

KTH Engineering Sciences

Stochastic excitation of streaky boundary layers

Jérôme Hœpffner

Luca Brandt, Dan Henningson

Department of Mechanics, KTH, Sweden

Boundary layer excited by free-stream turbulence

Fully turbulent inflow and flat plate

Turbulent free-stream

- \rightarrow receptivity
- \rightarrow streaks
- \rightarrow streak instability
- \rightarrow turbulent spots
- \rightarrow turbulent boundary layer

(Image by Philipp Schlatter,

LES of bypass transition, Tuesday, D31)

Boundary layer stability

TS waves:

Large Reynolds

2D waves

Exponential growth

Streaks:

Subcritical Reynolds Large external disturbances Transient growth

Secondary instability of streaks

Streaks instability is at amplitude 26% of the free stream velocity

inflectional profile

 \rightarrow Inviscid instability

Maybe an other mechanism at lower amplitude?

Contours of streamwise velocity, yz plane:

(Luca Brandt, PhD thesis)

Secondary transient growth of the streaks

Primary growth: streaks

Secondary growth

Assume the boundary layer is excited by the FST at all downstream position \rightarrow streaks is generated, then streaks is disturbed

Possibility of transient growth on top of the streaks: Schoppa & Hussain, JFM(2002).

Energy growth: sinuous perturbations

Transient growth: energy envelopes

Streak amplitude: 25% of free-stream velocity

KTH Engineering Sciences

Question

How likely are those initial excitation in a FST boundary layer?

Will this growth mechanism be active with realistic disturbances?

KTH Engineering Sciences

Statistical description

Farrell& Ioannou, POF(1993):Stochastic forcing of the linearized Navier–Stokes equations.

FST is erratic, instationnary, we describe it by its statistics \rightarrow two point correlation

Average, or expectation operator E.

Two-point correlation: $P_u(x, x') = E[u(x)u(x')]$ of u at x and x'.

For 3D flow: P(x, x', y, y', z, z', t, t').

Covariance matrix

Correlation is **covariance** normalized to unit variance.

Two point correlation, varying in x

Correlation matrix

Two-point correlation of FST

Isotropic turbulence: Von-Karman spectrum

Energy spectra:

Covariance matrix:

Covariance in *y*:

FST is only in the free-stream

Covariance matrix with ramping

KTH Engineering Sciences

POD modes from the covariance matrix

Two-point correlation data has many dimensions \rightarrow show coherent structures

Energy content of the flow structures tells about flow coherence

POD modes are the eigenmodes of the covariance matrix

POD modes of the FST

Faster oscillation \rightarrow more damped, many spatial frequencies are present

Lyapunov equation

Explicit state solution:

$$\frac{\partial P(t,t)}{\partial t} = A\left(\underbrace{e^{At}P_{0}e^{A^{H}t} + \int_{0}^{\infty} e^{A(t-\tau)}We^{A^{H}(t-\tau)}d\tau}_{P(t,t)}\right) + \left(\underbrace{e^{At}P_{0}e^{A^{H}t} + \int_{0}^{\infty} e^{A(t-\tau)}We^{A^{H}(t-\tau)}d\tau}_{P(t,t)}\right)A^{H} + \underbrace{e^{A0}We^{A^{H}0}}_{W}$$

KTH Engineering Sciences

Lyapunov equation

$$\frac{\partial P}{\partial t} = AP + PA^H + W, \quad P(0) = P_0$$

Initial condition problem

No stochastic forcing: W = 0Stochastic initial condition

 $\frac{\partial P}{\partial t} = AP + PA^H, \quad P(0,0) = P_0$

 \rightarrow Covariance varies in time

Forced problem

With stochastic forcing: $W \neq 0$ Long time after initial condition

 $0 = AP + PA^H + W$

 \rightarrow Reached statistical steady state

Streaky flow excited by FST: Stochastic initial value problem

The FST is the flow initial condition

POD modes, $\alpha = 0.05$

Flow structure with maximum energy

Comparison FST/optimal

FST initial condition: u,v,w

Worst case initial condition: u,v,w

Comparison of flow structures: Streamwise velocity

(LES of bypass transition : Philipp Schlatter)

Comparison of flow structures: Streamwise shear

(LES of bypass transition : Philipp Schlatter)

Conclusions

- 1. Possibility of energy growth of $\mathcal{O}(1000)$ for subcritical streak
- 2. FST description using two-point correlation
- 3. Computation of state two-points correlation using Lyapunov equation
- 4. Response to FST involves transient growth mechanism
- 5. Secondary transient growth explains observed streak structure
- → Bypass transition involves TG mechanism twice Does this explain streak breakdown?

Computation of the transient growth

Power Iteration:

- \bullet Consider initial guess $q^0(0)$
- March forward in time with dynamic equation : $q^0(\tau) = \mathcal{H}_{\tau} q^0(0)$
- March backward in time with adjoint equation: $q^1(0) = \mathcal{H}_{\tau}^+ q^0(\tau)$
- Renormalize energy

Each of these power iteration magnifies the component of the initial guess on the optimal initial condition.

Convergence in less than 20 iterations \rightarrow well separated eigenvalues

Numerical solution of Lyapunov equation

Solve: $AX + XA^H + W = 0$

1. Schur decomposition $A = UA'U^H$, $\rightarrow A'$ upper diagonal, U orthogonal.

2. Resulting equation $A' \stackrel{X'}{U^H X U} + \stackrel{X'}{U^H X U} A'^H + \stackrel{W'}{U^H W U} = 0$

3. Use Kronecker product \otimes

$$A \otimes B \triangleq \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1m}B \\ a_{21}B & a_{22}B & \dots & a_{2m}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \dots & a_{nm}B \end{pmatrix}$$

$$\vec{(A'X' + X'A'^H + W')} = 0$$
$$= \underbrace{(I \otimes A' + \overline{A'} \otimes I)}_{\mathcal{F}} \vec{(X')} + \vec{(W')}$$

4. Solve by backward substitution

 ${\mathcal F}$ has upper diagonal structure

Energy balance in streak secondary transient growth

$$K_t = \int (\underbrace{-uv \, U_y}_{T_y} \underbrace{-uw \, U_z}_{T_z} \underbrace{-\omega \cdot \omega / \mathsf{Re}}_{D}) \, dy \, dz \, dx,$$

- K_t : time variation of kinetic energy
- T_y : production due to interaction with wall normal mean shear
- T_z : production due to interaction with spanwise mean shear
- D: dissipation due to viscosity

KTH Engineering Sciences

Production and dissipation in streak secondary transient growth

- Spanwise shear always contributes to energy growth
- Wall-normal shear gives then takes: Orr mechanism related to structure tilting

Disturbance can gain energy

Streaky flow excited by FST: Forced problem

The flow is constantly excited by FST

Unstable sinuous eigenmode

For large streak amplitude $\alpha=0.3$ eigenvalues:

Corresponding eigenfunction:

Transient growth analysis

To build the dynamical operator:

- Use PSE to optimize disturbance
- Input forcing in DNS
- \bullet Extract fully saturated streamwise velocity profile U(y,z)
- Apply linear stability analysis, using Floquet

Build matrix $A \rightarrow$ eigenvalues for asymptotic stability singular values for transient growth

Stability equations

Perturbation (v, η) on the base flow U(y, z)

Wavelike behaviour in the streamwise direction:

 $[v,\eta] = [\widehat{v}(y,z,t), \widehat{\eta}(y,z,t)] \ e^{i\alpha x} + c.c.$

Derivation similar to the Orr–Sommerfeld/Squire equation:

 $\begin{cases} \Delta v_t + U\Delta v_x + U_{zz}v_x + 2U_zv_{xz} - U_{yy}v_x - 2U_zw_{xy} - 2U_{yz}w_x = \frac{1}{Re}\Delta\Delta v, \\ \eta_t + U\eta_x - U_zv_y + U_{yz}v + U_yv_z + U_{zz}w = \frac{1}{Re}\Delta\eta. \\ \text{(with } w_{xx} + w_{zz} = -\eta_x - v_{yz}) \end{cases}$

 + Floquet analysis: base flow and disturbance are periodic in spanwise direction.
Look only at fundamental modes
Chebyshev discretization in wall-normal direction

Computation of the transient growth

• Dynamic system with initial condition:

$$\dot{q} = Aq, \quad q(0) = q_0$$

• Input-output operator \mathcal{H}_{τ} :

$$q(t) = \mathcal{H}_{\tau}(q_0)$$

• Maximum possible growth:

$$G(\tau) = \max_{q} \frac{||\mathcal{H}_{\tau}q||_{E}}{||q||_{E}} = \max_{q} \frac{(\mathcal{H}_{\tau}q, \mathcal{H}_{\tau}q)}{(q, q)} \triangleq \max_{q} \frac{(q, \mathcal{H}_{\tau}^{+}\mathcal{H}_{\tau}q)}{(q, q)},$$

• with adjoint operator:

$$(\mathcal{H}q_1, q_2) = (q_1, \mathcal{H}^+q_2), \quad \forall q_1, q_2$$

Max $G(\tau)$ is the largest eigenvalue of operator $\mathcal{H}_{\tau}^+\mathcal{H}_{\tau}$

Varicose energy evolution

For 4 different streak amplitudes: energy envelope for several α .

Flow structures for streak transient growth Sinuous: Varicose:

Optimal disturbance:

Optimal response

Optimal disturbance:

Optimal response

Sinuous energy evolution

For 4 different streak amplitudes: energy envelope for several α .

