(

q

q̂

)

+

(

B1 0

0 −L

)

︸ ︷︷ ︸

B

(

w

g

)

(92a)

z = (C1 DK)
︸ ︷︷ ︸

C

(

q

q̂

)

(92b)

is also stable. As the separation principle suggests, the
compensator consisting of an optimal estimator and an
optimal full-state controller is itself optimal. The closed-
loop system, given by equation (92), as two inputs, the
external disturbances w and the measurements noise g,
and one output, the objective function z. This closed-
loop system is treated as a new dynamical system whose
properties, such as stability, input-output behavior and
performance, have to be investigated. Next, we discuss
these issues for the two prototypical flow cases.

C. Control of Subcritical flow

For a choice of parameters that results in a convectively
unstable plant (Table I), the objective is to apply con-
trol schemes that lower transient energy growth or reduce
the amplification of external disturbances. We will now
construct a LQG-compensator for the Ginzburg-Landau
equation to illustrate how a typical convectively unstable
flow system may react to control. Similar to the analy-
sis of the uncontrolled system in sections II and III, the



response behavior of the closed-loop system — in terms
of spatio-temporal evolution of the state, kinetic energy
and sensor signal — will be investigated for various in-
puts, optimal initial disturbance, harmonic forcing and
stochastic forcing.

Before control schemes can be designed, one has to
decide on the placement of actuators and sensors, the
choice of which is reflected in the matrices B2 and C2.
We assume the spatial distribution of the inputs and the
outputs as Gaussian functions of the form given by (A4).
The width parameter s = 0.4 is chosen such that 95%
of the spatial extent of the input/output distributions
are ∼ 5% of the length of the unstable domain (see Fig-
ure 26a). In this way, we are restricted — as in any
practical implementation of control schemes — to only a
limited number of noisy measurements and to actuation
in a rather small region of the full domain. An additional
simplification is made by considering only one actuator
and one sensor.

Identifying regions of the flow where sensing and ac-
tuation are favorable to the feedback control of a con-
vectively unstable system is significantly complicated by
the convective nature of the flow. Usually one has to use
physical intuition and a trial-and-error approach. Tran-
sient growth of energy due to the non-normality of A is
associated with the local exponential growth of distur-
bances between branch I and II. As a consequence —
and in contrast to the globally unstable case (see next
section), where it suffices to estimate at branch II and
control at branch I — the entire unstable domain be-
tween branch I and II is of great importance for the flow
dynamics.

Appropriate choices for the location of an actuator and
a sensor for the subcritical Ginzburg-Landau equation
is found to be xu = −3 and xs = 0, respectively. In
Figure 26a, the actuator and sensor placement are shown
that result in an acceptable closed-loop performance.

1. Stochastic disturbance

Consider a system driven by white noise B1w(t) just
upstream of branch I. From the noisy measurements
y(t) = C2q(t) + g between branch I and II an estimated
state is obtained. Based on this estimate, the control sig-
nal B2u(t) is applied upstream to the sensor. The place-
ment of the excitation, sensor and actuator is shown in
Figure 26a.

The covariance of the external and measurement noise
should be chosen to match as closely as possible the un-
certainties that are expected for the chosen design con-
figuration, but it is difficult to make more specific state-
ments. It has however been found (see [20, 49, 50]) that
the performance of the estimator can be improved dra-
matically if the covariances are chosen to reflect physi-
cally relevant flow structures rather than generic proba-
bility distributions. For our problem, the sensor noise g
is chosen to have a variance of G = 0.1 which is 10% of

FIG. 26: The controlled Ginzburg-Landau equation with
stochastic excitation: (a) white noise w with zero mean and
unit variance W = 1 forces the system at x = −11, just
upstream of unstable region with input B1 as a Gaussian
function (green). Measurements y(t) of the state (red Gaus-
sian) contaminated by white noise with zero mean and vari-
ance G = 0.1 are taken at xs = 0. The actuator u with
control penalty R = 1 is placed upstream of the sensor at
xu = −3. The rms-values of the uncontrolled and LQG-
controlled state are given by the solid red and black lines,
respectively. The absolute value of the state |q| is shown in
an x-t-plane in (b), while the lower plot (c) displays the ki-
netic energy E = ‖q‖M as a function of time. The control is
only engaged for t ∈ [250, 750]. Dashed lines in (c) indicate
the mean value computed from Lyapunov equation.

the variance of a random input with W = 1.
Since (68) is driven by white noise w(t), the state q(t)

is consequently a random process and is defined by its
stochastic properties, e.g., its covariance P = E{qqH}.
As we have shown in section III B, these properties are
linked to the statistical characteristics of the forcing via
a Lyapunov equation (44).

In Figure 26a the rms-values (39) of the state without
control (red) and with control (black) are shown. The
rms-value of the uncontrolled state grows exponentially
as it enters the unstable domain at branch I; this growth
prevails until branch II. The rms of the controlled state,
however, grows only slightly in the unstable region and is
considerably lower than the rms-value of the uncontrolled



state at branch II.
In Figures 26b and c the performance of the compen-

sator is shown more explicitly in form of a temporal sim-
ulation of the closed-loop system (92) in time. The con-
trol is only engaged for t ∈ [250, 750]. Without control
the stochastic disturbances grow exponentially as they
enter the unstable region at x = −8.2 and decay as they
exit the region at x = 8.2. When the control is acti-
vated the perturbation energy is reduced from E ≈ 103

to E ≈ 1. When the control is disengaged, the distur-
bances immediately start to grow again. During and af-
ter the time when the control is applied the perturbation
energy reaches a steady-state at a level that can be de-
termined from the covariance of the state according to
E = trace(PM), (equation (38)). Dashed lines in Fig-
ure 26c indicate these levels.

2. Harmonic and optimal disturbance

The aim of feedback control for subcritical flows is to
design closed-loop systems with small transfer function
norms compared to the stable open-loop system. Maxi-
mum transient energy growth of a perturbation and the
norm of the system transfer function G are linked for
highly non-normal systems (see section IIIA for details).
To show this link, we will pose the LQG problem as a
control problem in the frequency domain with the objec-
tive to minimize the 2-norm of the closed-loop transfer
function.

The relation between the input and output signals,
that is, between disturbance and measurement noise and
the objective function, (w → z, g → z), of the closed-loop
system (92) (displayed schematically in Figure 1) can be
described by the transfer function,

Gc(s) = C(sI − A)−1
B s ∈ C. (93)

The relation between the objective function (69) in the
time-domain and in the frequency domain can easily be
found from Parseval’s identity,

∫ ∞

−∞

z2 dt =
1

2π

∫ ∞

−∞

trace|Gc(iω)|22dω = ‖Gc(iω)‖2
2 (94)

with |Gc|22 = GH
c Gc. We have thus defined the 2-

norm of the transfer function Gc(s) as the integral over
the 2-norm of the amplitude of the transfer function
along the imaginary axis. The H2 problem is then to
minimize (94). The symbol H2 stands for the “Hardy
space” [106] which contains the set of stable transfer func-
tions with bounded 2-norms.

In Figure 27a the frequency response (w → z, g → z)
of the open-loop system is shown (red line) for the sub-
critical Ginzburg-Landau equation; we observe a 2-norm
of 20.5. The corresponding LQG/H2 closed-loop transfer
function (93) is displayed (black line) in Figure 27, where
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FIG. 27: (a) Comparison of the frequency response of the
open-loop (red), LQG-controlled (black) and H∞-controlled
(blue) Ginzburg-Landau equation. For the open-loop, the ∞-
norm corresponding to the peak value of the response is 151,
whereas the 2-norm corresponding the to integral of the re-
sponse is 20.5. The H∞ controller minimizes the peak value
to 18.4 and reduces the 2-norm to 8.7. The LQG/H2 con-
troller, on the other hand, minimizes the 2-norm to 6.1 and
reduces the peak value to 20.8. (b) The energy evolution of
an optimal disturbance is shown for the convectively unsta-
ble Ginzburg-Landau equation (red line) and the closed-loop
system computed with LQG/H2 (black) and H∞ (blue ).

the 2-norm is now minimized to a value of ‖Gc‖2 = 6.1.
In Figure 27b the optimal energy growth (section IIC)
of the uncontrolled and controlled system are compared.
The maximum transient energy growth (peak value) is
reduced by an order of magnitude.

D. Control of supercritical flow

For a globally unstable flow (parameters given in Ta-
ble I), i.e., an unstable plant (68), the influence of uncer-
tainties (w(t) and g(t)) on the system dynamics is rather
small compared to the asymptotic behavior of the most
unstable global mode. This mode will grow exponentially
as soon as any disturbance (assuming it is not orthogonal
to the unstable mode) enters the unstable region. For this
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FIG. 28: Actuator and sensor placement for the supercriti-
cal Ginzburg-Landau equation which yields a stabilizable and
detectable system. The spatial support of the actuator (blue
bar), sensor (red bar), the unstable domain (gray region) as
well as the unstable global mode (black lines) together with
its corresponding adjoint mode (red lines) are shown.

reason disturbance modeling may not play a decisive role
for globally unstable flows, in contrast to convectively un-
stable flows.

The goal of any control effort is to stabilize an other-
wise unstable system; this task is particularly straightfor-
ward using LQG-based feedback control, since the closed-
loop system (92) is guaranteed to be stable as long as the
actuator and the sensor are placed such that the system
is both stabilizable and detectable.

In other words, the performance of a controller to a
globally unstable Ginzburg-Landau equation can only be
successful if all unstable global modes are controllable
and observable. It was concluded in section IVA that
a global mode is controllable (observable) if the overlap
of the actuator (sensor) and the adjoint mode (global
modes) is nonzero. In Figure 28, a configuration for the
actuator and sensor is shown that yields a plant which is
both stabilizable and detectable.

For this set-up a LQG compensator (92) is constructed
by solving the Riccati equations (88) and (80). The per-
turbation energy, the impulse response and the spectrum
of the uncontrolled plant (68) and controlled closed-loop
system (92) are shown in Figures 29 and 30. We observe
that the closed-loop system has all eigenvalues in the sta-
ble half-plane yielding an asymptotically stable flow.

For a point-wise spatial distribution of actuators δ(x−
xu) it has been shown in Ref. [68] that the Ginzburg-
Landau equation gradually loses stabilizability as the pa-
rameter µ0 is increased. This loss is due to the increasing
number of unstable global modes which are located fur-
ther downstream. Controllability of the unstable global
modes is gradually diminished as the support of the ac-
tuator and the support of the corresponding unstable ad-
joint global modes (56c) move apart until controllability
is entirely lost. At this point no compensator will be able
to stabilize the system using one pointwise actuator.

FIG. 29: The spatio-temporal response to an impulse in time
induced at x = −10 for the uncontrolled system (a) and LQG-
controlled system (c).

E. The H∞ framework — robust control

In the previous sections we have tacitly assumed that
the system matrices A,B and C are known exactly. In re-
ality, however, this is not the case, since modeling errors
(for example, a small mismatch in the Reynolds num-
ber between the model and the actual flow) are always
present. The presence of these errors raises the important
issue of robustness of a specific control design.

Concentrating for simplicity on the dynamic model er-
ror, let us consider a model system given by A. The real
flow, on the other hand, shall be subject to a small de-
viation from this model and is described by the dynamic
matrix A+ǫ∆ with ∆ as a unit-norm uncertainty matrix
and with ǫ parameterizing the magnitude of the uncer-
tainty. For a given value of ǫ, the controller designed for
A has the ”robust stability” property if the closed-loop
system is stable for all unit-norm uncertainty matrices ∆
and, similarly, has the ”robust performance” property if
the performance of the closed-loop system is satisfactory
for all possible unit-norm uncertainty matrices ∆. If in-
formation about the specific form of the uncertainties is
available, one can restrict the structure of the uncertainty
matrix ∆ to reflect this information and thus reduce the
“uncertainty set”. In a similar fashion, the magnitude ǫ
of the uncertainty may be estimated or bounded.

Unfortunately, the LQG/H2-control design does not
account explicitly for uncertainties in the system matri-
ces, which is needed to guarantee robust performance or



even robust stability. For a given controller, the smallest
value of ǫ such that the closed-loop system is unstable is
referred to as the stability margin. It is known [32] that
there are no guaranteed stability margins for LQG/H2-
controllers. However, this does not necessarily mean that
the H2-controller will be unstable for very small values of
ǫ; instead, it merely means that the search for robustness
is not accounted for.

To incorporate the presence of uncertainties into the
control design framework one can adjust the actuation
penalty and sensor noise which, in turn, directly affects
the strength of the controller and may help push the con-
trol design toward robustness. This approach has led
to the development of control optimization based on the
H∞-norm. Instead of minimizing the energy of the trans-
fer function (i.e., the integral of the frequency response
over all frequencies), it concentrates instead on reduc-
ing the peak value of the frequency response. These are
two very different objectives: for instance, a strong peak
in the frequency response localized about one single fre-
quency may not contribute significantly to the energy (in-
tegral) of the response. This new H∞-objective plays a
pivotal role in the search for robustness since closed-loop
instabilities can be quantified by the relation between the
magnitude of the dynamic uncertainty and the maximum
frequency response (see [106]).

The steps to compute H∞-controllers closely follow
the ones for LQG/H2-design except that a new term
is added to the objective functional that will represent
the worst possible external forcing. The subsequent opti-
mization scheme will search for a controller that achieves
the best performance for the worst perturbation (see [13]
and [12]). Mathematically, this is equivalent to searching
for a saddle point of this new objective functional rather
than a minimum. The augmented objective functional
reads

J =

∫ T

0

qHMq + uHRu− γ2wHWw dt. (95)

In this expression w represents both external distur-
bances and measurement noise. We then wish to find
the control u which minimizes the control objective (69)
in the presence of a disturbance w that maximally dis-
rupts this objective. A new free parameter γ appears
that plays the role of ǫ in parameterizing the magnitude
of the worst perturbation.

To simplify the following derivation we assume for now
that W = 1 and R = 1. Similar to the LQG-design
in V B 3, we can also specify the control objective in the
frequency domain instead of the time domain (95). In
this case we simply aim at restricting the maximum val-
ues of the closed-loop transfer function as given by (see
e.g. [42]),

‖Gc(iω)‖∞ ≤ ‖z‖2

‖w‖2
≤ γ. (96)
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FIG. 30: Top figure: The perturbation energy of an initial
condition which illustrates the asymptotic growth and decay
of the global mode of the controlled and uncontrolled systems.
Bottom figure: The spectrum of the uncontrolled (red) and
LQG-controlled (black) Ginzburg-Landau equation. The ex-
ponential growth of the wavepacket in Figure 29a is due to one
unstable global mode of the open-loop shown by the red cir-
cle in the unstable half-plane (gray region). The LQG-based
closed-loop is stable with no unstable eigenvalues.

The above transfer function norm was defined in (35).

The H∞-problem consists of finding a control signal
u(t) that minimizes both the perturbation energy and
control effort while maximizing the effects of the external
disturbances w. As the parameter γ approaches infinity
the objective functional (and the optimal control) reduces
to the one of the LQG-problem. In this review we will
merely present the solution of the H∞-problem and show
how it relates to the LQG-solution. For a more detailed
derivation of this link see [106] or [42].

The solution of the above H∞-problem is, similar to
the LQG-problem, obtained by solving two Riccati equa-
tions which stem from two separate problems: the esti-
mation and the full-information control problem. The
full-information control problem leads to the Riccati
equation of the form

AHX+XA−X(−γ−2B1B
H
1 +B2B

H
2 )X+M = 0 (97)



with the control given by

u = −BH
2 X

︸ ︷︷ ︸

K

q. (98)

Furthermore, one finds that the worst-case disturbance
w is given by

wworst = γ−2BH
1 Xq. (99)

The Riccati equation (97), whose solution yields the
control feedback gain for H∞, is modified such that it
takes into account the worst-case disturbance acting on
the system. We notice that the term −γ−2B1B

H
1 is ab-

sent in the Riccati equation (88) of the LQG-problem.
Rather, by modeling and incorporating the structure of
the disturbances B1 when computing the feedback gain
K, the components of the state that are expected to be
most influenced by external disturbances are forced by
the largest feedback, Kq̂. We would like to point out
that the parameter γ is supplied by the user and that
the resulting control (98) is only suboptimal rather than
optimal. For large values of γ, the full-information so-
lution of the associated LQG-problem and the optimal
control signal are recovered.

The estimated state is also computed in the presence
of worst-case disturbances ŵworst = γ−2BH

1 Xq̂ and is
therefore the result of the following estimation problem

˙̂q = Aq̂ +B1ŵworst +B2u− L(y − ŷ), (100a)

ŷ = C2q̂. (100b)

Similar to the LQG-estimation problem, the difference
between the true measurement y and the estimated mea-
surement ŷ is fed back using the estimator gain L. There
is, however, no longer any assumption on the distur-
bances w and g. Instead the additional term B1ŵworst

provides the estimator with information on the worst-
case disturbance. The estimation gain in equation (100)
is given by L = −ZY CH

2 , where Y is the solution of the
following Riccati equation (for a derivation of this result
see, e.g., [106])

AY +Y AH −Y (−γ−2CH
1 C1+CH

2 G
−1C2)Y +B1B

H
1 = 0,
(101)

and Z is a constant matrix given by

Z = (I − γ−2Y X)−1. (102)

Equation (101) can now be compared to the Riccati equa-
tion (80) for the LQG-problem. The additional term
−γ−2CH

1 C1 is present in the above equation which re-
flects the fact that the computation of the estimation
gain L depends on the weights in the cost functional.

The components of the estimated state that most con-
tribute to the objective functional are forced stronger by
the feedback L(y−ŷ). In addition we notice that the esti-
mation gain L depends via equation (102) on the solution
of the full-state Riccati solution X.

By combining the estimator (100) and the plant (68) it
is straightforward to formulate the H∞-compensator as
a closed-loop system. Even though the required calcu-
lations (the solution of two Riccati equations) are rem-
iniscent of the LQG-approach, in the H∞ case we face
additional restrictions for the stability of the closed-loop
system and a more demanding computational effort for
finding an optimal controller.

First, stabilizability and detectability is no longer a
sufficient condition to guarantee the stability of the
closed-loop system. For the H∞-problem to be solv-
able, the spectral radius ρ of XY has to be smaller than
γ2 (see [33]).

Secondly, the solution presented above is merely sub-
optimal; finding an optimal robust controller involves an
iterative process that terminates when a lower bound γ0

of γ is found which still satisfies ρ(XY ) < γ2. This opti-
mal γ0 can typically be found with fewer than 20 itera-
tions using the bisection algorithm.

We use the Ginzburg-Landau equation to exemplify
the techniques introduced above. For a more detailed
investigation we refer to [69]. In Figure 27a the fre-
quency response (i.e., the mapping w, g → z) of the
open-loop system is shown with a red line for the subcrit-
ical Ginzburg-Landau equation, displaying a ∞-norm of
151. The corresponding H∞ closed-loop design is shown
with a blue line where the ∞-norm is now reduced to
‖Gc‖∞ = 18.4. Comparing the frequency responses of
the controlled systems based on the H2 and H∞, we
can confirm that in the former case the 2-norm ‖Gc‖2 is
minimized while in the latter case ‖Gc‖∞ is minimized.
Consequently, the most amplified frequencies are more
damped in the H∞-case at the expense of the higher
frequencies which are amplified compared to the uncon-
trolled case. The H2 controller, on the other hand, shows
a smaller reduction of the most unstable open-loop fre-
quencies (i.e. the peak value in the frequency response).
This is not surprising, since the H2-controller minimizes
the energy — the integral of the transfer function along
the imaginary axis — whereas the H∞-controller mini-
mizes the peak value of the transfer function on the imag-
inary axis.

The optimal energy growth (see equation (20)) in Fig-
ure 27b demonstrates that the maximum energy growth
is smaller for the H∞-design which suggests that reduc-
ing the most amplified frequencies, rather than all the
frequencies, is a more efficient strategy for damping max-
imum energy growth. However, to achieve its goal the
H∞-controller expends more control energy than the cor-
responding H2-controller [69].

Using the Ginzburg-Landau equation for a set of pa-
rameters that yields a globally unstable flow, Ref. [69]
compared the H∞-controller to the H2-controller for a
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FIG. 31: The frequency response of the closed feedback-loop
based on a LQG-compensator. Blue dashed lines represent
the full model of order n = 220. The performance of reduced-
order models based on r = 2, 4 and 6 modes are shown in
the (a), (b) and (c), respectively. Red lines represent bal-
anced modes, black lines POD modes and green lines global
eigenmodes. We observe that reduced order controller based
on balanced modes outperforms the other two models. The
poor performance of the reduced-order based on POD and
global modes, is directly associated with the unsatisfactory
approximation of the open-loop case in Figure 22.

range of control penalties and various levels of measure-
ment noise. They found that the H∞ control design
always uses more control energy (for the same control
penalty) than the corresponding H2 control design. A
robust controller uses this additional control energy to
ensure that the constraint on the maximum value of the
transfer function norm ‖Gc‖∞ is satisfied.

F. Reduced-order controllers

The process of systematic control design as presented
above involves the solution of two Riccati equations. The
cost of computing a Riccati solution is of order n3 where
n is the number of components in the discretized state
vector. Whereas for the Ginzburg-Landau equation n
is still sufficiently low to allow a direct solution of the
Riccati equations, for the Navier-Stokes equations the
number of state vector components is rather large. The
cost of a direct Riccati solution is prohibitively expen-
sive when n > 105 which is easily reached for two- and
three-dimensional flow configurations. As discussed in
section IV, this high cost can be avoided by developing
a reduced-order model which preserves the essential flow
dynamics.

Similar to solving a Lyapunov equation, there exist
“matrix-free” methods to solve a Riccati equation. One
common approach that significantly reduces the cost of
directly solving the Riccati equation — if the number of
inputs and outputs is much smaller than the number of
states — is known as the Chandrasekhar method [61].
In this method the Riccati solution is expressed as the
solution to a coupled system of ordinary differential equa-
tions which needs to be integrated in time (see [50] for
an application).

Even if we manage to obtain the feedback gains from
the full system, however, there still remains the issue
that the controller is of very high order, which requires
a rather fast feedback-system running next to the exper-
iment.

We will return to the issue of model reduction (see
section IV) based on the projection of the original high-
dimensional system onto a smaller system using a given
basis. One of the main advantages of this approach is
that the error in the reduced-order model can be quan-
tified in terms of transfer functions as shown in equa-
tion (61) and (57).

Once a reduced-order model is devised (using the tech-
niques in section IV) whose transfer function is a suf-
ficiently good approximation of the open-loop transfer
function, we can design an H2- or an H∞-controller for
this reduced model. This results in a reduced-order con-
troller which, coupled to the full-order open-loop system,
will result in the following augmented system

(

q̇
˙̂q

)

=

(

A B2K̂

−LĈ Â+ B̂2K̂ + L̂Ĉ

)(

q

q̂

)

+

(

B1 0

0 −L̂

)(

w

g

)

.

(103)
The expression of the reduced-order controller is equiva-
lent to the full-order given by equation (92), except that
the quantities marked with ˆ are of order r ≪ n. Note
that the feedback gain K and estimation gain L have the
dimension of the reduced model resulting in a fast online
controller.

We can now compare the frequency response of the
reduced-order models with and without control. The fre-



quency response of the full model without control was
shown by the dashed blue lines in Figures 22. The fre-
quency response of reduced-order models using global
modes (green), proper orthogonal decomposition (POD)
modes (black) and balanced modes (red) were also shown
in the figures.

In Figures 31a,b,c we display with dashed blue lines the
frequency response Gc(iω) of the LQG closed-loop sys-
tem when solving the full-order (n = 220) Riccati equa-
tions. Comparing the dashed blue lines in Figure 22,
where the frequency response of the reduced-model of
the open-loop is shown, with the ones of the closed loop
in Figure 31, we see that the most unstable frequencies
are reduced by an order of magnitude. Solving the Ric-
cati equations for the reduced models of order r = 2, 4
and 6 for the three sets of modes (global, POD, balanced
modes) we observe the same trend for the closed-loop
system as we saw for the open-loop system: the reduced-
order model based on two balanced modes (red line in
Figure 31b) is able to obtain a closed-loop performance
very similar to the full model, whereas POD modes re-
quire a substantially larger basis and global modes fail
entirely.

It should be mentioned that model reduction for unsta-
ble systems is also possible using global modes [5], POD
modes [41] and, more recently, balanced modes [2].

VI. CONCLUSION

A unifying framework for linear fluid dynamical sys-
tems has been presented and reviewed that allows the
analysis of stability and response characteristics as well
as the design of optimal and robust control schemes.
An input-output formulation of the governing equations
yields a flexible formulation for treating stability prob-
lems and for developing control strategies that opti-
mize given objectives while still satisfying prescribed con-
straints.

The linear Ginzburg-Landau equation on the infinite
domain has been used as a model equation to demon-
strate the various concepts and tools. It has been modi-
fied to capture both subcritical and supercritical distur-
bance dynamics and thus span the range of fluid behav-
ior observed in various generic shear flow configurations.
With a small modification, the equation can also be used
to mimic instabilities in other spatially developing flows,
for instance flows on semi-infinite domains such as inho-
mogeneous jets and wakes.

Input-output-based analysis tools, such as the impulse
response or the frequency response, have been applied to
the model equation. This type of analysis lays the foun-
dation for a thorough understanding of the disturbance
behavior and the design of effective control strategies.
Concepts such as controllability and observability play
an important role for both the input-output behavior and
the control design.

The design of effective and efficient control strategies

is a challenging task, starting with the placement of ac-
tuators and sensors and ending with the judicious choice
of a model reduction basis in order to numerically solve
the compensator problem. Along the way, compromises
between optimality (H2-control) and robustness (H∞-
control) have to be made that influence the overall per-
formance of the feedback system.

It is hoped that this review has given a comprehen-
sive and modern introduction to the fields of stability
and control theory and has shown the close link between
them. It is further hoped that it will spark interest in the
fluid dynamics community to continue the exploration of
these two exciting disciplines.

The Matlab files to reproduce the results and figures
of this review article are available from the FTP server
ftp://ftp.mech.kth.se/pub/review.
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APPENDIX A: DISCRETIZATION

The numerical studies in this review article are based
on a pseudospectral discretization of the Ginzburg-
Landau operator A using Hermite functions and the cor-
responding differentiation matrices provided by [104]. To
approximate the derivatives in (1), we expand the solu-
tion q(x, t) in n Hermite functions

q(x, t) =
n∑

j=1

αj(t) exp(−1

2
b2x2)Hj−1(bx) (A1)

where Hj(bx) refers to the jth Hermite polynomial. The
differentiation process is exact for solutions of the form

f(x) = exp(−1

2
b2x2)p(bx) (A2)

where p(bx) is any polynomial of degree n − 1 or less.
The scaling parameter b can be used to optimize the ac-
curacy of the spectral discretization [98]. A comparison
of the above expression with the analytical form of the
global Ginzburg-Landau eigenmodes (10b) shows that
they are of the same form except for the exponential term
exp{(ν/2γ)x} stemming from the convective part of the
Ginzburg-Landau equation. This exponential term is re-
sponsible for the non-orthogonality of the eigenmodes of
A. The Hermite functions are thus the “orthogonal part”
of the global modes. By choosing the Hermite function



scaling factor b = χ we obtain a highly accurate approx-
imation of A, since any solution of the Ginzburg-Landau
equation will decay with the same exponential rate as
the Hermite functions in the limit as the domain tends
to infinity.

The collocation points x1, . . . , xn are given by the roots
of Hn(bx). We also notice that the boundary conditions

are enforced implicitly and that −x1 = xn = O(
√
bn)

in the limit as n → ∞ [1]. The discretization converts
the operator A into a matrix A of size n × n (with n
as the number of collocation points). Throughout this
review article we present results for n = 220 yielding a
computational domain with x ∈ [−85, 85].

Discretization transforms flow variable q(x, t) into a
column vector q̂(t) of dimension n, and the inner product
is defined as

〈f, g〉 =

∫ ∞

−∞

f(x)∗g(x)dx (A3)

≈
n∑

i=1

n∑

j=1

f̂H
i ĝjwi,j = f̂HMĝ = 〈f̂ , ĝ〉M ,

where f̂ = [f̂1 . . . f̂n]H and ĝ = [ĝ1, . . . , ĝn]H are column

vectors consisting of, respectively, f(x) and g(x) evalu-
ated at the collocation points. The symbol H denotes
the Hermitian (complex conjugate transpose) operation.
The positive-definite matrix M contains the weights wi,j

of the chosen quadrature rule. For instance, applying
the trapezoidal rule to the Hermite collocation points
results in a diagonal matrix M = 1

2diag{∆x1,∆x2 +
∆x1, . . . ,∆xn−1+∆xn−2,∆xn−1}, with ∆xi = xi+1−xi.

In this paper, the discrete variables f̂ are denoted by f .

The operators B and C, describing the input and out-
put configuration, are represented at their respective col-
location points. We assume a spatial distribution of in-
puts B = {B1, . . . , Bp} and outputs C = {C1 . . . Cr}T

in the form of Gaussian functions

Biu(t) = exp

[

−
(
x− xw,i

s

)2
]

u(t), (A4a)

Ciq(t) = exp

[

−
(
x− xs,i

s

)2
]H

Mq(t). (A4b)

where x represents the Hermite collocation points.
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FIG. 33: Jérôme Hoepffner was born in France in 1978. Af-
ter completing his undergraduate studies at Université Paul
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the École Polytechnique in Palaiseau near Paris. His research
is in the area of hydrodynamic stability theory, flow control
and computational fluid dynamics.



FIG. 35: Dan Henningson is a professor at the Department
of Mechanics at KTH in Stockholm. He received his PhD in
the same department 1988, after which he joined the Depart-
ment of Mathematics at MIT as an assistant professor. Four
years later, 1992, he came back to Sweden to become an ad-
junct professor at the Department of Mechanics, KTH and a
senior research scientist at FFA (The Aeronautical Research
Institute of Sweden). In 1999 he became a full professor at
the department of Mechanics, which he now also heads. In
addition he is the director of the Linné Flow Center, a cen-
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