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The capillary bridge is an axisymmetric body of liquid held between two discs. It has
a rich bifurcations structure, as it can breakup for two different reasons: if its length
is larger than its perimeter, it is unstable to the Rayleigh-Plateau instability, and if its
volume is decreased for a given length and radius, there is a fold bifurcation that leads
to the disappearance of the steady solution. To this classical system we add a dynamic
effect: we consider the behavior of the bridge when there is a flow through it. By analogy
with the instability of a band-saw, we show that the Rayleigh-Plateau instability is a
particular case of the dynamic instability of the capillary Venturi. We compare these
analyses to the nonlinear bifurcation diagram of a 1D model and numerical simulations
of the Navier-Stokes equations.

1. Introduction
The original motivation of this study was atomization: how a body of fluid can be

transformed into a cloud of droplets. In Hoepffner & Paré (2013), we studied the retraction
of the tip of a liquid ligament. Because of surface tension, the tip is not a steady state and
it will retract at the Taylor-Culick velocity (see Keller (1983)). As shown in Stone & Leal
(1989) the fluid of the ligament is gathered into a retracting bulb, and a neck appears
between the remaining part of the ligament and the bulb. The presence of this neck
implies that the fluid must accelerate and decelerate before reaching the bulb. The neck
in this retraction behaves like a Venturi flow (Guyon et al. (2001)): the flow is accelerated
through the neck (high speed-low pressure) and then decelerated (low speed again, high
pressure again). We have observed that this capillary Venturi flow can have interesting
features like nonlinear oscillations and inner jet detachment. The present article is a
dedicated study of the capillary Venturi flow in the simpler configuration sketched in
figure 1.

The historical experiments on the static capillary bridge are described in Plateau
(1873). Because of surface tension, a cylinder of liquid held between two discs will desta-
bilize when its length is larger than its perimeter. It is indeed the necessary condition for
a small perturbation to decrease the total surface. The analysis giving the exponential
growth rate of the different wavelengths on an infinite liquid cylinder is done in Rayleigh
(1879). It is shown that the most rapidly growing wavelength is about

√
2 times the

perimeter. Eggers & Dupont (1994) derive a 1D nonlinear model for this system that
gives more readily the dispersion relation.

The flow that we study here is similar to flows through an elastic pipe, often referred
to as collapsible tubes, with applications to blood flows, and originating historically from
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Figure 1. Sketch of the flow configuration: a capillary bridge held between two pipes with a
throughflow.

the studies of the “Starling resistor”; see for instance Heil & Jensen (2003); Heil & Hazel
(2011). In the case of an elastic pipe, in addition to the tension of the membrane, there is
bending stiffness and no-slip. This flow can lead to nonlinear self-sustained oscillations,
and can also lead to collapse: the low pressure at the neck of the flexible pipe can increase
the constriction and so on until blockage.

Capillary bridges with outer axial flow were studied in the context of the float-zone
process to produce mono-crystals. One of the limitation for the size of this process is the
breakup of large capillary bridges because of gravity. In Russo & Steen (1989); Atreya &
Steen (2002), a second liquid is flown upward outside of the capillary bridge to reduce the
bulging of the lower part due to gravity. The upward outer flow induces a recirculating
zone inside the capillary bridge due to viscous entrainment. This situation with two
coaxial fluids is similar to core-annular flows, see Joseph et al. (1997), used for instance
to reduce the pressure drop in flowing viscous fluids through pipes by adding an outer
layer of lubricating fluid.

The rivulet of a thin liquid stream flowing on an incline involves instabilities due to the
interaction of a throughflow and capillarity, see Grand-Piteira et al. (2006); Daerr et al.
(2011). In this configuration, the flow is not confined by inflow and outflow pipes but is
constrained by the motion of contact lines with the incline. The instability is sinuous with
wavelength long compared to the width of the rivulet, leading to meanders. In Kirstetter
et al. (2012), a rivulet interacts with a soap film.

Rosendahl et al. (2004); Conrath et al. (2013) present experimental studies where a flow
interacts with the free surface that contains it. The study is performed in a microgravity
environment. Water is flown in a flat channel between two plates and two free surfaces.
They demonstrate a critical flow rate for breakup of the free surface. They write that
”in current experiments aboard the International Space Station, partially open channels
are being investigated to determine critical flow rate-limiting conditions above which
the free surface collapses ingesting bubbles.” They state that ”for such flows, an abrupt
transition occurs between steady-state and unsteady choked flow conditions, leading to
large surface deformations and periodic gas ingestion”.

Capillary bridges are also relevant when flowing two immiscible fluids through a porous
medium. Because of the flow, the bridges inside of the 3D network are capillary Venturis,
see for instance Avraam & Payatakes (1995). In Datta et al. (2014), a link is drawn
between the breakup of these Venturis due to dynamic effects and the global resistance
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to the flow: how much pressure difference do we need to impose between inflow and
outflow for a given flux through the porous network. They write in their introduction
that ”the measured pressure differences are thus interpreted as the pressures dropped
in the different fluids, and the relative permeabilities are then calculated using Darcy’s
law. However, how exactly the two fluids are configured, and how this in turn influences
their permeabilities, is poorly understood; indeed, even the validity of the assumption
that the fluids flow through connected pathways remain intensely debated (see Richards
(1931)). Experiments on a 2D porous medium challenge this notion: in some cases, the
non-wetting fluid instead breaks up into discrete ganglia, often as small as the pore
size, which are then advected through the medium by the flowing wetting fluid.” To
explain the transition towards breakup of the capillary Venturis in their 3D experiment,
they propose that ”the non-wetting fluid breaks up when the sum of the viscous forces
exerted by the wetting and the non-wetting fluid exceed the capillary forces at the pore
scale.”

We remind the behaviour of the static capillary bridge in figure 2, see for instance
Lowry & Steen (1995) and Slobozhanin & Perales (1993) or Everett & Haynes (1972).
Two parameters are considered: the aspect ratio of the bridge L/R and the volume of
the bridge compared to the volume of the cylinder V/V0. The aspect ratio first matters
because of the Rayleigh-Plateau instability. The second parameter is the volume ratio
V/V0: how much thicker or thinner is our bridge compared to a cylinder. We have V0 =
πR2L and the bridge is a cylinder whenever V/V0 = 1. On the left of the figure (for small
L/R) we have two kinds of asymmetric instabilities depending on wether the bridge is
thicker or thinner than a cylinder. These two instabilities do not lead to breakup. On
the right of the figure we have a boundary beyond which there is no stable bridge, we
denote this the “breakup boundary”. The bridge may breakup for two different reasons:
either when it is too long ; this phenomenon is related to the Rayleigh-Plateau instability
for bridges thicker or thinner than a cylinder, or when it is too thin, a case where the
steady solution disappear through a fold bifurcation. In this paper we are interested in
the way the breakup boundary will change when there is a flow through the bridge.

The goal of the present paper is to present the capillary Venturi as an archetypal
configuration to understand how a flow can affect the free surface in which it is contained.
To explain the behaviour of this flow we consider theoretically a cylindrical bridge with
throughflow. Using an analogy with the instability of a band saw, we give a simple
criterion for instability, this is done in §2. This theoretical prediction is then validated
against two levels of modeling of the flow: first we compute the bifurcation diagram of
a 1D nonlinear model from Eggers & Dupont (1994) in §3, then we perform numerical
simulations of the axisymetric Navier-Stokes equations in §4. We show that these three
different points of view coincide qualitatively and quantitatively to provide a rich view
of the system.

2. Predicting the breakup of the capillary Venturi
We would like to obtain a criterion for stability or instability of a cylindrical bridge

with a given throughflow U . The classical modeling for this would be the normal-mode
approach, developed originally by Thomson (1871) for the instability of the shear layer
and later by Rayleigh (1879) for the instability of the liquid jet. This approach consists
in neglecting the longitudinal variations of the base flow and perturbing this spatially-
invariant flow system with low amplitude periodic waves. This approach yields the dis-
persion relation of the system: for each wave of a given wavelength λ, the dispersion
relation gives the phase speed and the exponential growth rate of the wave. If the growth
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Figure 2. Stability of the static capillary bridge. Figure adapted from Lowry & Steen (1995).

rate is positive the wave is unstable, if it is negative, the wave is stable, and if it is zero,
the wave is neutral.

In this approach, we assume that the system is infinite and spatially invariant. To
recover our flow configuration, we need to account for the presence of boundaries. The
constraints imposed by the upstream (x = 0) and downstream (x = L) boundaries are
the following: the free surface deformation should be zero, and the flow velocity should
be equal to U . To account for these additional constraints, we build a global mode by
combining several waves (normal modes) of the infinite approximation of the system.
Here, there are four constraints (two upstream and two downstream), so we need to
combine four waves to be able to satisfy the boundary conditions. This combination of
normal modes corresponds to the mutual reflection of the waves against the boundaries:
at the right boundary for instance, the waves moving to the right reflects into waves
moving to the left. The properties of this reflection are such that the boundary conditions
are satisfied. For examples of the method used to build a global mode that satisfies the
boundary conditions, please see Doaré & de Langre (2002) or Gallaire et al. (2006).

There are many systems where imposing boundary conditions can destabilize a system
which would be stable otherwise. Indeed, the boundary conditions can input energy to
the system. This implies that depending on the boundary conditions, it is possible to
build an unstable global mode by combining neutral or even stable individual waves.
This is indeed the case for the two systems that we will consider below: the band-saw,
and the capillary Venturi.

In the present section, we present a simpler way to judge for the stability of the bridge.
For this we consider that the deformation of the base flow system is the competition
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Figure 3. Sketch for the Band-saw instability and the analogy with the dynamic instability of
the capillary bridge.

of stabilizing and destabilizing forces. For the band-saw, the stability results from the
competition of the tension in the saw and the centrifugal force on a curved saw in motion.
The system is unstable when the tension is less than the centrifugal destabilizing force.
For the capillary bridge, we consider the balance at the free surface between the Laplace
pressure jump through the free surface, due to surface tension and curvature, and the
hydrodynamic pressure due to the acceleration and deceleration of the flow through the
deformed bridge.

For the classical normal mode method, we can choose between a temporal or a spatial
analysis, see for instance Huerre & Monkevitz (1990). In the temporal approach, we
impose the wavelength and calculate the associated wavespeed and temporal growth
rate. The wave grows in time (unstable) if this growth rate is positive. In the spatial
approach on the other hand, we impose the local frequency and calculate the associated
wavelength and spatial exponential growth. The waves grow in space if this growth rate
is positive. In the present section in contrast, we choose to impose both the wavelength
and the wavespeed, and we probe the force balance. Thus, the stability/instability limit
is found by evaluating an inequality: when the destabilizing forces are larger than the
stabilizing forces, the wave is unstable. Imposing the wavelength and the wavespeed
is very convenient here because then all boundary conditions are satisfied by default.
Indeed, for a stationary wave in the reference frame of the bridge (wavespeed equal to
throughflow), satisfying the zero deformation of the interface at x = 0 and x = L amounts
to selecting wavelengths equal to 2L, L,L/2, L/3, . . . .

A first shortcoming of this approach, as compared to the global mode calculation, is
that is does not provide the growth rate of the instability. Indeed, forces are not enough
to determine the growth rate, we would need to consider as well how masses are moved
by these forces. The second shortcoming is that it assumes the destabilization of a static
wave, known as exchange of stability, which corresponds to a pitchfork bifurcation. We
would not be able to capture a Hopf bifurcation for instance. Anyway, we will see that
the breakup of the capillary Venturi corresponds indeed to a pitchfork.

2.1. The example of the band-saw instability
We start with the straightforward calculation of the band-saw. This classical system is
described for instance in Mote (1965); Ulsoy et al. (1978). A string under tension is set
in motion and glides through two rings, apart by a distance L.

Let us evaluate the force balance on the band. We assume a perturbation to the straight
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configuration in the shape of an arc of circle. Two forces are in competition: the tension
of the band on one hand and the centrifugal force on material points traveling along
the arc of circle as show on figure 3a). The radius of curvature is R and the velocity is
U . The speed of rotation of material points around the geometrical center of the arc of
circle is Ω and their velocity is U = ΩR. The centrifugal force per unit length is equal to
minus the mass density times the normal acceleration f = λΩ2R. We consider the force
balance projected in the vertical direction. This yields that the tension applied to the
band cannot counteract the centrifugal force whenever

Lf > 2T sin θ,

which yields the critical velocity

U >

√
T

λ
.

The reader has certainly recognized here the wavespeed of the vibrating string. Indeed
this instability corresponds to a supersonic transition: the saw becomes unstable when
its velocity exceeds the speed of its waves. Here we have assumed an initial perturbation
in the shape of an arc of circle; the result is identical for a sinusoidal perturbation, after
a longer calculation.

2.2. Pressure balance model for the cylindrical bridge
We now apply this method to a cylindrical bridge with throughflow. We consider a static
deformation of the free surface as sketched in figure 3b), with a throughflow U . We will
evaluate the pressure balance between the capillary jump across the curved interface and
the hydrodynamic pressure due to the deceleration and acceleration of the fluid through
the bulge and the neck as shown on the figure.

The radius of the bridge varies like r(x) with r(x = 0) = R. Conservation of flux yields

u(x) =
R2

r(x)2
U.

We call p(x = 0) = P0 the pressure at inflow. We use the Bernoulli equation to quantify
how the variation of velocity affects the hydrodynamic pressure. We assume that the
wave is long enough to approximate the velocity at a given section with a plug profile
u(x) with u(x = 0) = U :

ρU2

2
+ P0 =

ρu(x)2

2
+ p(x).

Now assuming a small perturbation of the radius r(x) = R(1 + εδ(x)) and keeping order
one terms in ε (linearizing) we get the expression for the hydrodynamic pressure

p(x)hydro = 2ρU2εδ(x) + P0.

We now consider the capillary pressure due to the pressure jump through the inter-
face. This jump is the surface tension σ times the total curvature of the interface. It is
positive when the centre of curvature is inside the liquid and negative otherwise. For an
axisymmetric interface, the expression is

p(x)cap = σ

[
1

r(1 + r2
x)1/2

− rxx

(1 + r2
x)3/2

]
,

which, after linearization, becomes

p(x)cap = σ

(
1− εδ

R
−Rεδxx

)
.
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We now consider the balance of pressure at A where the ligaments bulges. We assume
a simple shape of the interface perturbation

δ(x) = cos(αx),

with wavenumber α and thus wavelength 2π/α. At A we have δ(x = xA) = 1 and
δxx(x = xA) = −α2.

We can now state the inequality of pressures. The bulge deformation to the cylindrical
free surface will increase if the inner hydrodynamic pressure is larger than the capillary
pressure (outward acceleration for an outward deformation)

phydroA > pcapA,

that is

2ρU2εδ + P0 > σ

(
1− εδ

R
−Rεδxx

)
.

The reference pressure P0 is taken at inflow where the axial curvature of the interface is
zero thus P0 = σ/R; we thus get as a criterion for instability

2ρU2

σ
>
−1
R

+ α2R

which we rewrite more conveniently

U

Ucap
>

√
(2πR/λ)2 − 1

2
(2.1)

where Ucap =
√

σ/(ρR) is a capillary velocity built from dimensional analysis, and
λ = 2π/α is the wavelength. Consideration of the pressure balance at B gives the same
inequality: at B, the free surface has a trough, and when the inequality is satisfied
this trough is amplified because the capillary pressure is larger than the hydrodynamic
pressure.

For parameters where the inequality becomes an equality, the forces are in balance
and the deformation is neutral. These parameters corresponds to waves propagating at
wavespeed c without change in amplitude

c = Ucap

√
(2πR/λ)2 − 1

2
. (2.2)

We will validate this result in the next section when deriving the dispersion relation of
the 1D model from Eggers & Dupont (1994). When the wavelength is longer than the
perimeter 2πR of the cylinder, the argument of the square root of (2.2) becomes negative.
This transition corresponds to the classical Rayleigh-Plateau instability, which is safely
recovered with the present approach. Waves shorter than the perimeter of the cylinder
λ < 2πR on the other hand are neutral. Our inequality shows that the breakup of the
capillary bridge with throughflow, just like for the band-saw, corresponds to a supersonic
transition.

As compared to the classical Rayleigh-Plateau instability, we have added in our analysis
a throughflow. Because of galilean invariance, this throughflow plays a role thanks to the
boundary conditions. When this throughflow vanishes we recover the classical results
and we see that adding the throughflow increases the range of unstable waves. Thus we
can say that the Rayleigh-Plateau instability is a special case of the instability of the
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capillary Venturi. This is illustrated in figure 4

Ucrit

Ucap
=

√
(2πR/L)2 − 1

2
. (2.3)

3. 1D nonlinear model
To refine this analysis and dwell upon the structure of the nonlinear bifurcations, we

now introduce a 1D model of the flow through a cylindrical ligament from Eggers &
Dupont (1994). This model assumes wavelength long compared to the radius and retain
the full expression of the capillary pressure jump through the tensed interface

ut = −uux − px

ρ + 3ν(r2ux)x

r2

p = σ
[

1
r(1+r2

x)1/2 − rxx

(1+r2
x)3/2

]

rt = −urx − 1
2uxr

u(0) = U, r(0) = R, r(L) = R,

(3.1)

with u the longitudinal velocity (in the x direction), r the radius, ν the fluid kinematic
viscosity, σ the surface tension and ρ the fluid density. Please see Eggers & Villermaux
(2008) for several examples of the use of this model.

3.1. Dispersion relation
We now proceed to derive the dispersion relation for low amplitude harmonic waves on
an infinite cylinder of liquid at rest. This dispersion relation will give us the expression
of the wavespeed that we will compare to (2.2).

We assume a small perturbation r = R + r̃, u = U + ũ, p = σ/R + p̃ to the cylindrical
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steady state. Since here we do not have upstream and downstream boundary conditions,
by galilean invariance, we can assume U = 0. Since we are interested in the low viscosity
regime, we assume ν = 0. We linearize (3.1) by injecting these expressions. We obtain

ũt = −p̃x/ρ
p̃ = −σ(r̃/R2 + Rxx)
r̃t = −Rũx/2.

We now assume harmonic waves for ũ, p̃, r̃, for instance for ũ:

ũ = ûeiαx+st,

with α the wavenumber and s the temporal exponential growth rate. We obtain

s2 =
σ

ρR

α2(1−R2α2)
2

.

The growth rate s is purely imaginary (traveling neutral waves) whenever 1 − R2α2 is
negative, i.e. when the wavelength λ = 2π/α is less than the perimeter of the cylin-
der 2πR. Otherwise waves are unstable: this is the Rayleigh-Plateau instability. We are
interested in the wavespeed of neutral waves. The speed is

c = − Imag(s)
α

=
√

σ

ρR

√
R2α2 − 1

2

thus we recover the capillary wavespeed of §2.2 (2.2).

3.2. Bifurcation diagram
We compute the bifurcation diagram for steady states of the nonlinear 1D model. The
code is written in Octave/Matlab language. The unknowns u, r, p are discretized in space
using Chebychev pseudospectral differentiation, see Weideman & Reddy (2000). The
boundary conditions are imposed in the discretized version of the system by replacing the
equations for the first and last gridpoints by the equations of the boundary conditions.
The nonlinear steady solutions of the system are computed by iterating the Newton-
Raphson method and using the Jacobian calculated analytically from the linearization
of (3.1). We found that about 100 gridpoints (Chebychev colocation nodes) in the axial
direction provide a satisfactory accuracy of the computations.

For these computations, we use a mean radius R = 1, surface tension σ = 1 and
fluid density ρ = 1. The Reynolds number is Re = UR/ν, the Ohnesorge number is
Oh = µ/

√
ρσR = ν, the Weber number is We = ρRU2/σ = U2, and the capillary

velocity Ucap =
√

σ/(ρR) = 1.
To compute the bifurcation diagram, we perform a Keller pseudo-arclength numerical

continuation method, see Keller (1982), based on the continuation parameter U . The
computation is initialized with U = 0 and the initial guess for the Newton-Raphson
iterations is the trivial straight bridge solution at V/V0 = 1.

We draw in figure 5 the bifurcation diagram for the perfect cylinder (V/V0 = 1 and
inviscid flow ν = 0), and for an imperfect system (volume slightly less than the cylinder
V/V0 = 0.99 and viscous Oh = ν = 0.01). To represent the changes in the steady state
of the bridge while increasing U , we draw the slope of the free surface at the inlet. For
the perfect bridge, we see that the straight cylinder always remains a steady state of
the system, and has several successive pitchfork bifurcations. At these bifurcations, the
straight solution branches with a nontrivial steady solution shown on the figure. Since
the system is stable for low velocity (subcritical bifurcation), we know that the pitchfork
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and a small viscosity. The vertical dashed lines show the prediction of instability threshold from
(2.1). We name first, second, third . . . the successive branches of nonlinear solutions separated
by pitchfork bifurcations.

corresponds to a destabilization of the system. Thus the straight bridge with throughflow
becomes unstable after the first bifurcation.

We have drawn as vertical dashed lines the critical velocities predicted in §2.2 by (2.3)
for the successive waves allowed by the boundary conditions

U i
crit

Ucap
=

√
(2πR/λi)2 − 1)

2
.

with λ0 = L a sinus that spans the entire bridge (called “mode 0” on the figure),
λ1 = L/1.5 for which the length of the bridge is spanned by 1.5 wavelengths, and
λ2 = L/2, λ3 = L/2.5, λ4 = L/3. We see that the first bifurcation is accurately predicted
by the theory. This validates that indeed, the velocity at which the system becomes
supersonic corresponds to a bifurcation and a loss of stability.

This accuracy is also found for all even modes. As opposed to the band-saw, the
capillary bridge is a dispersive system. Here, waves with short wavelengths travel faster
than longer waves. As we progressively increase the throughflow, the system becomes
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supersonic with respect to each successive modes allowed for by the boundary conditions.
Each of these transitions corresponds to a pitchfork in the bifurcation diagram.

We see on the other hand that the location of the pitchfork is slightly overestimated
for uneven modes. A mode of surface oscillation is allowed by the boundary conditions
if the free surface deformation is zero at x = 0 and x = L, this selects the wavelengths
2L, L,L/1.5, L/2, . . . . On the other hand, the modes should as well satisfy volume con-
servation, this is why the wavelength 2L is forbidden in the system: a free surface de-
formation cannot be only positive, it should have both ups and downs. For the same
reason, uneven modes are not exact solutions of the system, since for instance mode 1
has two ups and only one down. We see nevertheless that there exists a mode with nearly
this shape. We have sketched this modification for mode 1 on the figure. This is why the
critical velocity predicted by sinusoidal waves is close to the correct bifurcation of uneven
modes but not equal.

We have also drawn the bifurcation diagram for a slightly imperfect bridge. This cor-
responds to a volume slightly less than the cylinder for a fluid with a small viscosity.
We see that the pitchforks transform into imperfect bifurcations and the straight bridge
solution disappear above the first bifurcation.

4. Simulations of the Navier-Stokes equations
We have described the dynamic instability for a cylindrical capillary Venturi (V/V0 =

1) using a theoretical approach in §2.2 and by computing the bifurcation diagram of a
1D nonlinear model in §3. We proceed now to a third step of modeling, using numerical
simulations of the Navier-Stokes equations. We use the open-source software Gerris Flow
Solver, as described in Popinet (2009).

The Navier-Stokes equations are discretized using finite volumes and the interface is
tracked using the Volume Of Fluid method. We assume an axisymmetric solution. The
inflow and outflow pipes are solids of inner radius 1 and thickness 0.05 with a no-slip
boundary condition. The tip of each pipe is made smooth in the shape of half a circle.
The computational box has height H = 2. The liquid has density ρ = 1 and kinematic
viscosity ν = 0.01 (thus Oh = 0.01). The outer gas has density 0.01 and kinematic
viscosity 0.0001. We use a quad-tree adaptive mesh with a criterion for refinement based
on vorticity and distance from the solid boundaries and free surface. We use seven levels
of refinement of the tree structure of the mesh, which means that the smallest mesh
element has size 1/27 = 0.0078.

The inflow is a flat velocity profile at a distance *in = 1.5 upstream of the start of the
capillary bridge and the outflow is a flat velocity profile—just as the inflow and with the
same flux. The outflow is at distance *out = 1.5 downstream of the end of the capillary
bridge. We have chosen a flat inflow velocity profile because the original motivation of this
study was the flow in the neck of a retracting ligament as discussed in the introduction.
In the moving reference frame of the neck, the inflow is a plug flow. In our simulations,
the breakup happens at Reynolds numbers of the order of 100. The entrance length in
a pipe is the distance from the flat inflow profile down to the fully developed parabolic
profile. This length is commonly estimated at about 0.1 times the Reynolds, times the
radius of the pipe. Thus here, 10 radius downstream; well after the capillary bridge. We
have validated our numerical results by checking that varying the length of the inflow
and outflow pipes has only a small impact on the critical velocity for breakup.

The two triple points where the solid pipe, the liquid and the gas meet are pinned at
the tip of the pipes, which means a reference radius R = 1.025 for the capillary bridge
in the numerical simulations. At the pipe walls, we impose a contact angle of 90 degrees
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12 G. Paré and J. Hoepffner

for the free surface. Only when the bridge breaks up, the strong associated pressures and
velocities can induce depinning of the triple point. We do not use a proper model for the
motion of the contact line, so the flow near the triple point is not accurately described
during the depinning.

The protocol for our simulations is the following:
(a) We start with a cylindrical bridge with no flow
(b) We slowly pump fluid through the inflow and outflow pipes until reaching the

desired bridge volume V/V0.
(c) We then increase progressively the throughflow. This increase should be slow

enough as to ensure a quasistatic behaviour, we choose a flux Q = πR2t/300 for all
simulations.

(d) We record the evolution with throughflow of the minimum radius of the capillary
bridge.

The results are shown in figure 6. We observe in these simulations two different be-
haviors. For volumes V/V0 close to one, the bridge keeps an approximately cylindrical
shape until a critical velocity where it suddenly builds a neck upstream and starts to
show self-sustained nonlinear oscillations. We have drawn the critical velocity predicted
from our theory of §2.2, Uc = 0.86 with a black circle. We see that the critical velocity
is overpredicted, this is because the volume of this bridge is 0.93, less than the cylinder.
A better agreement is seen in the following figure 7 where we show volumes closer to
1. The second behaviour happens for lower volumes, where the neck suddenly moves
downstream and then quickly breaks up.

These two different behaviors are understood by drawing the nonlinear bifurcation
diagram of (3.1) on the figure. Here, instead of showing the slope of the interface at
inflow as we did in figure 5, we show the evolution of the minimum radius of the bridge
(the neck). This measure is a more robust account of the similarities between the time
marching of the Navier-Stokes equations and the 1D model. We show only the two first
branches of the bifurcation diagram of the 1D model. We can observe here two interesting
things. First, the second branch is in fact a closed loop, and it has a portion unstable
to an oscillatory instability (a Hopf bifurcation); this portion corresponds to a bridge
with a neck located upstream as sketched in figure 1. When increasing quasistatically
the throughflow, the system reaches its first critical velocity (2.1). It then leaves the first
branch and jumps to the second branch, with a neck upstream. This branch is Hopf-
unstable but we see that there is a saturation mechanism that yields a nonlinear orbit.
The mean neck radius of the orbit follows the nonlinear branch when increasing velocity.
When we reach the critical velocity for the second branch, the bridge eventually breaks
up.

When the volume is low, the second branch is harder to reach when jumping from the
first one, or the second branch may even disappear because of viscosity. In this case, the
bridge directly breaks up.

In figure 7 we show an overview of the different simulations that we have performed.
This data can be read just as for the previous figure 6; we just show more values of the
bridge volume V/V0 and show three values of the bridge aspect ratio L/R = 3, 4, 5. We
show the theoretical critical velocity with a black circle labelled Uc. We see that, as the
volume of the bridge tends to 1, the critical velocity of the breakup indeed tends to the
theoretical prediction.

All these simulations are summarized in figure 8. We show how the breakup boundary
depends on the throughflow. When U increases, the breakup boundary moves up. This
means that with a throughflow, the bridge is no longer able to sustain a low volume. We
have distinguished as shaded area the parameter ranges for which there are nonlinear
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Figure 6. Comparison of the bifurcation diagram for the 1D nonlinear model of Eggers &
Dupont (1994) and Navier-Stokes simulations. For these simulations, ν = Oh = 0.01. For a
volume close to 1, we observe nonlinear self-sustained oscillations corresponding to a saturated
Hopf instability, and for a low volume, breakup of the bridge. Uc indicates the critical velocity
for the cylindrical case from (2.1).

oscillations. These boundaries are extracted from figure 7 as follows: the left limit of
the shaded areas means that the simulation jumps from the first branch to the second
branch, and the right limit means that the bridge breaks up. If the bridge breaks up
without oscillations, the two limits are the same and there is no shaded area. In these
simulations we progressively increase with time the throughflow, slowly enough so that
the evolution is quasistatic. We observe on the other hand not such a good fit for the
breakup boundary for static bridges. This means that it was not quasistatic enough for
this particular case.

5. Discussion
We have discussed in details the behaviour of a capillary bridge with throughflow. We

propose this system as an archetypal configuration to understand how a flow can affect
the free-surface in which it is contained. Our first result is that the straight bridge will
destabilize when the fluid velocity is larger than the phase velocity of the slowest capillary
wave. This slowest capillary wave is the longest one, the one that spans the complete
length of the bridge.
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Figure 7. Overview of the numerical simulations and bifurcation diagrams of the capillary
Venturi. We see the breakup and the self-sustained oscillations. Uc indicates the critical velocity
for the cylindrical case from (2.1). For these simulations ν = Oh = 0.01.

We compared the nonlinear bifurcation diagram of a 1D model to numerical simu-
lations of the Navier-Stokes equations. When progressively increasing the throughflow,
the numerical simulations follows the first branch which is stable, with the neck radius
progressively decreasing. When approaching the velocity of the slowest capillary wave,
the first branch has a fold bifurcation. At this point, the Navier-Stokes equations jump to
a second branch, unstable because of a Hopf bifurcation. We observe that the instability
saturates such that the simulation follows a nonlinear orbit. If we continue to increase
the throughflow, the simulation follows the second branch until a second fold bifurcation
where the bridge breaks up. If the volume of the bridge is too low, instead of jumping to
the second branch, the bridge breaks directly.
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equations.

We have restricted our numerical study to axisymmetric bridges. With the software
Gerris, we could have performed full 3D simulations but the computational cost would
have been large. We have started to perform laboratory experiments of the capillary
Venturi. Our preliminary observation is that the breakup of the bridge happens through
an axisymmetric instability. For the experimental parameters leading to nonlinear self-
sustained oscillations, the destabilization starts as a axisymmetric shape, but may later
turn into a 3D oscillation through a secondary instability. In the experiment, gravity
plays a strong role. We were not able to reduce the size of our apparatus in order to
render gravity negligible, so we did not include the experimental results here.

In the present paper, we have discussed the stability properties of the capillary bridge
but not the possibility of complete detachment of the jet at the neck. This behavior
can be expected by analogy with the Venturi flow with solid walls. Some preliminary
experiments show that there indeed exist stable steady states that are fully detached.
We currently study this in details, and we are particularly interested in the adaptation of
the free surface shape to the different configurations of the inner flow. For an experiment
in this context, please see Sébilleau et al. (2009). In that paper, a jet is impinging from
above to the surface of a bath at rest. It is shown that the fluid from the jet can either
spread along the flat surface (attached flow) or pierce it (detached flow) depending on
inertia, viscosity and surface tension.

We conclude with a discussion of the experiment of breakup of a flat capillary bridge
in microgravity of Conrath et al. (2013). Their figure 6 is an equivalent to our figure
8, where they report what are the length/velocity of stable bridges. Unfortunately, they
did not use the volume of the bridge as a control parameter. As a consequence, they
do not have a case equivalent to our V/V0 = 1 for which the criterion of stability in
terms of capillary wave velocity is most accurate. Nevertheless, we can demonstrate here
a first comparison of our theory for breakup and their experimental data. This is shown
in figure 9. We have drawn on their graph the line along which the throughflow is equal
to the speed of the slowest capillary wave. Here we consider a capillary wave on a flat
surface whose velocity is (see Guyon et al. (2001))

c =
√

σ

ρ

α

tanh(αd/2)
,

with the wavenumber of the longest (and slowest) wave α = 2π/L and d is the distance
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Figure 9. Figure adapted from the microgravity experiment of Conrath et al. (2013). The line
where the throughflow is equal to the slowest capillary wave speed corresponds to our theory.

between the two free surfaces. The tanh accounts for the finite depth of the bridge,
on which we assume a varicose deformation. Their figure show the breakup boundary
obtained by a 1D model similar to (3.1). For the mean inflow profile in their models,
they consider two cases: one with a Poiseuille flow and one with a plug flow.

The comparison is encouraging. For short bridges, the experiment breaks up before the
theoretical throughflow, which is compatible with the fact that their V/V0 is less than
one. On the other hand long bridges breakup for supersonic throughflow. This may be
explained by two effects. First, the viscous friction between the two flat plates may be
stabilizing, and second, the inflow profile is not a plug, but a Poiseuille, which means
that the flow velocity at the free surfaces is less than the average that we get from the
flux.

To conclude, let us give a few orders of magnitude. According to (2.3), a cylindrical
(V/V0 = 1) capillary bridge of water (density 1000Kg/m3, surface tension 0.072J/m2,
dynamic viscosity µ = 0.001) with diameter 2 millimeter and length 4 millimeter (aspect
ratio L/R = 4) will breakup at velocity Ucrit ≈ 23cm/s which means a critical flux of
about 0.7 milliliter per second. To get the other orders of magnitudes for this particular
choice of capillary bridge, you just need to multiply the velocities on our graphs by the
physical Ucap ≈ 27cm/s.

The critical velocity of this bridge corresponds to a Reynolds number (based on the
bridge radius) of about 230. In comparison to this, at critical velocity, the fluid with
viscosity ν = 0.01 of our numerical simulation has a Reynolds of about 86 (a bit less
than three times more viscous). According to the nonlinear simulations, this bridge will
oscillate before breakup with a frequency of roughly 60Hz. This means approximately
one oscillation each throughflow time.
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Doaré, Olivier & de Langre, E. 2002 Local and global instability of fluid-conveying pipes
on elastic foundations. Journal of fluid and structures 16 (1), 1–14.

Eggers, Jens & Dupont, Todd F. 1994 Drop formation in a one-dimensional approximation
of the Navier-Stokes equation. J. Fluid Mech. 262, 205–221.

Eggers, Jens & Villermaux, Emmanuel 2008 Physics of liquid jets. Rep. Prog. Phys.
71 (036601).

Everett, D. H. & Haynes, J. M. 1972 Model studies of capillary condensation 1. cylindrical
pore model with zero contact angle. J. Colloid Interface Sci. 38 (1), 125–137.

Gallaire, Francois, Ruith, Michael, Meiburg, Eckart, Chomaz, Jean-Marc &
Huerre, Patrick 2006 Spiral vortex breakdown as a global mode. J. Fluid Mech. 549,
71–80.

Grand-Piteira, Nolwenn Le, Daerr, Adrian & Limat, Laurent 2006 Meandering rivulets
on a plane: A simple balance between inertia and capillarity. Phys. Rev. Lett. 96 (254503).

Guyon, Etienne, Hulin, Jean-Pierre, Petit, Luc & Mitescu, Catalin D. 2001 Physical
Hydrodynamics. Oxford University Press, Oxford.

Heil, Matthias & Hazel, Andrew L. 2011 Fluid-structure interaction in internal physiolog-
ical flows. Annu. Rev. Fluid Mech. 43, 141–162.

Heil, Matthias & Jensen, Oliver E. 2003 Flows in deformable tubes and channels, chap. 2.
John Wiley and Sons Limited.

Hoepffner, Jérôme & Paré, Gounséti 2013 Recoil of a liquid filament: escape from pinch-off
through creation of a vortex ring. J. Fluid Mech. 734, 183–197.

Huerre, P. & Monkevitz, P. A. 1990 Local and global instabilities in spatially developing
flows. Annu. Rev. Fluid Mech. 22, 473–537.

Joseph, D.D., Bai, R., Chen, K.P. & Renardy, Y.Y. 1997 Core-annular flows. Annu. Rev.
Fluid Mech. 29 (1), 65–90.

Keller, Herbert B. 1982 Continuation methods in computational fluid dynamics. In Numer-
ical and physical aspects of aerodynamic flows (ed. Tuncer Cebeci), pp. 3–14. Springer New
York.

Keller, Joseph B. 1983 Breaking of liquid films and threads. Phys. Fluids 26, 3451–3453.
Kirstetter, Geoffroy, Raufaste, Christophe & Celestini, Frank 2012 Jet impact on

a soap film. Physical review E 86 (036303).
Lowry, Brian James & Steen, Paul H. 1995 Capillary surfaces: stability from families of

equilibria with application to the liquid bridge. Proceedings: Mathematical and physical
sciences 449 (1937), 411–439.

Mote, C. D. 1965 A study of band saw vibrations. Journal of the Franklin institute 279 (6),
430–444.

Plateau, Joseph 1873 Statique expérimentale et théorique des liquides soumis aux seules forces
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