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Abstract

In this chapter first we recall simple solutions of slightly disturbed Euler equations (small disturbance
theory). The main thing is that we will write the perturbation of the flow proportional to the small angle
of a bump placed on a flat plate. Then classical Boundary Layer Theory ([22], [21]) is presented. We
introduce the fundamental L/

√
Re scaling. We introduce the integral method and define the boundary

layer displacement thickness. The problem of boundary layer separation is quickly presented (Goldstein
1948 problem). Finally we present briefly the second order boundary layer theory. The unsteady boundary
layer is introduced as well.

1 Incompressible Navier Stokes equations

The problem that we have to solve is the problem of the solution of Navier Stokes equations around a given
body at large Reynolds number. The Reynolds number Re is constructed with a velocity (U0) and a typical
length (L). We use very restrictive hypothesis: we suppose that we are always in a laminar flow even if the
Reynolds number is very very large. The flow is supposed to remain laminar. In fact, this is not an issue,
the ideas developed may be applied, to some extend, in the turbulent case. We will describe 2D or axi flows.
The flow is supposed steady and incompressible (even we present some compressible results).
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1.          RAPPELS SUR LA COUCHE LIMITE

1.1. Équations de Navier Stokes, Nombre de Reynolds.

Dans ce paragraphe on rappelle les équations de Navier Stokes + adhérence en 2D plan

stationnaire::

...équations de NS: incompressibilité, quantité de mouvement...
!u
!x  + 

!v
!y = 0

  u 
!

!x u +  v 
!

!y u= -  
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"!x p +# [ 

!2 

!x2 u  +  
!2 

!y2 u].

  u 
!

!x v +  v 
!

!y v= -  
 !
"!y p + # [ 

!2 

!x2 v  +  
!2 

!y2 v].

On définit une longueur L et une vitesse de référence U$ pour construire un nombre de

Reynolds R=U$L/#. Ce nombre est supposé très grand. Les équations sont adimensionnées

avec les quantités suivantes:

 x
_
 = x/L,  y

_
 = y/L.   u

_
 = u/U$. v

_
 = v/U$. p

_
 = p/("$U$

2).

L

U
$

Sous forme adimensionnée, NS+ adhérence: .
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Figure 1: A typical problem a body of length L in a uniform velocity U0; the Reynolds number is large Re =

U0L/ν >> 1. The body of this image is 3D, or may be approximated by a axi geometry, but all the chapter deals

with 2D equations x, y and u, v.

1.1 Small Reynolds flows

We first non-dimensionalise the equations with L (the typical length of the body) and U0 (the typical
velocity) in all directions of space and velocity (with ”bars” over the variables i.e. x̄ = x/L, ȳ = y/L,
ū = u/U0, v̄ = v/U0 and p̄ = p/(ρU2

0 /Re), the reference pressure is here taken to be 0. The pressure scales
by dominant balance with ρU2

0 /Re which is µU0/L. Small Reynolds flows will be presented in a special
chapter dedicated to these flows, see:
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Boundary Layer

http://www.lmm.jussieu.fr/∼lagree/COURS/M2MHP/petitRe.pdf so that the Stokes problem is obtained in
taking the limit of the following problem for Re→ 0:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

Re(ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = −∂p̄

∂x̄
+ (

∂2ū

∂x̄2
+
∂2ū

∂ȳ2
),

Re(ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
) = −∂p̄

∂ȳ
+ (

∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
).

(1)

which is 

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

0 = −∂p̄
∂x̄

+ (
∂2ū

∂x̄2
+
∂2ū

∂ȳ2
),

0 = −∂p̄
∂ȳ

+ (
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
).

(2)

some results like the drag force may be scaled in 3D were the drag is scaled by (µU0/L)L2 = µU0L, so
that for a sphere with L = R the radius of a sphere

D = 6πµRU0.

The ”prefactor” 6π is not so easy to compute, but it is tractable.
The drag force may be scaled in 2 D by (µU0/L)L = µU0, for example, on a cylinder of radius L:

D =
4πµU0

1/2− γ − log(U0L
4ν )

or D =
4πL
Re ρU

2
0

log( 1
Re) + 1

2 − γ + 2 log 2
with γ ' 0.5772

the ”prefactor” is here far more complicated, it involves the logarithm of the Reynolds. As says Keith
Moffat in the ”cours des Houches” 1973 ”The complexity of the formula is indicative of the complexity of
the underlying analysis” that we will see in the above mentioned chapter.

1.2 Large Reynolds flows

So, come back to large Reynolds flows, Re is large. We first non-dimensionalise the equations with L (the
typical length of the body) and U0 (the typical velocity) in all directions of space and velocity (with ”bars”
over the variables i.e. x̄ = x/L, ȳ = y/L, ū = u/U0, v̄ = v/U0 and p̄ = p/(ρU2

0 ), the reference pressure is
here taken to be 0, this must be changed in compressible flows. We can anyway say that there is a reference
pressure p0, and then p̄ = (p− p0)/(ρU2

0 ). Incompressible steady adimensionalised Navier Stokes equations
are: 

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
+

1

Re
(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2
),

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂ȳ
+

1

Re
(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
).

(3)

Boundary conditions are no slip at the wall (defined by a function ȳw(x̄) for simplicity as in practice it is
an implicit surface) :

if ȳ = ȳw(x̄) the wall: ū(x̄, ȳw(x̄)) = 0, v̄(x̄, ȳw(x̄)) = 0 and u = 1 far away from the body.
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Boundary Layer

Note that those boundary conditions are vague, see annex for an example with freefem and Gerris, in
practice for sure, we impose ū = 0, v̄ = 0 on the body, ū = 1, v̄ = 0 at the entrance, and p̄ = 0 at the
output. Then, ∂p̄/∂n̄ = 0 at the entrance, the algorithms impose the hidden BC: it is ∂p̄/∂n̄ = 0 on the
body, Far from the body, Neumann B.C.

We can stop the story here. The problem is just to solve those equations. Our point of view is to
examine those equations as a singular perturbation problem, as we saw in the chapter devoted on matched
asymptotic expansions: http://www.lmm.jussieu.fr/∼lagree/COURS/M2MHP/MAE.pdf.

Hence we identify the Navier Stokes equations to be a singular problem. When the small parameter
Re−1 is small, we look at the Euler equations. Then we do a change of scale and look at the boundary
layer problem. We will follow the Friedrichs problem procedure presented in that chapter, find the ”outer
solution”, see that the problem is singular as there are too many boundary conditions. Then find by change
of scale and ”dominant balance” the new scale of the ”inner problem”, and find the solution by ”asymptotic
matching”.
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2 Some Euler simple solutions on a nearly flat plate: ”small disturbance
theory”

2.1 Euler equations

As the Reynolds number is large, a first idea is to put 1/Re = 0. We obtain Euler equations (with ”bars”
over the variables i.e. x̄ = x/L, ū = u/U0 etc for y and v):

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
,

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂ȳ
.

(4)

Boundary conditions are now slip at the wall: if ȳ = ȳw(x̄) the wall:
−ū(x̄, ȳw(x̄)) d

dx ȳw(x̄) + v̄(x̄, ȳw(x̄)) = 0 : normal velocity equals to zero
and ū = 1 far away from the body.

From now, we prefer to restrain to the simple case of a nearly flat plate in an uniform stream. Our
aim is to compute the slip velocity, i.e. the tangential ideal fluid velocity on the wall

The most simple case is the flat plate case, ȳw(x̄) = 0. In this simple case the velocity remains everywhere
1; (ū, v̄) = (1, 0). So the velocity at the wall, ”slip velocity” is ūe = 1. All this chapter we use this hypothesis.

We will show that this problem is a regular perturbation of the flat plate case.

2.2 Historical note

Computing solution is the system is a great task since Euler first attempts “Principes généraux du mou-
vement des fluides” 1757 published in Mémoires de l’Académie des Sciences de Berlin. Do note that in
”Essai d’une nouvelle théorie de la résistance des fluides” , ∂’Alembert in 1752 wrote equations more close
to the decomposition in stream-function and potential as the main feature of the flow are incompressibility

and irrotational flow. In 2D incompressibility gives −→u =
−→
∇ × (ψ−→e z) and irrotational flow

−→
∇2ψ = 0. Or

irrotational flow gives −→u =
−→
∇φ and incompressibility gives

−→
∇2φ = 0. We prefer not to use so much φ and

ψ, nevertheless for transonic flows, the expansion with φ is the most simple.

2.3 Linearized Euler boundary conditions

We then put a small bump or relative height α,

ȳw(x̄) = αf̄(x̄) with α� 1

ȳw(x̄) = 0x̄ = 0

(ū, v̄) = (1, 0)

Figure 2: The basic flow is the constant flow over a semi infinite flat plate, (ū, v̄) = (1, 0), valid in any régime. We

will consider next a regular perturbation of this uniform free stream
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ȳw(x̄) = αf̄(x̄)

Figure 3: We deal with the most simple problem, a flat plate in a stream with a small bump of typical size α� 1.

We construct the solution as a regular perturbation of the uniform free stream

then we investigate a disturbance field as an asymptotic approximation (of course we hope it is a regular
problem)

ū = 1 + αū1 + α2ū2 + ...

v̄ = 0 + αv̄1 + α2v̄2 + ...

p̄ = 0 + αp̄1 + α2p̄2 + ...

This is called ”small disturbance theory”, as the wall disturbance is very small α � 1. Depending of the
various régimes various sets of equations may be obtained.

v̄(x̄, ȳw(x̄))

ū(x̄, ȳw(x̄))
= ȳ�

w(x̄)

ȳw(x̄) = αf̄(x̄)

v̄1(x̄, 0) = f̄ �(x̄)

Figure 4: Left slip on a bump: it means that the slope of bump is v/u. Right: by ”Transfer of Boundary Condition”

the boundary boundary condition for the velocity is imposed at the flat wall, no more on the bump, it is called the

”transpiration velocity”.

At first, the boundary condition of no slip velocity reads:

v̄(x̄, ȳw(x̄))

ū(x̄, ȳw(x̄))
= ȳ′w(x̄)

so that after taking the Taylor expansion of the velocity i.e.:

v̄(x̄, ȳw(x̄) = αv̄1(x̄, ȳw(x̄) +O(α2) = α(v̄1(x̄, 0) + αf̄∂(v̄1(x̄, 0)/∂ȳ + ...

at leading order we obtain the value of the transverse velocity in ȳ = 0 as:

v̄1(x̄, 0) + ...

1 + ...
= f̄ ′(x̄)

This boundary condition justifies the development for the transverse velocity.
The boundary boundary condition for the velocity is imposed at the flat wall, no more on the bump, it

is called the ”transpiration velocity”. This change in boundary conditions is called ”Transfer of Boundary
Condition” (see Van Dyke [26]).

Now, we will write the linearized Euler equation, the gam consists in finding ū1, v̄1 and p̄1 in a lot of
flows. We will try to evaluate these quantities as a function of f̄ in incompressible flow, in compressible
flow, in shallow water flow...

These evaluation will be useful for the boundary layer theory.
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f’HxL

u

ΑL

x

L

Figure 5: A plane plate with a small bump in a subsonic or incompressible flow

2.4 Linearized Euler incompressible flow

• We can imagine a non flat plate in a incompressible flow, we linearize the Euler equations as :

∂ū1

∂x̄
+
∂v̄1

∂ȳ
= 0,

∂ū1

∂x̄
= −∂p̄1

∂x̄
,

∂v̄1

∂x̄
= −∂p̄1

∂ȳ
.

(5)

Eliminating the velocity gives a Laplace equation for the pressure:

∂2p̄1

∂x̄2
+
∂2p̄1

∂ȳ2
= 0,

with p̄1 = 0 far away from the plate and the no slip condition is rewritten with the transpiration velocity as

−∂p̄1

∂ȳ
= f̄ ′′(x̄) in ȳ = 0.

The pressure at the wall is obtained by classical Hilbert formula:

p̄1(x̄, 0) =
−1

π

∫
−

df̄
dx̄

x̄− ξ
dξ

• Demonstration 1: to find this, we use Fourier Transform, so the wall is a superposition of modes eikx, the
Laplacian is −k2 + ∂2

∂ȳ2
= 0 and obtain the pressure as

A−e
ikx−|k|y +A+e

ikx+|k|y,

with A+ = 0 as disturbances are zero far away, and the condition at the wall is |k|A− = ik( ˆ(f ′)) , or

A− = isign(k)( ˆ(f ′)) , where ˆ(f ′) is the Fourier transform of f ′ and as the function ”sign”, which is sign(k) =
|k|/k. The Heaviside or unit step distribution is H, with H(x < 0) = 0 and H(x > 0) = 1. They are
linked by sign(x)/2 + 1/2 = H(x). The derivative of H is δ the Dirac distribution. In Fourier space
ikTF (sign) = 2TF (δ), so TF (sign(x)) = 2/(ik) so that (2π from inverse transform and -1 due to ∂x and
∂k)

TF [sign(k)] = +
i

π
vp(

1

x
).

”Principal value”, means that there is no problem in 0, This comes from the derivation in Fourier, and
from the integration 1/(ik) sign(k) has the same derivative than Heaviside function. So, the pressure is the
convolution of f ′ and 1

x :

p1 = − 1

π
vp(

1

x
) ∗ f ′.
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This is

p̄1 =
−1

π

∫
−

df̄
dx̄

x̄− ξ
dξ

We have by the definition of an integral in principal value:

∫
−φ(ξ)dξ = lim

ε→0

( ∫ −ε
−∞

φ(ξ)dξ +

∫ ∞
ε

φ(ξ)dξ
)

We find that the solution is a convolution of 1/x and f ′ as proposed.

• Demonstration 2: to find this an alternate technique is the use of the Green function of the Laplacian
which is a logarithm. the solution of Laplacian with a Dirac in source:

∂2G

∂x2
+
∂2G

∂y2
= δ(x, y)

written in r, θ, δ is function of r:
1

r
(
∂

∂r
r
∂G

∂r
) +

1

r2

∂2G

∂θ2
= δ

with the Dirac ∫ ∫
δ(x, y)dxdy = 1, or

∫ ∞
0

∫ 2π

0
δ(r, θ)rdθdr = 1,

integrating the equation up to r and try a radial function G(r) (by symmetry): 2πr ∂G∂r = 1 so the Green
function is

G =
ln(r)

2π
.

This is a well know result in electrostatics, magnetostatics, fluid mechanics...

Consider now a problem with diracs only on y = 0 of weight say σ(x), we have to solve with as a source
a distribution σ(x)δ(y), such as

∂2
xΦ + ∂2

yΦ = σ(x)δ(y)

by integration across y = 0 from y = 0− to y = 0+ the first term is 0, the second is the change of slope gives

∂yΦ(x, 0+)− ∂yΦ(x, 0−)) = σ(x), so that 2∂yΦ(x, 0+) = σ(x)

because by symmetry ∂yΦ(x, 0−) = −∂yΦ(x, 0+). We can now write Φ as a function of σ such that,

Φ =

∫
σ(ξ)

ln(
√

(x− ξ)2 + y2)

2π
dξ so Φ =

∫
2∂yΦ(ξ, 0)

ln(
√

(x− ξ)2 + y2)

2π
dξ.

Hence the pressure in the plane is obtained (Φ is our pressure):

p̄1 =
1

π

∫
(−f ′′(ξ)) ln(

√
(x̄− ξ)2 + ȳ2)dξ

integrating by parts (at infinity, 0)

p̄1 =
1

π

∫
f ′(ξ)

1

(
√

(x̄− ξ)2 + ȳ2)
dξ.

The pressure at the wall is then obtained with ȳ = 0. But the value on the wall is a problem (it involves√
(x̄− ξ)2, so we cut the previous integral at the position x̄ (i.e. x̄ > ξ and x̄ < ξ)

p̄1 =
1

π

∫
(−f ′′(ξ)) ln(|x̄− ξ|)dξ =

1

π

∫ x̄−ε

−∞
(−f ′′(ξ)) ln(x̄− ξ)dξ +

1

π

∫ ∞
x̄+ε

(−f ′′(ξ)) ln(−x̄+ ξ)dξ
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Figure 6: The bump f̄ and the perturbed velocitywith the Hilbert integral subsonic flow. Note that the
flow is perturbed before the bump (the Laplacian acts every were in the flow).

we integrate it by parts

p̄1 =
1

π

∫ x̄−ε

−∞
f ′(ξ)

−1

(x̄− ξ)
dξ + [(−f ′(ξ)) ln(|x̄− ξ|)]x̄−ε−∞+

+
1

π

∫ ∞
x̄+ε

f ′(ξ)
1

(−x̄+ ξ)
dξ + [(−f ′(ξ)) ln(|x̄− ξ|)]∞x̄+ε

but as

[(−f ′(ξ)) ln(|x̄− ξ|)]x̄−ε−∞ + [(−f ′(ξ)) ln(|x̄− ξ|)]∞x̄+ε = −f ′(x̄− ε) ln(|ε|) + f ′(x̄+ ε) ln(|ε|)

if we suppose that f ′ is enough small at infinity, this is zero for small ε and we have by the definition of an
integral in principal value:

p̄1 = lim
ε→0

(−1

π

∫ x̄−ε

−∞

f ′(ξ)

(x̄− ξ)
dξ +

−1

π

∫ ∞
x̄+ε

f ′(ξ)

(x̄− ξ)
dξ
)

=
−1

π

∫
− f ′(ξ)

x̄− ξ
dξ.

• Final value of the pressure at the wall

p̄1(x̄, 0) =
−1

π

∫
− f ′(ξ)

(x̄− ξ)
dξ.

The velocity at the wall is then:

ūe(x̄) = 1 + α
1

π

∞∫
−
−∞

df̄
dx̄

x̄− ξ
dξ

this is the ”slip velocity” (it will be the velocity at the ”edge” of the boundary layer).
The most important thing to have in mind, is that the Laplacian has an action far from the perturbation

(log terms). On the wall, this long range interaction is this integral from −∞ to∞. So boundary conditions
are important at the boundaries of the problem (for example if ψ is not zero at the wall, there are extra
terms in ψ∇G.

We will see that other régimes give different behaviors, The next case for example has no influence of
what happens downstream.

Note 0:
This problem is a regular perturbation of the flat plate case.

Note 1:
As an exercise, we should compare with freefem++ (either with a domain with a bump or a flat bottom
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with a Neuman BC.

Note 2:
This is called the thickness problem, the curvature problem gives the lift, but this is another story... To
make a long story short, let us consider a wing of length L, inclined by an angle αi compared to the free
stream, the curvature induces a velocity field in terms of vorticies,

v = U0αi −
1

2π

∫ L

0

γ(ξ)

x− ξ
dξ

as this this flow is tangential to the airfoil,

U0(αi −
dy

dx
) =

1

(2π)

∫ c

0

γ(ξ)

(x− ξ
)dξ

The problem is that the distribution γ(x) is unknown, we have to reverse the problem. The trick introduced
by Glauert consists in changing the variable: x = c(1− cos(θ))/2 and to decompose it in a Fourier series :

γ(θ)

(2U0)
= A0

(1 + cos(θ))

sin(θ)
+
∑

An sin(nθ))

As the following identities may be demonstrated∫ π

0

cosnϑ

cos θ − cosϑ
dϑ = −π sinnθ

sin θ
, and

∫ π

0

C + cosϑ

cos θ − cosϑ
dϑ = −π

and applying Kutta condition at the trailing edge allows to reconstruct the γ.

Note 3:
There are other methods with complex analysis to do that...

Note 4:
There is no note 4.

- II . 9-



Boundary Layer

u

h0

y

fHxL
ΑL

x

pipe

pipe

fluid

L

Figure 7: A channel with a small bump (here symmetrical) in a an incompressible flow

2.5 Linearized Euler confined incompressible flow

• We can imagine a flow in a long channel x = Lx̄ using the height as scale thus y = h0ȳ, by mass
conservation

∂ū1

∂x̄
+
∂v̄1

∂ȳ
= 0 (6)

we have that the scale associated to v̄ is U0h0/L. It is straightforward to see that the longitudinal velocity
and pressure are linked as previously:

∂ū1

∂x̄
= −∂p̄1

∂x̄
,

but now, we have for the transverse velocity

(h0/L)2∂v̄1

∂x̄
= −∂p̄1

∂ȳ
.

so that −∂p̄1
∂ȳ = 0 so we deduce that p̄1 is a function x̄ only; and so is ū1. The flow will look like a ”plug

flow”.
The slip boundary conditions on the wall are v̄1(x̄, 0) = f̄ ′ and v̄1(x̄, 1) = −f̄ ′ (note the sign!).. Hence,

integrated over the pipe (
∫ 1

0 dȳ), the mas conservation gives, as ū1 is not a function of ȳ:

∂

∂x̄
ū1 − 2f̄ ′ = 0,

so, as perturbation are zero far upstream

ū1 = 2f̄ , p̄1 = −2f̄ ′.

The velocity at the wall is then:
ūe = 1 + 2αf̄.

Note that in a pipe, the velocity is in phase with the bump shape.
• This solution may be obtained in an alternative way. We may start from a flow like in the previous
sub-section ”linearized Euler incompressible flow”. From the previous case

∂ū1

∂x̄
= −∂p̄1

∂x̄
,

the v̄1 was present as the scales in x and y are L.

∂v̄1

∂x̄
= −∂p̄1

∂ȳ
.

with v̄1(0) = f̄ ′1. But now the height is h̄0 = h0/L and thus v̄1(h̄0) = −f̄ ′1. Previously in the sub-section
”linearized Euler incompressible flow”, this velocity was zero as previously h̄0 =∞.
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Tehn, Laplace equation may be obtained for every field

∂2p̄1

∂x̄2
+
∂2p̄1

∂ȳ2
= 0,

∂2v̄1

∂x̄2
+
∂2v̄1

∂ȳ2
= 0,

taking into account the boundary condition for the upper plate allows to obtain exactly the solution, so that
in Fourier space solutions are:

A+e
kȳ +A−e

−kȳ

it then then easy to show that in Fourier space:

v̄1 = (ikf̄1)
sinh(k(h̄0/2− y))

sinh(kh̄0/2)

ū1 = (kf̄1)
cosh(k(h̄0/2− y))

sinh(kh̄0/2)

- then if kh̄0 →∞, which corresponds to an infinite domain

v̄1 = (ikf̄1)

ū1 = (kf̄1)

which is the previous one leading to the Hilbert integral of the sub-section ”linearized Euler incompressible
flow”,
- then as kh̄0 → 0, which corresponds to this section of a thin channel, the expansion

v̄1 = (ikf̄1)
sinh(k(h̄0/2− ȳ))

sinh(kh̄0/2)
→ (ikf̄1)(1− 2ȳ/h̄0)

in real space:
v̄1 → (f̄ ′1)(1− 2ȳ/h̄0)

then velocity is

ū1 = (kf̄1)
1

(kh̄0/2)
= (2f̄1)/(h̄0)

which indeed tells that f must be measured by h0 as done during the previous point.

-2 -1 0 1 2 3
x

0.2

0.4

0.6

0.8

1

1.2

f
H
x
L

u
H
x
L

Figure 8: The bump and the perturbed longitudinal velocity, slender channel flow. Note that the flow is not

perturbed before the bump.
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Figure 9: A liquid layer with a free surface with a small bump in subcritical régime and right supercritical régime

2.6 Linearized Euler with free surface (for shallow water flow)

• But we can imagine a thin liquid layer in the gravity field g with an interface η flowing on plate with
a long bump of length L, using h0 as transversal scale η = h0η̄, y = h0ȳ, and using the long size of the
bump L for x: x = Lx̄, so u = U0ū and v = U0h0v̄/L to ensure dominant balance in incompressibility
U0
L
∂ū
∂x̄ + U0(h0/L)

h0
∂v̄
∂ȳ = 0: For pressure let us take p = ρU2

0 p̄ (note that we can take p = gh0p̄, the final result
will be the same. 

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
,

h2
0

L2
(ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
) = −∂p̄

∂ȳ
− gh0

U2
0

.

(7)

For Shallow water flow
h20
L2 → 0, 

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0,

ū
∂ū

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂x̄
,

0 = −∂p̄
∂ȳ
− 1

F 2

(8)

We take a small bump: ȳw(x̄) = αf̄(x̄) with α << 1 in the gravity field with a Froude number (F 2 =
U2

0 /(gh0)). We obtain the almost the Shallow Water equation (or Saint Venant) ū = 1+αū1+..., v̄ = αv̄1+...
interface is ȳ = 1 + αη1 + ... at the surface p = 0 pressure is zero at the interface (atmospheric pressure is
the reference) p̄ = (η̄ − ȳ)/F 2, so as we will expand p̄ = p̄0 + αp̄1 + ..., we guess :

p̄ = (1− ȳ)/F 2 + αη̄1/F
2 + ... so p̄0 = (1− ȳ)/F 2 and p̄1 = η̄1/F

2

the system reads 

∂ū1

∂x̄
+
∂v̄1

∂ȳ
= 0,

∂ū1

∂x̄
= −∂p̄1

∂x̄
,

0 = −∂p̄1

∂ȳ

(9)

so the momentum gives ū1 = −η̄/F 2. Integrating over the depth the continuity equation gives

1
∂ū1

∂x̄
+ [v̄1]10 = 0

but on the wall v̄1(x̄, 0) = df̄
dx̄ and on the surface, the same slip v̄1(x̄, 1) = dη̄1

dx̄ , by integration,

ū1 = −η̄ + f̄
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This gives an other expression for ū1, by substitution, the perturbation of the free surface is

η̄1 = F 2 f̄

F 2 − 1

whereas the slip velocity is

ūe = 1 +
αf̄

1− F 2
+ ...

For a fluvial flow F < 1, the interface is deviated to the bottom, the velocity increases over a positive bump.
For a torrential flow F > 1, the disturbance of the free surface is positive, and the velocity decreases on
the bump. Note that the flow is not perturbed before the bump. There is no upstream influence of the
downstream.
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2.7 Compressible Euler equations

2.7.1 Full Compressible Navier Stokes equations

In this section we deal with compressible flow. We recall first the equations and write them with potential. it
will be useful for transonic flows. After having presented this, we write the compressible small disturbance
theory (completely similar to the incompressible one présented before). See annex 6 for introduction to
acoustics.
The complete NS equations for a compressible Newtonian fluid:
mass conservation:

dρ

dt
+ ρ∇ · u = 0.

momentum conservation:

ρ
du

dt
= ∇ · σ + f.

Energy conservation:

ρ
de

dt
= σ : D −∇ · q + r.

constitutive relations:
σ = −pI + λ∇ · uI + 2µD, q = −k∇T.

law of state:
p(ρ, T )

coefficients:
cv(T ), cp(T ), λ(T ), µ(T ), k(T )...

boundary conditions Tw OR qw imposed, non slip conditions at the wall.

Note that we define as well enthalpy
h = e+ p/ρ

and entropy

ds =
de

T
+ (

p

T
)d(

1

ρ
).

So the terms with λ and µ and with k will be of order 1/Re. They will disappear from the equations,
so that we can write the Euler system. We have σ = −pI, and q = 0 and r = 0.

2.7.2 Compressible Euler equations

Sowe obtain the compressible Euler equations which are : ( ddt = ∂
∂t +−→u ·

−→
∇):

∂ρ

∂t
+
−→
∇ · (ρ−→u ) = 0,

∂−→u
∂t

+−→u ·
−→
∇−→u = −

−→
∇p
ρ
,

∂h

∂t
+−→u ·

−→
∇h =

1

ρ
(
∂p

∂t
+−→u ·

−→
∇p).

(10)

The last one (10) is the enthalpy equation, it comes from energy equation which is here ρde/dt = −p
−→
∇ · −→u

using mass
−→
∇ · −→u = −(1

ρ)dρdt it transforms in ρdedt = p
ρ
dρ
dt . As definition of entropy is Tds = de + pd(1

ρ) we

have ds = p
ρ2
dρ+ pd(1

ρ) = 0 as expected.

By definition of enthalpy h = e + p/ρ, the obtained energy equation ρdedt = p
ρ

dρ
dt becomes as written

above:

ρ(
dh

dt
− 1

ρ

dp

dt
) = 0
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2.7.3 Potential flow

We are looking at isentropic flows, so that ds = 0 remember:

ds =
de

T
+ (

p

T
)d(

1

ρ
) and as h = e+ p/ρ, dh = Tds+ ρ−1dp,

by definition of cp, cv, r we have dh = cpdT and de = cvdT and p/ρ = rT , this gives the Mayer relation
cp = cv + r, but we define the index γ = cp/cv. We then have cp = r/(γ − 1) so that dh = γr/(γ − 1)dT =
γ/(γ − 1)d(p/ρ), and

dh = Tds+ ρ−1dp becomes γ/(γ − 1)d(p/ρ) = Tds+ dp/ρ

or
(γ − 1)Tds = dp/ρ− pγdρ/ρ2

giving the final expected:
ds = cv(dp/p− γdρ/ρ)

so when ds = 0 we have γdρ/ρ = dp/p (latter we will write c2 = γp/ρ so that dp = c2ρ, see appendix 6).
This gives then the famous relation (Laplace law PV γ=cste):

p ∝ ργ .

In the second equation (momentum), it is classical that

−→u ·
−→
∇−→u =

−→
∇
−→u 2

2
+ (
−→
∇ ×−→u )×−→u .

Then with the third (energy):

−→
∇(
−→u 2

2
+ h)− T

−→
∇s+ (

−→
∇ ×−→u )×−→u = 0.

If we multiply it by −→u we have the ”compressible Bernoulli” equation along a stream line (remember
ds/dt = 0):

−→u ·
−→
∇(

u2

2
+ h) = 0

If ds/dt 6= 0 and if the flow is iso energetic (i.e. (u
2

2 + h) = cst), then the creation of entropy is linked to
the rotational of the flow by the Crocco theorem:

T
−→
∇s = (

−→
∇ ×−→u )×−→u .

As h = cpT = γ
γ−1

p
ρ , the enthalpy may be expressed with the local speed of sound h = c2

γ−1 . So that we
obtain the relation between the speed of sound and the velocity:

u2 + v2

2
+

c2

γ − 1
=
U2

0

2
+

c2
0

γ − 1
.

It is here important to remind the definition of the Mach number:

M2
0 =

U2
0

c2
0

, with c2
0 =

γp0

ρ0
.

Sometimes one uses the symbol a0 instead of c0. Another useful equation may be found, let us multiply the
second by −→u

−→u · (−→u ·
−→
∇−→u ) = −

−→u ·
−→
∇p
ρ

or, this is c2
−→u ·
−→
∇ρ
ρ
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Figure 10: A plane plate with a small bump in a supersonic flow.

this is due to ds = 0 so that p ∝ ρ−γ and dp = (dρ)c2. Eliminating the density from the continuity equation
gives:

−→u · (−→u ·
−→
∇−→u ) = c2−→∇ · −→u .

We may develop it as:

(c2 − u2)
∂u

∂x
− uv(

∂u

∂y
+
∂v

∂x
) + (c2 − v2)

∂v

∂y
= 0.

So that if we look at potential flows (cf Crocco theorem) we define a potential of velocities u = ∂xφ and
v = ∂yφ. the previous equation reads

(φ2
x − c2)φxx + 2φxφyφxy + (φ2

y − c2)φyy = 0.

This equation is powerful, we will use it for transonic flow. Before this we come back to simple distur-
bance theory without the potential function.

2.8 Linearized Euler compressible supersonic flow

• We can imagine a compressible flow on flat plate: ȳw(x̄) = αf̄(x̄) with α << 1, compressible steady
linearized Euler, mass, momentum and energy (adiabatic) are after non dimensionalizing by ρ0, p0, U0, L
just as we did for incompressible flows:

u = U0(1 + αū1 + ...); v = U0(αv̄1 + ...); p = p0(1 + αp̄1 + ...); ρ = ρ0(1 + αρ̄1 + ...)

so that : 

∂ρ̄1

∂x̄
+
∂ū1

∂x̄
+
∂v̄1

∂ȳ
= 0,

∂ū1

∂x̄
= − 1

γM2
0

∂p̄1

∂x̄
,

∂v̄1

∂x̄
= − 1

γM2
0

∂p̄1

∂ȳ
,

p̄1 = γρ̄1.

(11)

Note that at some point we had to estimate p0/(ρU
2
0 ) which is (γp0/ρ)/(γU2

0 ) = (c2
0/U

2
0 )/γ, that is the 1

γM2
0

term in the above equations. The definition of c0 is presented in annex 6 were the expansion around the
steady equilibrium is presented. Eliminating the velocity and the density gives a Heat/Wave (depending on
the Mach number) equation for the pressure:

(1−M2
0 )
∂2p̄1

∂x̄2
+
∂2p̄1

∂ȳ2
= 0,

with the BC:
df ′

dx̄
= − 1

γM2
0

∂p̄1

∂ȳ
|0
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Figure 11: Supersonic flow on a small bump , bump and velocity

• The subsonic case M0 < 1 gives again the same result than previously with a coefficient in
√

1−M2
0 ,

which can be removed in changing the scale of say
√

1−M2
0 ȳ = Ȳ so that

∂2p̄1

∂x̄2
+
∂2p̄1

∂Ȳ 2
= 0,

which is the Laplace equation, with B.C.:

∂p̄1

∂Ȳ
|0 = − γM2

0√
1−M2

0

df ′

dx̄

etc, this is the Prandtl Glauert similarity:

p̄1 =
−1

π

γM2
0√

1−M2
0

∫
− f ′(ξ)

(x̄− ξ)
dξ

note that for small M0 and after rescaling with ρ0U
2
0 instead of p0 we reobtain the incompressible case

−1
π

∫
− f ′(ξ)

(x̄−ξ)dξ

• the supersonic case (M0 > 1) gives the ∂’Alembert equation, the solution for pressure is :

p̄1 = F (x̄−
√
M2

0 − 1ȳ) +G(x̄+
√
M2

0 − 1ȳ)

the pressure is contant along the characteristic lines ȳ = ±x̄/
√
M2

0 − 1 + cst, clearly the bump creates the
perturbation, and there is no perturbation upstream, so that G = 0. hence, using the B.C. at the wall:

∂ȳp1(x̄, 0) = −γM2
0∂x̄v1(x̄, 0) so

√
M2

0 − 1F ′(x̄) = −γM2
0 f
′′(x̄)

the final expression or the perturbation of pressure:

p̄1 =
γM2

0√
M2

0 − 1

df̄

dx̄
+ ...

which is the ”Ackeret formula” and the velocity is then

ūe = 1− 1√
M2

0 − 1

αdf̄

dx̄
+ ...
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2.9 Low Mach approximation

We have seen that the system (10) is the system of Euler compressible equations. With −→u = U0
−→̄
u , p = p0p̄,

ρ = ρ0ρ̄, then as M2
0 = U2

0 /(γp0/ρ0), as dh = cpdT , we have dh = γr/(γ − 1)dT̄ so the system (10) is

∂ρ̄

∂t̄
+
−→̄
∇ · (ρ̄−→̄u ) = 0,

∂
−→̄
u

∂t̄
+
−→̄
u ·
−→̄
∇−→̄u = −

−→̄
∇ p̄
γM2

0 ρ̄
,

∂h̄

∂t̄
+
−→̄
u ·
−→̄
∇h̄ =

γ − 1

(γ)ρ̄
(
∂p̄

∂t̄
+
−→̄
u ·
−→̄
∇ p̄).

(12)

This system may be linearised at a given Mach number M0 and we obtain the previous linearised system
(11).

Now we look to what happens when M0 → 0. We see that the problem (12) is singular (because we
loose d

−→̄
u /dt in momentum!)

To solve it, we have to do a low Mach expansion (Paolucci 1982 and 1994):

−→̄
u =

−→̄
u 0 +M0

−→̄
u 1 + ...

ρ̄ = ρ̄0 +M0ρ̄1 +M2
0 ρ̄2...

T̄ = T̄0 +M0T̄1 +M2
0 T̄2 + ...

p̄ = p̄0 +M0p̄1 +M2
0γp̄2..

(mind the γ which is for aestetics) which gives

at order 0
∂ρ̄0

∂t̄
+
−→̄
∇ · (ρ̄0

−→̄
u 0) = 0,

at order M−2
0 0 = −

−→̄
∇ p̄0

γρ̄0
,

at order M−1
0 0 = −

−→̄
∇ p̄1

γρ̄0
,

at order 0
∂
−→̄
u0

∂t̄
+
−→̄
u 0 ·
−→̄
∇−→̄u 0 = −

−→̄
∇ p̄2

ρ̄0
,

at order 0
∂h̄0

∂t̄
+
−→̄
u 0 ·
−→̄
∇h̄0 =

γ − 1

γρ̄0
(
∂p̄0

∂t̄
+
−→̄
u 0 ·
−→̄
∇ p̄0).

(13)

and : p̄0 = ρ̄0T̄0. The second and the third show that p̄0 and p̄1 are function of t̄ uniquely, not of space, so
the last one is with time only:

dp0(t̄)

dt̄
=

γρ̄0

γ − 1

(
∂T̄0

∂t̄
+
−→̄
u 0 ·
−→̄
∇T̄0

)
.

If we impose at entrance temperature, we see that the global pressure increases in time.
If we heat the flow at the boundaries, by conservation of mass

d

dt̄

∫
V
ρ0dv = 0

but as p0(t̄) = ρ0(x̄, ȳ, z̄, t̄)T0(x̄, ȳ, z̄, t̄) :

p0(t̄) =
1∫

V
1
T0
dv
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If we do not input heat, T̄0 is constant, and then p̄0 as well, and so is ρ̄0, hence
−→̄
∇ · (−→̄u 0) = 0,

∂
−→̄
u0

∂t̄
+
−→̄
u 0 ·
−→̄
∇−→̄u 0 = −

−→̄
∇ p̄2

ρ̄0
,

(14)

this is as expected the incompressible standard Euler system were variations of pressure are not the ther-
modynamical ones but the O(M2

0 ) ones. Variations of pressure are O(ρ0U
2
0 ) as expected because variations

of pressure around the reference state p0 are

p0γM
2
0 p̄2 = ρ0U

2
0 p̄2

the total pression being
p = p0 + ρ0U

2
0 p̄2 +O(M4

0 )

We have shown that the compressible Euler equations are the incompressible ones at low Mach number.

2.10 Linearized Euler compressible supersonic flow with potential

We have considered the equation with u, v, we can write it with φ. Of course if we take back the full potential
equation

(φ2
x − c2)φxx + 2φxφyφxy + (φ2

y − c2)φyy = 0,

and linearize it
(φ2
x − c2)φxx = (u2 − c2

0)φxx + ...2φxφyφxy + ...

and
(φ2
y − c2)φyy = (v2 − c2

0)φyy + ... = (...− c2
0)φyy + ...

which is the expected wave equation for the potential

(1−M2
0 )φxx + φyy = 0

This point of view is useful is the transonic case that we will see next.
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Figure 12: A plane plate with a small bump in a transonic flow. A region of supersonic flow appears.

2.11 Linearized Euler trans sonic flow

• As just seen the value M2
0 − 1 appears in the equations. It is clear that the previous analysis was dealing

with 0 ≤M0 < 1 and 1 ≤M0 with M2
0 − 1 not too small. If this arrives, the flow is transonic, and the wave

equation

(1−M2
0 )
∂2p̄1

∂x̄2
+
∂2p̄1

∂ȳ2
= 0,

degenerates for the pressure:

0 +
∂2p̄1

∂ȳ2
= 0,

and as p̄1 ∝ 1√
1−M2

0

...tends to infinity. It is then clear than one has to take a new scale λŷ = ȳ so that

|M2−1| balances λ−2. We will use ε = |M2−1| as a small parameter in the expansion, we have to compare
it with α the small slope of the wall. To do that come back to equation of potential:

(c2 − u2)
∂u

∂x
− uv(

∂u

∂y
+
∂v

∂x
) + (c2 − v2)

∂v

∂y
= 0.

So that if we look at potential flows (cf Crocco theorem) we define a potential of velocities u = ∂xφ and
v = ∂yφ. the previous equation reads

(φ2
x − c2)φxx + 2φxφyφxy + (φ2

y − c2)φyy = 0.

Now let us look at perturbation at unknown level ε of the potential, bearing in mind that x = Lx̄ and
y = λLŷ with λ >> 1 (to be determined):

φ = U0L(x̄+ εφ̂+ ...)

so that u = U0(1 + εû1 + ... and v = U0
λ εv̂1 The local speed of sound

c2 = c2
0(1− γ − 1

2

(u2 + v2)

c2
0

) becomes c2 = c2
0(1− (γ − 1)M2

0 εφ̂x̄ + ...)

The dangerous term (u2 − c2) is rewritten using this expression:

(c2 − u2) = c2
0(1− (γ − 1)M2

0 εφ̂x̄ −M2
0 (1 + 2εφ̂x̄) + ...) = c2

0(1−M2
0 − (γ + 1)M2

0 εφ̂x̄ + ...)

this gives the order of magnitude of ε as we want it to come back when M0 ∼ 1 so ε = O(|1 − M2
0 |).

The second term 2φxφyφxy remains negligible, but the third (φ2
y − c2)φyy is now (remember ŷλ = ȳ):

(φ2
y − c2)φyy = −ε c

2
0U0

L2λ2
φ̂ŷŷ. The equation is then:

((1−M2
0 − (γ + 1)M2

0 εφ̂x̄)φ̂x̄x̄ +
1

λ2
φ̄ŷŷ = 0.
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Figure 13: The bump and the perturbed velocity, transsonic flow, there is a shock.

with as claimed at the beginning ε = O(λ−2) but furthermore the choice ε = (|1 −M2
0 |) is such that we

indeed have the non linear term.
But remember as well that the boundary condition of transpiration velocity v̂ = ελ−1∂ŷφ̂ same as αf̄ ′

this gives : ελ−1 = α. We have ε = O(λ−2) and the last one ελ−1 = α, this gives that α = λ−3 and ε = α2/3.
Let us define the ”transonic parameter”:

K =
M2

0 − 1

(γ + 1)M2
0α

2/3

then the equation is called the ”Euler Tricomi” equation (Landau [14], Germain [10], Ashley Landhal [2],
Kevorkian and Cole [13])

−(K + φ̂x̄)φ̂x̄x̄ + φ̂ŷŷ = 0.

in front of the derivative is K + φ̂x̄ which may again change of sign. The pressure is of order of magnitude

ρU2
0 ε ∼ γp0M

2
0α

2/3,

it is no more singular... Solving the equation is another story, but here we wanted to focus on the singularities.
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Figure 14: A plane plate with a small bump in a hypersonic flow.

2.12 Linearized Euler hypersonic flow

• We may now look at the other limit M0 >> 1. This is the hypersonic flow régime. The wave equation

∂2p̄1

∂x̄2
− (M2

0 − 1)−1∂
2p̄1

∂ȳ2
= 0,

is again singular for large Mach numbers,
∂2p̄1

∂x̄2
= 0

The flow is so fast that it does not see the body. Hence, again we have to look carefully at the equations.
A good idea, is to rescale Ȳ = 1

M0
ȳ to reobtain the lost term by dominant balance.

As 1/M0 is very small, it can interfere with the small slope of the body. If we define from the Mach
Number M0 and from the local angle of the shock σ and from the slope of the body τ the parameters:

Ks = M0σ, K = M0τ

they define self similar parameters in the Hypersonic Small Disturbance Theory (Chernyi [4]). Either
K > O(1) or K � 1.

First we look at the shock wave:

The oblique shock wave relation (Germain [10])

tan(σ − τ)

tan τ
= 1− 2

γ + 1
(1− 1

M2
0 sin2 σ

) σ τ

gives for small angles τ and σ :

M0σ

M0τ
=
γ + 1

4
+

√
(
γ + 1

4
)2 +

1

(M0τ)2

the pressure is then

p

p0
=

2γ

γ + 1
K2
s −

γ − 1

γ + 1
(15)

= 1 + γ
γ + 1

4
K2 + γK

√
(
γ + 1

4
K)2 + 1. (16)

then for moderate Mach number, we recover that the angle of the shock is a Mach Wave (1/M0) and the
pressure is:

p− p0

ρ0U2
0

' 1 +Ks
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Figure 15: A self similar flows over self similar shapes in a hypersonic flow (Van Dyke 82 book).

this is the ”weak hypersonic” regime. It is just the usual case with
√
M2

0 − 1 replaced by M0!.

For a large Mach number and large K the body and the shock are proportional, this is called the tangent
wedge approximation:

M0σ

M0τ
=
γ + 1

2
,

and the pressure:
p− p0

ρ0U2
0

' K2
s .

this is the ”strong hypersonic regime” This gives the idea of expansion with M2τ2 for the pressure, so that
for a weak case M2τ2 ≤ O(1) we can expand

ū = 1 + τ2ū1 + ...

v̄ = τ v̄1 + ...

p̄ = 1 +M2τ2p̄1 + ...

We have the so called ”piston analogy” as the equations are the same with x changed in time thann the
equation of the flow induced by a piston moving in y with time.

∂
∂x̄ Ū + ∂

∂ȳF (Ū) = 0 with Ū =

 ρ̄
ρ̄v̄1

ρ̄(ē+
v̄21
2 )

 and F (Ū) =

 ρ̄v̄
ρ̄v̄2 + p̄

ρ̄(ē+ v̄2

2 ) + p̄

 Selfsimilar solution may be then

obtained for bodies with an x̄n shape.

2.13 Conclusion of the Ideal fluid section

At the end of this section, we have for several flows the solution of the pressure distribution over a small
bump on a a flat plate in an inviscid Euler description.

We turn now to the wall in order to insure the no slip boundary condition.
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vendredi 28 octobre 2011
vendredi 28 octobre 2011

Figure 16: Experimental Cx of a cone, From Germain. Sketch of pressure coefficient (up side down: positive values

are toward the bottom) from Germain from Spreiter 62
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ue

Reynolds number Re is constructed with a velocity (U0) and a typical
length (L) . So, we first non-dimensionalise the equations with L and U0,
and as the Reynolds number is large we obtain Euler equations (with ”bars”
over teh variables i.e. x̄ = x/L, ū = u/U∞).

ue

Fig. 2 – Le problème générique, on se donne une plaque plane avec une petite
bosse, la plaque est plongée dans un écoulement uniforme.

On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
vent un simple écoulement uniforme. Un des résultats est alors la valeur de
la vitesse de glissement souvent notée ūe.
Près de la paroi, la description de fluide parfait n’est plus valide, il faut
introduire une couche limite. L’établissement de son épaisseur relative passe
par ”le principe de moindre dégénérescence” (Van Dyke [10], Darrozès &
François [4] ”least degeneracy” principle) : on veut garder les termes convec-
tifs et au moins un terme visqueux (on pose ȳ = ỹδ/L) :

ũ
∂ũ

∂x̄
∝ 1

Re(δ/L)2
∂2ũ

∂ỹ2
,

on dit alors que la couche limite est d’épaisseur relative Re−1/2.

équations dynamiques
Les équations de la dynamique devenaient :

∂ũ

∂x̄
+

∂ṽ

∂ỹ
= 0,

ũ
∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
=

∂2ũ

∂ỹ2

Avec pour conditions aux limites ũ(x̄, 0) = 0, ũ(x̄,∞) = 1. On en trouvait
une solution semblable (see thereafter the Falkner Skan solution) :

ϕ = x̄1/2f(η), ξ = x̄, η = ỹ/
√

x̄.

2

ideal fluid

boundary layer

 

Figure 17: The typical problem a plane plate (neglect curvature).

3 Classical Boundary Layer on a flat plate

We have looked at solutions of ideal fluid which correspond to Navier Stokes equations for Re−1 = 0. We
obtained the Euler equations. The problem is that with Re−1 = 0 we can no more write the no slip boundary
condition at the wall. That is the signature of the singularity of the problem. To solve the equation we
had to impose a slip boundary condition. This slip boundary condition is in fact the matching condition
between the outer and inner problem. Hence now we look at the inner problem and do a change of scale
to focus on the thin boundary layer. We begin by the simple flat plate case. We then see the influence of
pressure gradient and discuss separation.

3.1 Blasius solution on a flat plate

Ideal fluid
So we have now some examples of ideal fluid flows with a basic flow mainly in the x̄ direction. Let us look at
what happens when the body is a simple semi infinite flat plate. First, we compute the ideal fluid solution,
here a uniform flow. We obtain the ”slip velocity” written ūe the value of the ideal fluid velocity at the wall

Boundary layer
Near the wall the ideal fluid solution is no more valid as the velocity is zero at a wall. We have to introduce
a ”Boundary layer”. To obtain this we use the ”least degeneracy principle” (Van Dyke [26], Darrozès &
François [9]): we want the convective terms and at least re hook one diffusive term (as ȳ = ỹδ/L):

ũ
∂ũ

∂x̄
∝ 1

Re(δ/L)2

∂2ũ

∂ỹ2
,

we then say that the boundary layer is of relative order Re−1/2.

Dynamical equations
in these new scales, the Navier Stokes equation are the Prandtl equations:

∂ũ

∂x̄
+
∂ṽ

∂ỹ
= 0,

ũ
∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
=
∂2ũ

∂ỹ2
.

With boundary conditions ũ(x̄, 0) = 0, ũ(x̄,∞) = 1. this latter coming from the asymptotic matching

ũ(x̄, ỹ →∞)→ ū(x̄, ȳ → 0).
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(we call ūe(x̄) = ū(x̄, ȳ → 0), the velocity at the ”edge” of the boundary layer). An initial boundary
condition at the leading edge is

ũ(x̄ = 0, ỹ) = 1.

Self similarity
We can observe that they have a special invariance (see thereafter the Falkner Skan solution, see chapter on
Self Sim http://www.lmm.jussieu.fr/∼lagree/COURS/M2MHP/SSS.pdf), this gives the selfsimilar variables

ψ = ξ1/2f(η), ξ = x̄, η = ỹ/
√
x̄.

with
∂

∂x̄
=

∂

∂ξ
− η

2ξ

∂

∂η
, and

∂

∂ỹ
=

1√
ξ

∂

∂η

the velocities are;

ũ = f ′(η), ṽ =
1

2
√
ξ

(ηf ′ − f)

so that (note the 2 in front of the higher order derivative, it is removed in Falkner Skan)

2f ′′′ + ff ′′ = 0 with f(0) = f ′(0) = 0 et f ′(∞) = 1.

Numerical resolution by an ad hoc method gives f ′′(0) = 0.332, and the velocity profiles are on figure 18.
On figure 19, we present a Navier Stokes computation which shows the selfsimilarity of various profiles.

0.2 0.4 0.6 0.8 1
HΗf' -f L�2 f' HΗL

1

2

3

4

5

6

Η

Figure 18: f ′(η) Selfsimilar longitudinal velocity profile : f ′ in abscissa, η in ordinate (plain line). Selfsimilar
transversal velocity profile : (ηf ′ − f)/2 in abscissa, η (dashing).

We observe that the velocity at infinity is not zero. Note that ηf ′ − f = η(f ′ − 1) +
∫ η

0 (1− f ′)dη, then
as 1− f ′ goes to zero faster enough

lim
η→∞

(
1

2
(ηf ′ − f)) =

1

2

∫ ∞
0

(1− f ′)dη =
1.7208

2
= .8604. (17)

We introduce a quantity called ”displacement thickness” δ1, and define the skin friction

τ̃ =
∂ũ

∂ỹ
, δ̃1 =

∫ ∞
0

(1− ũ

ūe
)dỹ,

that we write here with dimensions:

δ1 = 1.7208 L√
Re
x̄1/2, and τ = 0.332 ρU2

0
1√
Re
x̄−1/2,

Furthermore, far away v →0.8604 U0
1√
Re
x̄−1/2.
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Figure 19: The flow over a flat plate computed with Freefem++ at Re = 500 is Self Similar: at the five
vertical cuts indicated we plot and superpose the profiles of the numerical solution written in boundary layer
scale: ū(x̄, ȳ

√
Re/x̄), indeed all profiles collapse on the same curve.

3.2 Approximations of Blasius profile

3.2.1 Blasius solution

We have just exactly solved Blasius. So the problem is solved. But historically, approximate solutions were
found. And those approximate solutions are useful to understand Shallow Water flows as well.

We can here test some approximations and show that they are close to Blasius. We found the shear
f ′′0 = 0.332 the ”displacement thickness” is 1.72.

There is another integral which will be usefull, the ”energy displacement thickness”, by definition it is:

δ̃2 =

∫ ∞
0

(
ũ

ūe
)(1− ũ

ūe
)dỹ,

which value is, in the case of Blasius solution∫ ∞
0

f ′(η)(1− f ′(η))dη = 0.664

so that the ratio H is

H =

∫∞
0 (1− f ′(η))dη∫∞

0 f ′(η)(1− f ′(η))dη
= 2.591

H is called the ”shape factor”.
To see the link between all those quantities, we have to write again the Prandtl equation and to notice

that

ũ
∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
=
∂2ũ

∂ỹ2
.

may be rewritten if we collect the velocities before the derivatives using the incompressibility as

∂ũũ

∂x̄
+
∂ṽũ

∂ỹ
=
∂2ũ

∂ỹ2
. or even

∂ũũ

∂x̄
− ∂ũ

∂x̄
+
∂ṽũ

∂ỹ
− ∂ṽ

∂ỹ
=
∂2ũ

∂ỹ2
,

after using the incompressibility again. Changing the sign, and collecting, this is

∂

∂x̄
ũ(1− ũ) +

∂

∂ỹ
ṽ(1− ũ) = −∂

2ũ

∂ỹ2
.
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integrating from ỹ = 0 to ∞, and thanks to Boundary conditions (the part with ∂
∂ỹ is zero), and this gives

the Von Kármán equation with no pressure gradient :

∂

∂x̄

∫ ∞
0

ũ(1− ũ)dỹ =
∂ũ

∂ỹ 0

.

We can check that the derivative of the energy thickness
∫∞

0 ũ(1 − ũ)dỹ = 0.664
√
x̄ is ∂ũ

∂ỹ 0
= 0.332/

√
x̄

which is the shear at the wall as expected.
We now test simple profile shapes and see wether they are good approximation of this Blasius solu-

tion. We will look at the expression of δ1, δ2, H and ∂ũ
∂ỹ . Note that in the integral method, we will use

f2 linked to the skin friction as: ∂ũ
∂ỹ = f2

ūe
δ2

= f2
Hūe
δ1

. For Blasius f2 = 0.218 We have as well f ′(4.906) = 0.99

The global shape starts from 0 and goes to one at infinity. In the next sub-sub sections we test given
shapes that start from 0 and goes to one, like exponential or error function. And we compare all.

This is a classical text book exercise for polynomial profiles. In the books, δ is defined to be the value
of the boundary layer thickness, where the velocity is exactly one. This is an approximation as the velocity
is never one (except at infinity). So we can exhibit a thickness δ∞ (because δ is for us the scaling of the
boundary layer, not a value of the boundary layer itself) of finite value.

It should not be confused with the effective δ99. This thickness is such that ũ(δ99) = 0.99, here say
ũ(δ∞) = 1. So that for ỹ < δ∞, the velocity goes from zero to one. For ỹ > δ∞ the velocity is one.

3.2.2 Linear profile

We first test the simple linear profile

ũ(ỹ) = ỹ/δ∞ for ỹ < δ∞ and else ũ(ỹ) = 1

this seems to be a crude approximation. The chosen δ∞ is a unknown function which represents the ”size”
of the boundary layer (it has a finite value, as we will see). Let us compute the integrals∫ ∞

0
(1− ũ)dỹ =

∫ δ∞

0
(1− ỹ/δ∞)dỹ = δ∞

∫ 1

0
(1− y′)dy′ = δ∞/2∫ ∞

0
ũ(1− ũ)dỹ =

∫ δ∞

0
(ỹ/δ∞)(1− ỹ/δ∞)dỹ = δ∞

∫ 1

0
y′(1− y′)dy′ = δ∞/6

and ∂ũ(ỹ)/∂ỹ = 1/δ∞ in 0, so

δ1 = δ/2, δ2 = δ∞/6,
∂ũ

∂ỹ 0

=
1

δ∞

we put that in the Von Kármán equation with no pressure gradient :

∂

∂x̄

∫ ∞
0

ũ(1− ũ)dỹ =
∂ũ

∂ỹ 0

.

This gives us the evolution of the ”thickness” δ∞ because the previous equation is :

∂

∂x̄

δ∞
6

=
1

δ∞
hence

∂

∂x̄

δ∞
6

=
1

δ∞
hence

∂

∂x̄

δ2
∞

12
= 1 so that δ∞ =

√
12
√
x̄

from this

δ1 =
√

3
√
x̄, δ2 =

√
1/3
√
x̄, H =

δ1

δ2
= 3 and

∂ũ

∂ỹ 0

=
1√

12
√
x̄

the numerical values

δ1 = 1.732
√
x̄, δ2 = 0.57

√
x̄, H = 3. and

∂ũ

∂ỹ 0

= 0.288
√
x̄

are not so far from the Blasius solution which are respectively 1.7 0.66 2.59 and 0.33.
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3.2.3 Sinusoidal profile

We test the simple sinusoidal profile now

ũ(ỹ) = sin(
πỹ

2δ∞
) for ỹ < δ∞ and else ũ(ỹ) = 1

again the ”thickness” δ∞ is artificial. Let us compute the integrals∫ ∞
0

(1− ũ)dỹ =

∫ δ∞

0
(1− sin(

πỹ

2δ∞
))dỹ = δ∞

∫ 1

0
(1− sin(

πy′

2
))dy′ = δ∞(1− 2/π)

∫ ∞
0

(1− ũ)dỹ = δ∞(2/π − 1/2)

so that after substitution in the Von Kármán equation with no pressure gradient :

δ1 =

√
2

4− π
(π − 2)

√
x̄, H = −2(π − 2)

π − 4
,
∂ũ

∂ỹ 0

=

√
2− π

2

2
x̄−1/2

which gives

δ = 4.79
√
x̄, δ1 = 1.742

√
x̄, δ2 = 0.655

√
x̄, H = 2.66,

∂ũ

∂ỹ 0

= 0.32x̄−1/2

( Blasius solution respectively ∞ 1.7 0.66 2.59 and 0.33)

3.2.4 Exponential

We test the simple exponential profile
ũ(ỹ) = 1− e−ỹ/δ∞

which gives (with integration to infinity, not to 1)

δ∞ = 2
√
x̄, δ1 = 2

√
x̄, δ2 =

√
x̄, H = 2,

∂ũ

∂ỹ 0

= 0.5x̄−1/2

3.2.5 Erf

We test the error function (see Stokes problem)

ũ(ỹ) = erf(
ỹ

2δ∞
)

which gives (with integration to infinity, not to 1)

δ1 =
2x1/2

√
π
, δ2 =

2(
√

2− 1)x1/2

√
π

, H = 1 +
√

2,
∂ũ

∂ỹ
|0 =

1√
πx
.

which is numerically

δ1 = 1.753x1/2, δ2 = 0.726x1/2, H = 2.414,
∂ũ

∂ỹ
|0 =

.36√
x
.

so that

f2 =
δ1

H

∂ũ

∂ỹ
|0 is f2 = 0.215
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3.2.6 Pohlhausen polynomial order one

We can imagine a polynomial expression:

ũ(ỹ) = a1ỹ/δ + a2(ỹ/δ)2 + a3(ỹ/δ)3 + a4(ỹ/δ)4 + ... for ỹ < δ∞ and else ũ(ỹ) = 1

the case ũ(ỹ) = a1ỹ/δ∞ has been seen right now.

3.2.7 Pohlhausen polynomial order two

The case ũ(ỹ) = a1ỹ/δ∞ + a2(ỹ/δ∞)2 leads to

ũ(ỹ) = 2ỹ/δ∞ − (ỹ/δ∞)2 for ỹ < δ∞ and else ũ(ỹ) = 1

to fit the BC ũ(δ∞) = 1 and ũ′(δ∞) = 0. After substitution:

δ∞ =
√

30
√
x̄, δ1 =

√
10/3
√
x̄, δ2 =

√
8/15
√
x̄, H = 5/2,

∂ũ

∂ỹ 0

=
√

2/15x̄−1/2

numerical values

δ∞ = 5.47723
√
x̄, δ1 = 1.8

√
x̄, δ2 = 0.7

√
x̄, H = 2.5,

∂ũ

∂ỹ 0

= .36x̄−1/2

3.2.8 Pohlhausen polynomial order three

We continue
ũ(ỹ) = a1ỹ/δ∞ + a2(ỹ/δ∞)2 + a3(ỹ/δ∞) for ỹ < δ∞ and else ũ(ỹ) = 1

to fit the BC ũ′(δ∞) = 0 we have a1 = (−2a2 − 3a3), and if we notice that

ũ
∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
=
∂2ũ

∂ỹ2
gives in 0: 0 =

∂2ũ

∂ỹ2

so a2 = 0 and ũ(δ∞) = 1 gives

ũ(ỹ) = (3/2)ỹ/δ∞ − (ỹ/δ∞)3/2 for ỹ < δ∞ and else ũ(ỹ) = 1

After substitution:

δ∞ = 4.64
√
x̄, δ1 = 1.7

√
x̄, δ2 = 0.65

√
x̄, H = 2.7,

∂ũ

∂ỹ 0

= .32x̄−1/2

of course we may continue... we will see the order 4 for Pohlhausen in the section of the resolution of
boundary layer with a pressure gradient.

Schlichting says ”it is seen the the approximate methods leads to satisfactory results in the case of a flat
plate at zero incidence, and the extraordinary simplicity of the calculation is quite remarkable, compared to
the complexity of the exact solution”.
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Figure 20: Various profiles: linear (with the angle), parabolic, cubic, sinus, exponential (the worst one, it
is always lower than one), error function and Blasius in red.
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3.3 Compressible boundary layer

Interestingly enough, the compressible counter part problem is very similar (Stewartson [20]). The constant
velocity is the ideal fluid solution of a flat plat even in compressible flow (neglecting a weak shock at the
nose). The dynamical equations are written with the same scales, the compressible Navier Stokes equation
are the compressible Prandtl equations:

∂ρ̃ũ

∂x̄
+
∂ρ̃ṽ

∂ỹ
= 0, ρ̃(ũ

∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
) =

∂

∂ỹ
µ̃
∂ũ

∂ỹ

With boundary conditions ũ(x̄, 0) = 0, ũ(x̄,∞) = 1. this latter comming from the matching

ũ(x̄, ỹ →∞)→ ūe(x̄, ȳ → 0).

The Energy equation reads with the enthalpy:

ρ̃(ũ
∂h̃

∂x̄
+ ṽ

∂h̃

∂ỹ
) =

∂

∂ỹ
(
µ̃

P r

∂

∂ỹ
(h̃+

Pr − 1

2
ũ2))

The transverse variable is rewritten with the Lees Dorodnitsyn Howarth Stewartson variable dY = ρ̃dỹ,
and when the viscosity is approximated to be proportional to T̃ and when Prandt number Pr is one, then
a selfsimilar solution may be found leading to f ′′′ + ff ′′ = 0!
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3.4 Classical Falkner Skan solutions of flow past wedges

3.4.1 Flow at wedges

This problem corresponds to the solution of the flow on a wedge, see figure 21. The flow comes from the left
and there is a dividing stream line with a stagnation point between the intrados and extrados (symmetrical).
The total angle of the wedge is βπ.
The problem and approximate solutions were first given by V. M. Falkner (meet Paul Germain in NPL after
the war) and Sylvia W. Skan in 1930. First computations after Blasius solution 1908 and Hiemenz 1911,
were done by Hartree 1937 and latter Stewartson 1954. This very classical solution is necessary to find
simple relationships between the pressure gradient and the boundary layer thickness.

pyl@ccr.jussieu.fr

Falkner Skan

A. Solutions "exactes" des équations de couche limite: Falkner Skan
A.1. écoulement sur un dièdre

Examinons les solutions classiques des équations de couche limite. On va étudier une classe

particulière de solutions semblables des équations de couche limite (self similar solutions).

La solution analytique et approchée de Falkner Skan date de 1930, les premiers calculs sont de

Hartree 1937 (la solution de Blasius date de 1908, celle de Hiemenz de 1911).

Ce sont les solutions dans un champ de vitesse extérieure en xn.

fluide parfait:

Cela correspond à un écoulement contre un dièdre d'angle total !"=(2 !"/2). La relation entre n

et !:

n=!/(2-!); !=(2n)/(n+1).

Pour trouver cela soit on utilise le potentiel complexe.

L'idée est que lorsque l'on travaille avec les solutions harmoniques du potentiel complexe des

vitesses, les fonctions de la forme F(z) = zm peuvent s'interpréter comme l'écoulement dans un

angle, elles satisfont les conditions aux limites (la vitesse est alors en rne-ni#)...

!"/2

Pour la couche limite

On cherche des solutions auto semblables  (self similar) et on peut faire éventuellement un

raisonnement du type:

$2u/$y2 ~ u$u/$x  devient:  xn/%2 ~ xn xn/x.

donc % l'épaisseur de couche limite se développe en x(1-n)/2. Il est alors judicieux de prendre

pour variable de similitude &=y/x(1-n)/2. Il est de plus convenu de poser:

&=y'
n+1

2
 '

1

x1-n
. et  u=xnf'(&).

v = - (
n+1

2
 xn-1)1/2 (f + 

n-1
n+1

 &f')  & [(='
2

n+1
 x(n+1)/2f(&)]

On trouve alors une équadiff (un autre choix des coefficients devant & et f' modifie les

coefficients finaux):

-4
-3

-2
-1
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Figure 21: Symmetrical flow against a wedge shaped leading edge. Note that the x axis is along the body.
so that tangential velocity is 0 in θ = 0 and in θ = 2π − 2βπ/2. By symmetry, the transverse velocity is 0
along the dividing stream line θ = π − βπ/2

3.4.2 Ideal Fluid solution

The first move consists in solving the ideal fluid problem obtained from Navier Stokes after having defined
a Reynolds number and having said that it is infinite. There is here no length scale, we take any, say L,
there is in fact no velocity scale as well in this problem (we know why: because it is a second kind of self
similarity). The choice of the velocity scale is that the ideal fluid velocity will be ū = 1 in x̄ = 1.
The Euler equations are not solved directly, we define from incompressibility a stream function ψ with
ū = ∂r̄ψ̄ and v̄ = −r̄−1∂θψ̄. Supposing a flow with no vorticity (as it is classical since ∂’Alembert [1]), we
have to solve:

1

r̄

∂

∂r̄
(r̄
∂

∂r̄
ψ̄) +

1

r̄2

∂2

∂θ2
ψ̄ = 0, with ψ̄(r̄, θ = 0) = 0, ψ̄(r̄, π − βπ/2) = 0.

The boundary conditions correspond to give the symmetry line and the upper part of the wedge to be a
stream line. The solution is straightforward (it is a special case of solution that we may write in the complex
form F (z) = zm, with z = x̄+ iȳ):

ψ̄ = ψ0r̄
2

2−β sin(
2

2− β
θ).

The velocity at the wall ”slip velocity” is as in θ = 0, r̄ = x̄, and as the velocity is 1 at the location x̄ = 1
by the choice of velocity unit:

ūe = x̄n with n =
β

2− β
, β =

2n

n+ 1

- II . 33-



Boundary Layer

[Of course, one may look at solution of the Laplacian by separated variables, so that ψ̄ = A cosKθ+B sinKθ
and r̄ = Cr̄K + Dr̄−K , then form the boundary conditions, A = 0 and K = 2

2−β , and C = 0 (condition at
infinity)].

Writing the Euler equation at the wall leads to the important relation between the slip velocity and the
value of the pressure at the wall p̄e:

ūe
dūe
dx̄

= −dp̄e
dx̄

which is in fact the Bernoulli relation.
We note that there is no characteristic velocity ”far away” the apex of the wedge, so the velocity scale

depends on the chosen scale L by the power n. We note that this solution is an example of self similarity of
second kind.

This problem is a kind of leading edge problem figure 21, for β > 0, we have a symmetrical flow between
the dividing stream line (on figure 21 we have 0 < β < 1, the flow is against a convex corner). The flow is
accelerated, n > 0. A special case β = 1 is the flow against a wall (stagnation point solution). Larger values
of β correspond to the flow against a concave corner.
β = 0 is the flow on a flat plate.
For negatives values of β there is no more corner, no symmetry is possible, it is the flow round a corner.
The velocity is decelerated, n < 0.

3.5 Boundary layer solution

The second move consists is writing again the Navier Stokes equations and to introduce a stretched transverse
variable by 1/

√
Re so that they become:

∂ũ

∂x̄
+
∂ṽ

∂ỹ
= 0,

u
∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
= −∂p̃

∂x̄
+
∂2ũ

∂ỹ2
,

0 = −∂p̃
∂ỹ
.

(18)

boundary conditions are ũ = ṽ = 0 on ỹ = 0, ũ(x̄,+∞) = ūe, p̃(x̄,+∞) = p̄e. As ∂p̃
∂ỹ = 0 the pressure in the

boundary layer is exactly the pressure of the ideal fluid at the wall. And using the Bernouli relation we can
eliminate the pressure and write as ūe

dūe
dx̄ = nx̄2n−1:

∂ũ

∂x̄
+
∂ṽ

∂ỹ
= 0, ũ

∂ũ

∂x̄
+ v

∂ũ

∂ỹ
= nx̄2n−1 +

∂2ũ

∂ỹ2
.

Often, it is written in stream function in a single equation of third order with three BC in ỹ as (the BC in
x̄ = 0 is not important):

∂ψ̃

∂ỹ

∂2ψ̃

∂x̄∂ỹ
− ∂ψ̃

∂x̄

∂2ψ̃

∂ỹ2
= nx̄2n−1 +

∂3ψ̃

∂ỹ3
.

ψ̃(x̄, 0) = 0,
∂

∂ỹ
ψ̃(x̄, 0) = 0,

∂

∂ỹ
ψ̃(x̄,+∞) = x̄n.

3.6 Self similarity

To solve this equation we try the selfsimilar technique:
x̄→ Xx∗, ỹ → Y y∗, ũ→ Uu∗, ṽ → V v∗ ...

the boundary condition gives U = Xn, the continuity gives V = Y Xn−1, the balance between inertia and
viscosity gives (Xn)(Xn)/X = (Xn)Y −2 so that Y = X(1−n)/2, and then V = X(n−1)/2, and as well we have
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Ψ = X(1+n)/2. The change of scale is then for any X:
x̄→ Xx∗, ỹ → X(1−n)/2y∗, ũ→ Xnu∗, ṽ → X(n−1)/2v∗, ψ̃ → X(1+n)/2ψ∗,

The formal implicit solution is invariant by this transform:
F (x̄, ỹ, ũ) = 0 gives F (Xx̄,X(1−n)/2ỹ, Xnũ) = 0

if we write it for ψ the formal implicit solution is invariant by the transform:
F (x̄, ỹ, ψ̃) = 0 gives F (Xx̄,X(1−n)/2ỹ, X(n+1)/2ψ̃) = 0

removing the X from the slots (divide by adequate powers of Xx̄) gives
F2(Xx̄, ỹx̄(n−1)/2, ψ̃x̄−(n+1)/2) = 0,∀X gives F3(ỹx̄(n−1)/2, ψ̃x−(n+1)/2) = 0

hence ψ̃x−(n+1)/2 is a function of ỹx̄(n−1)/2. So that the selfsimilar variable and the stream function are:

ξ = x̄, η = (

√
n+ 1

2
)

ỹ

ξ̄(1−n)/2
ψ = (

√
2

n+ 1
)ξ̄(n+1)/2f(η)

the prefactors like (
√

n+1
2 ) are just historical and help to have a nice equation. As:

∂
∂x̄ = ∂

∂ξ + n−1
2

η
ξ
∂
∂η and ∂

∂ỹ =
√

n+1
2 ξ(n−1)/2 ∂

∂η ,

the velocities are obtained:

ũ = ξnf ′(η), ṽ = −
√
n+ 1

2
ξn−1(f +

n− 1

n+ 1
ηf ′)

and after substitution, the stream function equation is :

f ′′′(η) + f(η)f ′′(η) + β(1− f ′(η)2) = 0, f(0) = f ′(0) = 0 and f ′(∞) = 1.

Solutions of this equation are plotted on figure 23.

3.7 Numerical Tricks

3.7.1 Shooting method

In fact it is not so simple to solve this equation, the natural way consists in a shooting method: for a given set
f(0) = 0, f ′(0) = 0, f ′′(0) = f ′′0 one solve up to a given ηm say 7, and try to obtain f ′(ηm) = 1. In practice,
we write f ′′′ + ff ′′ + β(1− f ′2) = 0 as a first order equation in matrix (U ′ = F (U) with U = (f, u, v)) :

f ′ = u
u′ = v
v′ = −vf − β(1− u2)

f(0) = 0, u(0) = 0, we guess v(0) = f ′′(0) so that u(∞) = 1. With this form it is clear that any Euler
forward, or Runge Kutta Metho is suitable: sarting from U(0) we compute:

U(η + ∆η) = U(η) + ∆ηF (U(η))

from η = 0, where U(0) = (f = 0, u = 0, v = f ′′(0)) to ηm where the first component of U must be close to
1. We compute as well as a result

∫
(1− u)dη.

Playing with this system, it works well for β > 0, but we observe that it is a very stiff problem for β < 0.
It means that a very small change in f ′′(0) can dramatically change the value of u(ηm). So, the best way is
to solve the equations in an ”inverse way” with two variables: we have to find the given value of u(∞) and
the given value of the displacement I(∞) =

∫∞
0 (1− u)dy. We add the integral to the previous one.

f ′ = u
u′ = v
v′ = −vf − β(1− u2)
I ′ = (1− u)
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f(0) = 0, u(0) = 0, I(0) = 0 we guess v(0) so that u(∞) = 1. and I(∞) = D, were say D is the given value.
We shoot the condition f ′(ηm) = 1 and

∫ ηm
0 (1− f ′(η))dη = D to do this we try and guess the values of f ′′0

and β. This procedure allows to obtain the reverse branch on figure 23 and the reverse profiles (where u is
negative at first).

3.7.2 Unsteady method

Rewrite the Falkner Skan equation and ad an unsteady terl

∂f ′

∂τ
= f ′′′ + ff ′′ + β(1− f ′2), with (f ′ = u) it reads

∂u

∂τ
= u′′ + fu′ + β(1− u2)

at iteration n
(un+1 − un)

∆t
= un+1′′ + fnun+1′′ + β(1− un2) and fn+1′ = un+1

it is a two point BV problem un+1(0) = 0 and un+1(ymax) = 0 the second order derivative is solved implicitly,
the tridiagonal system is solved with Thomas algorithm.

3.7.3 alternate methods

http://basilisk.fr/sandbox/easystab/blasius.m
http://basilisk.fr/sandbox/easystab/hiemenz.m
http://basilisk.fr/sandbox/easystab/falkner-skan.m

3.8 Special cases

• for β = 0 we obtain the Blasius solution:
n = 0, ũ = f ′(η), η = ỹ/

√
2x̄, ṽ = (1/(

√
2x̄))(ηf ′ − f).

the Blasius equation

f ′′′ + ff ′′ = 0, solution f”0 = 0.47

∫ ∞
0

(1− f ′)dη = 1.2

then f”0/
√

2 = 0.332,
√

2
∫∞

0 (1− f ′)dη = 1.72
Of course the Blasius equation was writen 2f ′′′+ff ′′ = 0 at the beginning of this chapter, the ”2” is removed
by the historical change of scale from Falkner Skan, that is the reason of the

√
2 in displacement and 1/

√
2

in friction).

• for β = 1 we obtain a stagnation point solution (Hiemenz) n = 1 :
ũ = x̄f ′(η) ṽ = −f(η), η = ỹ

f ′′′ + ff ′′ + (1− f ′2) = 0, f ′′0 = 1.23,

∫ ∞
0

(1− f ′)dη = 0.6479, H = 2.15

On figure 25 we compare the full Navier Stokes resolution, we clearly see the stream function in hyperbola
(corresponding to ψ = r̄2sin(2θ). On the right figure, the longitudinal velocity divided by x is plotted, we
compare it to the selfsimilar solution (in fact it is an exact solution of Navier Stokes).

• For β > 2 there is no physical solution but we may compute them with no problem. In fact we can even
compute β → ∞, Falkner Skan solution reduces (1 − f ′2) = 0, so that there is an external solution f ′ = 1
every where. Near the wall, we introduce a ”boundary layer”say f ′ = F ′(Y ) and η = εY , so with ε = β−1/2
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we obtain F ′′′ + (1− F ′2) = 0, which is the self similar flow in a convergent ue = −x−1.∫∞
0 (1− F ′)dY = 0.779, F ′′(0) = 1.15. There is even an exact solution:

F ′(η) =

3

(
1− (−

√
2+
√

3)e−
√
2η

√
2+
√

3

)2

(
1 +

(−
√

2+
√

3)e−
√
2η

√
2+
√

3

)2 − 2

The convergent β = ∞ and n = −1 u = −x−1f ′(η), with η = y f ′′′ + 1 − f ′2 = 0. f ′′0 = 1.1547, and∫∞
0 (1− f ′)dη = 0.7783 and

∫∞
0 (1− f ′)f ′dη = 0.376, so H = 2.070

• For β < 0 the flow is decelerated;

• For β = −.1988 it is the point of ”incipient separation”, the derivative of the velocity is always 0:
f ′′(0) = 0; n = −0.091 and

∫∞
0 (1− f ′)dη = 2.3 , δ1 = 3.49

• For 0 > β > −.1988 there are in fact two solutions, one with f ′′(0) > 0 and another one with f ′′(0) < 0.
The two solutions have different values of

∫
(1− f ′)dη.

Other branches of solution exist.

• Falkner Skan solutions, small β
In Brown & Stewartson (On The Reversed Flow Solutions Of The Falkner-Skan Equation Mathematica
1966), they looked at the dependance in f ′”0 in β for small β (the returning curve). the obtained that :

f ′”0 ' 1.544(−β)3/4

• Some triplet solution (
∫

(1 − f ′)dη, f ′′(0), β)= (0.649,1.23,1), (0.8,0.93,0.51), (1,0.669,0.18), (1.21,0.44,0),
(1.5,0.29,-0.12), (2,0.09,-0.189), (2.5,-0.026,-0.198), (3,-0.09,-0.183), (4,-0.042,-0.196))

Figure 22: Some remarkable cases of Falkner Skan flow, for β = 1 to the negative β massively separated
flow.

We seen on figure 23 that there is a non uniqueness in the solutions. Libby & Liu 1967computed far
more branches of solution for β < 0. They correspond to oscillating f ′ (see Sobey’s boook).

3.9 Non self similarity

A generalization of the FS equation may be obtained when the flow is non similar. If fo is a short hand for
∂x̄f , we may write the Prandtl equations in introducing n = x̄

ūe
dūe
dx̄ then

f ′′′ + ff ′′ + β(1− f ′2) = x(f ′f ′o − fof ′′).
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Figure 23: Left, dependence of the slope at the wall f ′′(0) as a function of the acceleration parameter β.
right some velocity profiles.

Figure 24: Navier Stokes computation with freefem++ of the flow field and comparisons of the computed
profiles u/x̄ compared with the selfsimilar solution f ′(y) of Hiemenz.

3.10 Compressible Falkner Skan solutions

In the case with pressure gradients, in the case of model flows, a selfsimilar problem may be obtained:

f ′′′ + ff ′′ + β(S − f ′2) = 0, S′′ + fS′ = 0...

where S is the total enthalpy (see Stewartson 64).
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4 Integral relations

4.1 Von Kármán equation integral relation

Boundary layer equations are a 2D PDE which is not so simple to solve. Nevertheless, we observed that the
velocity profile is sometimes self similar. It means that there is a unique profile and that all the profiles are
deduced by stretching it. The velocity of the ideal fluid at the wall and the thickness of the profile are two
fundamental parameters which stretch the fundamental profile.

In this part we present the Von Kármán-Pohlhausen (1921) equation which consists in writing only the
global dependance between ūe and the displacement thickness δ1 supposing that in fact all the profiles are
nearly similar.
An interpretation of δ1 is that the flux of mass trough an enough large y say H (not to be confused by the
shape factor H that we define just after) is the same than the flux of a constant velocity across a smaller
section H − δ1 so that (we are just in non dimensional variables, no tilde):

ψ =

∫ H

0
udy = (H − δ1)ue, i.e. δ1ue =

∫ H

0
(ue − u)dy

then, we suppose that H is large enough so it may be changed by ∞. This gives the physical definition
of the displacement thickness, it is the distance by which the external stream lines are shifted due to the
boundary layer development.

∆1

H

Méthodes Intégrales

consiste à écrire uniquement la dépendance globale entre ūe et l’épaisseur
de déplacement δ1en supposant que tous les profils sont presque similaires.

H

- 6.6-

Figure 25: The flux of mass is the same in the boundary layer and in a equivalent layer of ideal fluid shifted
by an amount of δ̃1.

Let us now look at Von Kármán equation, we write the total derivative ũ∂ũ∂x̄ + ṽ ∂ũ∂ỹ in conservative form
then adding ∂x̄(ũūe) = ũ∂x̄(ūe)− ūe∂ỹṽ allows to write the momentum equation as:

∂

∂x̄
(ũūe − ũ2) + (ūe − ũ)

∂ūe
∂x̄
− ∂

∂ỹ
(ṽ(ũ− ūe)) = −∂

2ũ

∂ỹ2

Defining the displacement thickness, the momentum thickness and the shape factor

δ̃1 =

∫ ∞
0

(1− ũ

ūe
)dỹ, δ̃2 =

∫ ∞
0

ũ

ūe
(1− ũ

ūe
)dỹ and H =

δ̃1

δ̃2

,

and defining a function f2 linked to the skin friction as: ∂ũ
∂ỹ = f2

Hūe
δ1

gives the following equation where the
ideal fluid promotes the boundary layer:

d

dx̄
(
δ̃1

H
) +

δ̃1

ūe
(1 +

2

H
)
dūe
dx̄

=
f2H

δ̃1ūe
, i.e. δ̃1 = F (ūe), (19)

Initial condition is for example δ̃1(0) = 0 (but the Hiemenz value may be a good first guess) and ūe(0) = 1.
In the classical approach, δ̃1 is obtained through the knowledge of ūe, which we write formaly δ̃1 = F (ūe).
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4.2 Pohlhausen closure

One needs the shape of the boundary layer and then compute the integrals and the shear. In the original
methods, one needs a thickness, say δ∞ (the effective δ99 is such that u(δ99) = 0.99ue, here say u(δ∞) = ue.
Hence, we construct a shape which is 1 for y > δ∞ and varies from 0 to 1 for 0 < y < δ∞. Let us define
η = y/δ∞.

Trying a Polynomia closure is Pohlhausen idea, we already presented polynomials of order 1, 2, and 3
for the Blasius solution. We extend the method in the case of pressure gradients

u/ue = a0 + a1η + a2η
2 + a3η

3 + a4η
4 + ...

at order 4, we write the boundary conditions, u(0) = 0 u(1) = 1 u′(1) = 1, 0 = due/dx + u
′′

δ2∞
so that the

velocity is

u = (2η − 2η3 + η4) +
1

6
Λ(η − 3η2 + 3η3 − η4)

or in a compact form

u = 1− (1− η)3(1 + (1− 1

6
Λ)η)

where we have defined Λ = δ2due/dx (it introduced with the condition at the wall). Then, by integration:
δ1/δ∞ = (36− Λ)/120
δ2/δ∞ = 37/315− Λ/945− (Λ2)/9072,
H = ((36− Λ)/120)/(37/315− Λ/945− (Λ2)/9072)
f2 = (2 + Λ/6)(37/315− Λ/945− Λ2/9072)

With all those values, the profile is determined as a function of δ∞ and ue, or as function of δ1 and ue. The
relation between δ1 and ue is found then with the Von Kármán equation. We plot on figure 4.3 in green,
first left H(λ1) as a parametric plot of Λ1(Λ) and H(Λ). We plot on figure 4.3 in green, second right f2(H)
as a parametric plot of f2(Λ) and H(Λ).
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Figure 26: An example of closure Pohlhausen Λ = 12, 0,−12,−24.

Flat Plate case
In the case of zero pressure gradient Λ = 0, we first obtain the value of the coefficients f2 = 74/315 =
0.234921 and H(0) = 189/74 = 2.5540540 (Blasius values areHB = 2.59 the slope is 0.332 so f2 = 0.22 =
0.332 ∗ 1.721/2.59). and we put them in the Von Kármán equation with ue = 1

d

dx̄
(
δ̃1

H
) =

f2H

δ̃1ūe
,

the integration gives
δ1 =

√
2f2H0x

1/2

hence
√

2f2 H = 9
√

7/185 = 1.75068 (very close to the Blasius value). The shear at the wall is then
evaluated, and is again close to the exact Blasius value Hf2/δ1 = (1/3)

√
37/35x−1/2 = 0.342725x−1/2

The ”physical” Pohlhausen’s thcickness δ = 120/36δ1 = 6
√

35/37x1/2 = 5.83559x1/2
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4.3 Falkner Skan Closure

To solve this boundary layer equation, a closure relationship linking H and f2 to the velocity and the
displacement thickness is needed. This is of course a strong hypothesis. Defining Λ1 = δ̃2

1
dūe
dx̄ , the system is

closed from the resolution of the Falkner Skan system as done before. Remember the solution is ue = f ′(η)x̄n

with η = (
√

n+1
2 ) ỹ

x̄(1−n)/2
so that

δ1 = (

∫
(1− f ′(η))dη)/((

√
n+ 1

2
)x̄(n−1)/2)

the ”Pohlhausen” parameter Λ1 is

Λ1 = δ2
1

dūe
dx̄

=
2n

n+ 1
(

∫
(1− f ′(η))dη)2x̄1−n+n−1

then

Λ1 = β(

∫
(1− f ′(η))dη)2.

On figure (see figure 4.3):

H =

{
2.5905e−0.37098Λ1 if Λ1 < 0.6
2.074 if Λ1 > 0.6

}
, f2 = 1.05(−H−1 + 4H−2).

It means that we suppose that each profile remains a Falkner Skan one in the boundary layer. We used this
crude solution in exponential with the value of the sink H = 2.074 as a limiting value. We tested it to be
enough good, other closures may be found in the literature. Some closures use the concept of entrainment.
The closure may be done with other families of profiles, and Pohlhausen profiles are good candidates (the so-
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Figure 27: An example of closure of the integral relations. The dots are the Falkner Skan values and the
line the proposed function. if Λ1 > 0.6 in fact H = 2.07 is constant, for FS it means that β → 2 (accelerated
case). Note the very good agreement for f2.

lution is part of a polynom). With those profiles the reverse flow is over estimated compared to Falkner Skan.

4.4 Remarks

In general, the Von Kármán equation is written with the momentum thickness δ̃2:

d

dx̄
(δ̃2ū

2
e) + δ̃1ūe

dūe
dx̄

=
∂ũ

∂ỹ

∣∣
ỹ=0

(20)

(often the symbol θ̃ is taken, and δ̃1 is written δ̃∗), we prefer to write it with δ̃1 as we will see that this value
has a real physical interpretation. The reason why mainly δ̃2 is used is that its derivative is clearly linked
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Figure 28: Left: we plot here with blue dots the result of Falkner Skan solution, H as a function of Λ1 which
is β(

∫
(1− f ′(η))dη)2. In red the approximation 2.5905e−0.37098Λ1 if Λ1 < 0.6. In green the plot of H(Λ) as

function of Λ1(Λ) from Pohlhausen. Right, blue dots Falkner Skan, red curve the fit f2 = 1.05(−H−1+4H−2,
green curve Pohlhausen for f2 as function of H.

to the skin friction (this gives a technique to deduce the skin friction from even crude measurements of the
boundary layer profile.

In general, another thickness is introduced, the ”boundary layer thickness”: δ̃99. The velocity is defined
so that if ỹ > δ̃99 we have ũ = ūe. In the Falkner Skan description, this length does not exist as the velocity
is attained only at infinity. That is why it is defined sometimes as position at which the velocity is 0.99ūe.
We put this subscript not to confuse this ”value” with the scale δ = L/

√
Re = Lδ̃.

For instance, using this thickness, the Pohlhausen technique allows to approximate the Blasius profile by :

ũ = 1− (1 + η)(1− η)3, δ̃1 = .3δ̃, δ̃1/δ̃2 = 2.55

So, if we define nevertheless this thickness (it is common in turbulent flows, and it the original Pohlhausen
approach as well). Starting from the incompressibility equation

∂ṽ

∂ỹ
= −∂ũ

∂x̄

we obtain, after adding and substracting ∂ūe
∂x̄ and after integration (with ṽ(0) = 0) up to a δ̃ function of x̄

that the velocity is:

ṽ(δ̃) = −
∫ δ̃

0

∂

∂x̄
ũdỹ = − ∂

∂x̄

∫ δ̃

0
ũdỹ + ūe

dδ̃

dx̄

so, as for ỹ > δ̃ by definition ũ = ūe, then
∫ δ̃

0 ũdỹ =
∫ δ̃

0 ūedỹ −
∫ δ̃

0 (ūe − ũ)dỹ and we obtain the behaviour:

dδ̃

dx̄
− ṽ(δ̃) =

1

ūe

d

dx̄
(ūe(δ̃ − δ̃1)).

This is the definition of the ”entrainment coefficient” CE . It represent the difference between the growth of
the boundary layer and the velocity at the edge of the boundary layer. Closure relations may be written to
model it. We will see that this concept is not so useful, we will write in a better way this same integral and
we will do a proper matching to get rid with this non asymptotic concept of δ̃99
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5 The problem of boundary layer separation

5.1 definition

Separation consists in the existence of a long vortex near the wall caused by a deceleration of the flow. Fluid
is trapped in a ”bubble” or a ”bulb” which increases the apparent size of the body. From the point of vied of
aerodynamics, it is not a good thing as it creates, dissipation, turbulence and decreases dramatically the lift
of airplanes. The ideal fluid-boundary layer description is believed to fail due to boundary layer separation.

Figure 29: A sketch showing the body, the separated bulb, and the deflexion of stream lines.

Boundary layer separation occurs in the boundary layer. Due to the shape of the body, first the ideal
fluid accelerates and then on the lee side decelerates. So does the slip velocity at the wall. When slip velocity
is decreasing ue

due
dx < 0, It corresponds to a counter pressure: dp

dx > 0. The pressure is increasing, upstream
to downstream. Note that the pressure does not depend on y. This correspond to the case of the ideal
flow on a cylinder, this is a generic case: ūe = sin(x̄). Near the wall the influence of the adverse pressure
gradient is larger and larger, as the velocity is smaller and smaller. So, near the wall, were the velocity is
small, the velocity is more fragile. Hence, due to this adverse pressure gradient, a reverse flow may appear.
This is boundary layer separation, it corresponds to the existence of a counter flow near the wall. A long
vortex arises near the wall.

The point of separation is the point defined by ∂ũ
∂ỹ = 0 (definition is not so clear in unsteady flows). See

an example of representation on figure 30 taken form Prandtl himself [18].

._.- .
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.,. .,.
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Figure 30: A sketch from Prandtl [18] of the flow near the point of vanishing shear stress.

Then when there is separated flow, near the wall, the dangerous terms in the BL are:

ũ
∂ũ

∂x̄
+ ... = ...+

∂2ũ

∂ỹ2

with ũ < 0, and changing x̄ in t, this is a kind of heat equation with a negative coefficient:

−∂T
∂t

=
∂2T

∂y2

so it is unstable (ill posed). It is then impossible to cross the position of boundary layer separation. That is
why, in most classical textbooks, the boundary layer separation is presented as the death of boundary layer.
For example Kundu & Ira p368 of the fourth edition say: ” The boundary layer equations are valid only as
far downstream as the point of separation. Beyond it the boundary layer becomes so thick that the basic
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underly- ing assumptions become invalid. Moreover, the parabolic character of the boundary layer equations
requires that a numerical integration is possible only in the direc- tion of advection (along which information
is propagated), which is upstream within the reversed flow region. A forward (downstream) integration of
the boundary layer equations therefore breaks down after the separation point. Last, we can no longer apply
potential theory to find the pressure distribution in the separated region, as the effective boundary of the
irrotational flow is no longer the solid surface but some unknown shape encompassing part of the body plus
the separated region.” We will show that every thing is false, and even that the impossibilities presented
are the clues to find the solution of the problem!

This problem of boundary layer separation is of course very important for flow around wings, as it creates
”stall” (dramatic decrease of lift). It arise in most practical cases of flow and is responsible for dissipation
of energy. Furthermore, it creates instability and turbulence. The boundary layer separation control is of
high importance.

It is a real XXth century problem and victory of asymptotics. It has been introduced in 1904 by Prandt,
then in the forties it was a dead end (Landau, Goldstein). In the fifties light hill had some intuition to
understand it. In 1969 the framework was settled, it is known as ”Triple Deck”. In the 80’ it was applied
to a lot of configurations and was shown to be linked with instabilities.

5.2 Example of separation on a cylinder

In the classical framework it is not possible to trespass the separation point. This impossibility is known as
Goldstein singularity (1948). On figure 31, is presented an example of boundary layer computation with an
external flow ūe = sin(x̄) corresponding to the flow on a cylinder. A Integral resolution of the equations is
compared with a complete boundary layer resolution showing how precise is the Von Kármán approach.

The flow is accelerated from x̄ = 0 to π/2, near x = 0 we have an Hiemenz linear flow. The flow
is decelerated for x̄ > π/2, this deceleration promotes an increase of the boundary layer thickness and a
decrease of the skin friction. At the point where ∂ũ

∂ỹ = 0, the boundary layer is singular, we can not compute
numerically (here by finite difference) the boundary layer.
Using the Von Kármán equation gives the same behavior! It fails nearly at the same point (not exactly, but
not so bad).

A simple way is to observe it is to look at the Von Kármán equation:

d

dx̄
(
δ̃1

H
) +

δ̃1

ūe
(1 +

2

H
)
dūe
dx̄

=
f2H

δ̃1ūe
,

in which the derivative of δ̃1/H may be approximated by

d

dx̄
(
δ̃1

H
) =

1

H
(
d

dx̄
δ̃1)(1− δ̃1

H

dH

dΛ1

dΛ1

dδ̃1

)

so for a decelerating flow linearizing the velocity near the point of separation is say ūe = sin(x̄s)−a(x̄− x̄s)
with a = cos(x̄s) and linearizing around small Λ1 (which is not true but is a enough good approximation)
H = H0 −HpΛ1 where H0 = 2.59 and Hp ' −0.96 this term is

d

dx̄
(
δ̃1

H
) ' (

1

H0

d

dx̄
δ̃1)(1− 2Hpaδ̃

2
1

H0
)

and then the Kármán equation (with f2 = 0, or not...)

(
1

H0

d

dx̄
δ̃1) =

− δ̃1
ūe

(1 + 2
H )(−a) + 0)

(1− 2Hpaδ̃21
H0

)
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then d
dx̄ δ̃1 is infinite, (with δ̃1 finite here) we can not march in x̄ anymore. This crude estimation shows that

the separation point is impossible to cross.
It is very disappointing as Falkner Skan profiles allow separation (Pohlhausen as well), but using this

description it is not possible to cross the separation point. Direct numerical finite difference solution gives
the same result (figure 31).

évolution de !.

On remarque l'excellent accord entre les deux méthodes (sauf dans la région juste avant la

singularité)...

mais on ne passe pas le point !=0 (les derniers points du schéma précédent sont en fait

aberrants).

1.3. premières tentatives

1.3.1. séparation vue par Landau

Dans la couche limite v<<u; à séparation u~v (les lignes de courant sont éjectées de la paroi, en

fait on a toujours v<<u mais v beaucoup plus grand que 1/R1/2).

En variables de couche limite on peut dire que v = ",  donc #v/#y=", donc #u/#x=". Les

gradients sont très forts. #u/#x devient grand,  une bonne idée est de dire que son inverse est nul

et de faire le développement (us à séparation mais en réalité pas tout à fait ... on le prendra un

peu avant):

x-xs= 0 (u-us) + f(y) (u-us)2+...

d'où u (fonction $ inconnue):

u = us(y) + 2$'(y) %(xs-x).  puis v par continuité v = $(y)/ %(xs-x).

l'équation de quantité de mvt: en négligeant le RHS, donne u2#(v/u)/#y=0; d'où v/u ne dépend

pas de y.  $(y)/(us(y)%(xs-x)) est constant en y. On en déduit l'écriture suivante usn'est d'ailleurs

pas vraiment le profil séparé mais un profil "moyen" de base.

u = us+
#us

#y
 A(x), v = - 

#A

#x
 us   A(x)=a %(xs-x)

sur la paroi on devrait avoir us=0 et #us/#y=0, ce qui n'est pas tout à fait le cas pour ce résultat

final. (cfTCouche)

1.3.2. catastrophe de Goldstein

L'analyse est délicate:

17 mai 2006  "3DEA2.separ" -6-

k>0 => gradient de pression augmente fortement avant xs, et donc la séparation à lieu avant le

point en question!

k<0 => les lignes de courant rentrent dans l'obstacle.

d'où la condition de Brillouin- Villat k=0. mais il n'y a alors aucune raison qu'il y ait séparation!

La Triple Cpuche montre que k->0 en 0.44 R-1/16!!!!

Si on intègre les ECL en marchant, on trouve la séparation vers ~1.9/!~109°

Dans le cas du schéma de Kirchoff la séparation se produit avant ce point.

sillage de Kirchoff

séparation classique
109

?

0

Tentons effectivement la résolution de l'écoulement autour d'un cylindre. On se donne ue=sin(x)

(c'est la solution d'Euler à la paroi...), et on résout avec les méthodes intégrales (trait) et une

méthode de différences finies (points):

évolution de "1

17 mai 2006  "3DEA2.separ" -5-

xx

τδ1

Figure 31: Boundary layer separation on a cylinder, the outer velocity is ūe = sin(x̄), points are numerical
finite difference solution of the Boundary Layer equations, line is the integration of Von Kármán equation
with the proposed closure. Separation occurs for an angle of 104o.

5.3 Thwaites method 49.

Note that the more classical way to do that is tu use the Thwaites method which uses a simplification of
the closure coefficients when integrating the Von Kármaán equation:

δ̃2
2ū

6
e = δ̃2(0)2ūe(0)6 + 0.45

∫ x̄

0
ū5dx̄

5.4 Example of separation on a plate with a bump.

One may think that the cylinder case is to severe. A smoother plate is maybe less difficult to compute.
It is of course not true, on figure 32 we show boundary layer computations examples for an outer flow
ūe = 1 − αe−6(x̄−1.5)2 . For each case, velocity profiles displacement boundary layer thickness and skin
friction are presented. Unfortunately again, even for such a smooth outer velocity, for α = 0.06 there is the
incipient separation. For greater α we can not go through the separation point, where ∂ũ

∂ỹ = 0, the boundary
layer is singular.
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Figure 32: Examples of profiles of a boundary layer with an external given velocity ūe = 1− αe−6(x̄−1.5)2 . For each

case, velocity profiles, then from top to bottom δ̃1 = 1.73x̄1/2, ūe, and skin friction. Top left , Blasius boundary layer

(α = 0, δ̃1 = 1.73x̄1/2, ūe = 1, skin friction 0.33x̄−1/2), top right α = 0.03, the boundary layer thickness decreases,

the skin friction increases when the velocity increases. For α = 0.06 (bottom left ) it is the incipient separation. For

greater α we can not go through the separation point, where ∂ũ
∂ỹ = 0, the boundary layer is singular. [click to launch

the movie, QuickTime Adobe/ Reader required]
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on se place au voisinage de y=0 et près de la séparation, la vitesse peut s'écrire:

u ~ 
1
2

 y 2+ ! ar y r.

De manière générale, si on pose "p=#u/#y |y=0

u = "py +  
1
2
 (+dp/dx) y 2 + (pas de terme en y3) + a4y4+...

on voit en manipulant les équations que #4u/#y4 |y=0= 4! a4= 
1
2
 
# 

#x
 "p

2.

car

#4u/#y4 = #2 /#y2(visq+grad p)= #2 /#y2(conv)

or

#2 /#y2(conv) = # /#y(u#2u/#x#y + v #2u/#y2)

en 0:

#4u/#y4 |y=0=#u /#y #2u/#x#y |y=0 etc ...

*si a4 est nul, la séparation est dite régulière, et conduit nous le verrons à ce que l'on nomme la

séparation marginale, ce cas est en fait plus rare et très particulier.

*si a4 non nul, on a:

"p=$(48a4 (xs-x)).

on en déduit v = - 
1
2
 
# 

#x
 "p y2 qui se comporte donc en 1/$(xs-x).

La paradoxe vient du fait que a4>0 avant la séparation. De même il serait négatif après =>

impossible!!

On ne peut donc pas passer le point de séparation, et les lignes de courant forment une tangente

verticale, l'analyse de Goldstein 48 est  plus subtile, elle conduit à des développements en:

 y/(xs-x)1/4.

 mais la conclusion est la même.

1.3.3. nécessité de résolution en mode inverse

1.3.3.1.       impossibilité de trouver %1 pour tout Ue

17 mai 2006  "3DEA2.separ" -7-

Figure 33: A typical velocity profile at separation is u = (no terms in y) + 1
2 ( dpdx )y2 + (no terms in y3) + a4y

4 + ...

5.5 Attempts to understand the boundary layer separation

5.5.1 Landau

One of the first attempts may be found in the Landau Lifshitz book [14], §40. They notice that as in the
boundary layer v << u, so the transverse velocity must increase a lot to be as large as the longitudinal one.
it is apparently the case when the flow is separated (stream lines are ejected from the wall). In boundary
layer variables they infer that v = ∞ and ∂v/∂y = ∞ so that ∂u/∂x = −∞. The velocity is strongly
decelerated near the point of separation xs. So they propose to work with the inverse of the function (∂x∂u)
and propose a reciprocal expansion of x in u near xs as:

x− xs =
∂x

∂u
(u− us) +

1

2

∂2x

∂u2
(u− us)2 = 0(u− us) + f(y)(u− us)2 + ...

so that one may write the velocity u and by the continuity equation v as:

u = us(y) + 2β′(y)
√
xs − x+ ... and v =

β(y)√
xs − x

+ ...

They inject it in the momentum equation in which they neglect the viscosity:

u∂xu+ v∂yu = 0

but using incompressibility, u∂xu+ v∂yu = u2(∂y(
v
u)). Hence

∂y(
v

u
) = 0

which means that v/u does not depend on y. The function β is just proportional to u. They then deduce
an hint for the profile near separation as :

u = us(y) +
∂us
∂y

A(x) v = −∂A
∂x

us A(x) = a
√
xs − x.

unfortunately this description does not fit the good boundary conditions at the wall....

It is striking that the exercise in the Landau is exactly the one which allows to obtain the triple deck
scaling.... see after.

5.5.2 Goldstein singularity 1948

The real serious attempt came from Goldstein, we present here an over simplified analysis of his paper. He
wanted to look at the region of separation near the point where velocity may be written as

u = Σr>1ary
r

We put this development in the boundary layer equations (after manipulating the equations: derivating
twice the boundary layer momentum equation in y = 0), we obtain:

u = τpy +
1

2
(
dp

dx
)y2 + (no terms in y3) + a4y

4 + ...
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if we define τp = ∂u/∂y|y=0 and if we note that a3 = 0. Then after manipulation we can show that

∂4u

∂y4
|y=0 = 4!a4 =

1

2

∂

∂x
τ2
p .

* if a4 is zero it is a special case (regular separation / marginal separation), but this case is not general.
* if a4 is not zero:

τp =
√

48a4(xs − x)).

so that v = −1
2
∂
∂xτ

2
p behaves like 1/

√
xs − x. The paradox comes from the fact that a4 > 0 before separation.

But it would be negative after, so it is impossible. We can not go through the separation point, the stream
lines have a vertical tangent. In fact Goldstein 48 analysis is far more complicated, it leads to developments
in y/(xs − x)1/4, but the conclusion remains the same.
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6 Unsteady boundary layer

6.1 Unsteady boundary layer flow over a semi infinite flat plate impulsively started

Reintroducing the time in the boundary layer equation seems a simple task, the convective time scale
reintroduces ∂/∂t. We show a first example which is simple (Stewartson 51 et 73, Smith 70 & 72 et Hall
69). At time t = 0 a semi infinite flat plate is impulsively put in motion. We are in the framework of the
plate, so that the Ideal Fluid response is instantaneously ue = 1 (the plate slips in the ideal fluid). One has
only to introduce the time derivative in the boundary layer equations :

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂2u

∂y2
,

u(x, 0, t) = v(x, 0, t) = 0,

u(x, y > 0, t = 0) = 1

v(x, y > 0, t = 0) = 0

and u(x,∞, t > 0) = 1.

(21)

At a fixed position x we observe for short times the Rayleigh flow (or Stokes first problem, in fact as noted
in Schlichting, this is the Stokes problem):

∂tu = ∂2
yu; u(y > 0, t = 0) = 1, u(0, t) = 0, u(y →∞, t) = 1

The solution is with the terror function (self similar solution...)

u(x, y, t) = erf(
y

2
√
t
)

we can compute the displacement thikness, the momentum thickness, the shape factor and the shear at the
wall

δ1 =
2t1/2√
π
, δ2 =

2(
√

2− 1)t1/2√
π

, H = 1 +
√

2,
∂u

∂y
|0 =

1√
πt
.

And we guess that for a long time, at a given x, the flow will finally be steady, ∂u/∂t = 0, we will recover
the Blasius flow. The good variable is τ = t/x. Depending if it is small or large, we go from Rayleigh to
Blasius. Transition occurs for τ = 1, this time correspond to the time necessary so that information which
travels at velocity 1 arrives at the considered point.

The solution is numerically computed on figure 34, we use simple finite difference technique.
For 1.5 < τ < 4, the difference between the two régimes is noticeable. We see it on the figure 34 (first

obtained by Hall 69 with a specific method using similarity variables and valid for τ ≥ 1), we plot on this

figure ∂u(x,y=0,t)
∂y

√
x so that

τ >> 1 τw = .332/
√
x, δ1 = 1.732

√
x; and for τ ≤ 1 τw = 1/

√
πt, δ1 = 2

√
1t

π
.

On the next figure we plot 2
√

1
π − δ1

√
1
t , which is 0 for Rayleigh solution (τ ≤ 1 ) and which is function of

τ in the Blasius case (2
√

1
π − 1.732

√
1
τ , expression valid for τ >> 1.

The analytic study of the problem of the transition between the two régimes is difficult. Stewartson had
to do two papers (51 & 73) to solve it. The difficulty comes because there is an ”essential singularity” in
the developments around τ = 1, it means that all the terms of the Taylor expansion are zero (just like e−x

2
,

this function has no Taylor expansion in x = 0).
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Figure 34: Unsteady numerical solution in finite differences of the unsteady boundary layer equation. We observe

the transition from Rayleigh infinite flat plate impulsive solution to the Blasius steady solution. Left, shear times
√
x

at the wall, from Rayleigh, at small τ , to the constant Blasius value. Right, plot of 2
√

1
π − δ1

√
1
t , (points) compared

to the Balsius value 2
√

1
π − 1.732

√
1
τ , line, as a function of τ

6.2 Unsteady boundary layer flow over a semi infinite flat plate impulsively started,
integral point of view

The unsteady system may be written in integral form (∂xu = −∂yv),

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂u

∂t
+
∂u2

∂x
+
∂vu

∂y
=

∂u

∂t
+
∂(u2 − u)

∂x
+
∂u

∂x
+
∂vu

∂y
=

∂u

∂t
+
∂(u2 − u)

∂x
+
∂(v(u− 1))

∂y
= −∂

2u

∂y2
,

were we have defined the displacement thickness, the momentum thickness and the shape factor

δ1 =

∫ ∞
0

(1− u)dy, δ2 =

∫ ∞
0

u(1− u)dy and H =
δ1

δ2
,

and defining a function f2 linked to the skin friction as: ∂u
∂y = f2

H
δ1

. Then by integration, and by boundary
condition in 0 and ∞

∂

∂t
δ1 +

∂

∂x

δ1

H
=
f2H

δ1

We see a convection equation ∂tδ1 +H−1∂xδ1, of velocity 1/H. This velocity is the velocity of propagation
of the information of the existence of the leading edge of the semi infinite flat plate.

For small time, at a given position x from the nose, we are in the Rayleigh-Stokes problem: there is up
to now no information that the plate is not infinite ∂x is zero, we have only

∂

∂t
δ1 =

f2H

δ1

which gives the square root behavior of δ1 in time

δ1 =
√

2f2H
√
t

using the closure, this gives f2 = 0.22, H = 2.59 andδ1 = 1.06
√
t (Stokes value 1.12)
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For long time, at a given position x from the nose, we are in the Blasius problem: there is no more the
unsteady ∂t term, we have only

∂

∂x

δ1

H
=
f2H

δ1

which gives the square root behavior of δ1 in space

δ1 =
√

2f2H
√
x

using the closure, this gives f2 = 0.22, H = 2.59 and δ1 = 1.7
√
x (Blasius value 1.732)

Of course, we see that if τ = t/x, then we go for small τ from δ1 =
√

2f2H
√
t to δ1 =

√
2f2H

√
x at large

τ . The propagation of the information of the existence of the leading edge of the plate is at velocity 1/H.
As H ' 2.6, we obtain the same estimate than previously on τ when solving the full problem.

Figure (moovie): Boundary layer formation on an impulsively started semi infinite flat plate, the given
external velocity is 1, solution obtained from equation ∂

∂tδ1 + ∂
∂x

δ1
H = f2H

δ1
at small times the displacement

thickness increases with
√
t at large time it increases in

√
x t from 0.1 to 2.5. [click to launch the movie,

QuickTime Adobe/ Reader required].

Figure 35: (moovie): Boundary layer formation on an impulsively started semi infinite flat plate, the given external

velocity is 1, solution obtained from Gerris [click to launch the movie, QuickTime Adobe/ Reader required]..

6.3 Unsteady boundary layer flow over a cylinder impulsively started

An other fundamental example is the case of the flow round a impulsively started cylinder. We may expect
no problem, as before. But here a terrible problem of singularity will appear. The equations are the same
than previously, with a different matching, the velocity at time 0 is the Euler steady irrotational potential
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X

simulation for t>0.7
Blasius

velocity at infinity

y/sqrt x

simulation for t=4, x>2
velocity at infinity

Erf exact

X

Figure 36: Navier Stokes computation by Gerris atRe = 1000, left we have the selfsimilar Blasius profile (superposition

of several profiles plotted with ȳ(Re/x̄)1/2). Right the erf solution.

flow. Velocity at the wall is sin(x) is x is the distance along the cylinder, so x = 0 is the leading edge and
x = π is the trailing edge. 

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+
∂2u

∂y2
,

u(x, 0, t) = v(x, 0, t) = 0,

u(x, y > 0, t = 0) = ue(x)

v(x, y > 0, t = 0) = 0

and u(x,∞, t > 0) = ue(x), with ue(x) = sin(x).

(22)

This case is catastrophic.

Figure 37: Unsteady separation on a cylinder ūe = sin(x̄)

Since Van Dommeln [25], it is known that an outer decelerated flow creates a nice separation bulb
(which was not present in the steady case). But very soon there is a finite time singularity at time t ' 3.
On figure 39 we see the development of the separation zone (left) and the singularity of the boundary layer
displacement thickness (right). It has been shown by Smith that the time singularity behaves as

δ1 ' (ts − t)−1/4, ts ' 3.

Separation occurs for an angle of 115 degrees (angle of Goldstein). Notice that all the part computed before
x = 2.01 is exactly the same than in the steady case. (see figure 31).
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Figure 38: Unsteady separation on a cylinder ūe = sin(x̄) at times t = 1, 1.5, 2 2.5 et 2.8 computed with finite

differences. Left skin friction evolution, the separation occurs at time t = 0.65, it creates no Goldstein singularity.

Nevertheless, for t ' 3, there is a time singularity. This time singularity is characterized by a pinching in the

displacement thickness plotted on the right part for several time steps.

Figure- Boundary layer séparation on a cylinder, fields along θ [click to launch the movie, QuickTime
Adobe/ Reader required].

- II . 53-



Boundary Layer

7 Separation on a cylinder, Kirchhoff

7.1 Separation on a cylinder: free streamline

The boundary layer separation on a cylinder with external velocity ūe = sin(x̄) gives a separation point at
angle 1.9rad=108 degrees. In this point of view the external flow has been solved using the potential flow
theory, and the sketch of the flow is on figure 39 (a) (from Stewartson).

The boundary layer is so thin that we do not see it, the boundary layer is singular at separation.

There is another point of view for separation on a cylinder using the inviscid theory of Kirchhoff. To
model the separation in inviscid flow, we say that the separation bubble is infinite, it is a wake, it is at
zero velocity and at constant pressure in the wake. This hypothesis has been proposed by Kirchhoff and by
Rayleigh, this is based on the free-streamline theory of Helmholtz. There are contribution from Levi Cevita,
Brillouin, Villat... the sketch of the flow is on figure 39 (b) (from Stewartson).

The classical resolution is :

find ψ so that
−→
∇2ψ = 0, with ψ = 0 on the symmetry line and ψ = 0 on the body.

This is solved with complex variables, F (z) = φ + iψ, and z = x + iy, the conjugate of the velocity
u− iv = dF/dz, let us define q the modulus and θ the angle of the velocity. If one defines Ω = ln(dz/dF ),
(some times people use i ln(dz/dF ) see just after Imai analysis) as dF/dz = qe−iθ, then Ω = − ln(q) + iθ.
This Ω = L+ iθ is an analytic function of z, then of F , if we write L = − ln(q) we have always a laplacian

∂2

∂L2
ψ +

∂2

∂θ2
ψ = 0

in the Ω representation, the rigid walls are θ constant, and the free boundaries are L constant, on both ψ
is constant as it is a stream line. The Kirchhoff-Helmoltz resolution is :

Figure 39: Steady separation on a cylinder, upper Euler attached flow/ or external flow Lower half, the free stream

line theory with a infinite wake, the angle of separation is ' 55o, from Stewartson ”d’Alembert Paradox”, SIAM 81.
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find ψ so that
−→
∇2ψ = 0, with ψ = 0 on the symmetry line and ψ = 0 on the body, find the pressure so that

it is constant in the wake.

7.1.1 Separation on a cylinder, numerical resolution

As just said, the Kirchhoff-Helmoltz problem is :

find ψ so that
−→
∇2ψ = 0, with ψ = 0 on the symmetry line and ψ = 0 on the body, find the pressure so that

it is constant in the wake.
This can be done with FreeFem++, it is a bit difficult as the wake must be adjusted to obtain the good

value for pressure. In fact, we define the circle up to the fixed point of separation xs. The part of the
boundary which is after this position will change during the iterations. We move the mesh for x > xs
depending on the value of the velocity on this boundary (see code in Annex 5).
Depending on the value of the pressure in the wake, there is a position of the point of separation. Or
depending of the chosen point of separation, one has a pressure in the wake.

7.1.2 Separation on a cylinder, Imai analysis

Looking at the position where there is separation Imai 1953 introduced the classical complex potential F (z),
with u− iv = F ′, he defines U velocity in the free streamline so that

ln(dF (z)/dz/U) = ln(q/U)e−iθ

then he writes i ln(dF (z)/dz) = i ln(q)+θ. The function i ln(F ′) may be expressed as an expansion kzm+ ...
near z = 0 so in the streamline, r > 0, q = U are such that i ln(F ′) = 0. So that θ = krm, hence k is real.
Before the separation, on the wall, z = reiπ then i ln q+θ = krmeimπ taking the derivative along the surface

with ds = −dr so
dθ

ds
+ i

dq

qds
= −kmrm−1eimπ the real part

dθ

ds
= −kmrm−1 cos(mπ) hence m = 1/2 or

m ≥ 1 and
dθ

ds
+ i

dq

qds
= −k

2
ir−1/2 so that we have i ln(dF (z)/dz) = kz1/2

So finally, the results from Imai are the two behaviors:

• dq

qds
= −k

2
(−s)−1/2 and

dθ

ds
finite for s < 0

• q = Uand
dθ

ds
=
k

2
(s)−1/2 for s > 0.

k>0 => gradient de pression augmente fortement avant xs, et donc la séparation à lieu avant le
point en question!

k<0 => les lignes de courant rentrent dans l'obstacle.

d'où la condition de Brillouin- Villat k=0. mais il n'y a alors aucune raison qu'il y ait séparation!
La Triple Cpuche montre que k->0 en 0.44 R-1/16!!!!
Si on intègre les ECL en marchant, on trouve la séparation vers ~1.9/!~109°
Dans le cas du schéma de Kirchoff la séparation se produit avant ce point.

sillage de Kirchoff

séparation classique
109

?

0

Tentons effectivement la résolution de l'écoulement autour d'un cylindre. On se donne ue=sin(x)
(c'est la solution d'Euler à la paroi...), et on résout avec les méthodes intégrales (trait) et une
méthode de différences finies (points):

évolution de "1

17 mai 2006  "3DEA2.separ" -5-

Figure 40: Steady separation on a cylinder, upper half, the Kirchhoff point of view (separation will maybe be around

' 55o). In the inviscid theory one may construct a region of constant pressure (the separated wake). A stream line

which is tangent to the body. Lower half, the boundary layer point of view, the angle of separation is ' 108o, the

separated bubble is a finite extent. The external ideal fluid is ”attached” and as no wake
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Figure 41: Steady separation on a cylinder Kirchhoff-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(π−α). Left, if the separation point is before α = 55o (25, 30, 35, 40 45, 50 and 55) the curvature of the streamline

is negative (which is unphysical). Right, if the separation point is after 55o (55, 60, 65, 70, ..., 100, 105,110) the

curvature of the free streamlines has an angle with the body. For an angle of about 55o the stream line is tangent to

the circle.
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Figure 42: Steady separation on a cylinder Kirchhoff-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(π− α). Pressure along y = 0 and along the circle, pressure is taken to 0 in the wake. Left, if the separation point

is before α = 55o (25, 30 35 40 45,50 and 55) the pressure decreases from the stagnation point to the chosen xs, with

a square root behavior. For α = 55o, the pressure is tangent. Right, if the separation point is after 55o (55, 60, 65,

70, 80, 90 100,) ) the pressure decreases and re increases. This final counter pressure should move xs
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Figure 43: Steady separation on a cylinder with FreeFem++, the separation point is imposed to the value 55o,

Kirchhoff-Helmoltz wake of pressure constant.
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Figure 44: Steady separation on a cylinder with FreeFem++, the separation point is imposed to the value 55o,

Kirchhoff-Helmoltz wake of pressure constant. Iso
√
u2 + v2 are ploted here
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7.1.3 Separation on a cylinder, Sychev analysis

x=O p ~.~( K L OII= 0 

[ tf~Ob 0 
a 

d~x ~ -~-K (--  x)-V~ --  O(k2), 

becomes infinite as - x  --~ 0 if k ~ 0. 

The curvature  of the f ree  s t reamline 

de i kx-v2 ~ 0 ( i ) ,  (x ~ 0) Fig. 1 • ~ - -  
dx 2 

(x -~ 0) (1,2) 

(1.3) 

in the general  case also becomes infinite as x --*0. The case involving flow with k < 0 is physical ly impos-  
sible since then the free s t reamline in tersects  the surface of the body (Fig. 1). The case k > 0 is usually 
discarded based on the fact that an infinitely large positive p re s su re  gradient at the point x=0 would lead to 
a much ear l ie r  separat ion of the flow. The case k=0 cor responds  to the known Br i l lou in-Vi l la t  condition 
according to which a positive p res su re  gradient along the zero  s t reamline is lacking and the phenomenon of 
separat ion is not physical ly justifiable. This then enables us to make  the following assumption: in real  flows 
of a liquid with large Reynolds numbers  (R) the external nonviscous flow in some neighborhood of the point 
x =0 may be described by the relat ions (1.2) and (1.3) with the constant k > 0 depending on the number R and 
tending towards  zero  as R - * ~ .  In other words,  as R-* ~, the limiting flow state is the nonviscous flow 
satisfying the BriUouin-Vil la t  condition everywhere  with the exception of the singnlar point x =0, where the 
limiting t ransi t ion p roces s  is singnlar.  Therefore  we assume that 

k = e(B)k0, B ~-- UooLIv (1.4) 

Since under these assumptions the p r e s s u r e  increment  in a neighborhood of the where e (R) --- 0 for R --- ~ .  
separat ion point 

Ap N 8(--x)'/, (1.5.) 

is, in accord  with Eqs. (1.1), small,  then in the main par t  of the boundary layer  (where the longitudinal veloc-  
ity component u is of the order  of unity) velocity changes AU implied by this t e r m  are  small. However, 
close to the wall a region may be found in which 

u N ha  ~ ]/hp ' ~  e'i, (--x) '/, (1.6) 

Since the initial velocity profile u in the main par t  of the boundary layer  (corresponding to an ex te r -  
nal flow satisfying the Br i l lou in-Vi l la t  condition) is such that 

a ~ Y for x-~O, Y .~R' / ,y- -~O (1.7) 

then the thickness of the considered region of the sublayer  adjacent to the wall is 

a Y ~ a ~ s'~ (--x)'/, (1.8) 

This sublayer  must be viscous in order  to satisfy the no-sl ip  condition; i.e., we require  that 

0~ ap 02a (1.9) 
Ox Ox OY 2 

Substituting into the relat ions (1.9) the es t imates  (1.5)-(1.8) obtained for  u, Ap, and AY, we obtain 

Ax N e 6 (1.10) 

i.e., an est imate of the longitudinal dimension of the region in which the p rocess  of interaction of the bound- 
a ry  layer  with the external nonviscous flow has a determining influence. Then the p r e s s u r e  gradient in the 
region (1.10) becomes 

dp ~ e ( - - x )  -V' N e(AX)-V~ N e -z (1.11) 
dx 

This gradient of p r e s s u r e  is induced by the displacement action of the boundary layer,  and the lat ter  
is expressed in its principal  t e r m  by the change in thickness of the sublayer  (whose magnitude is on the 
order  of the charac te r i s t ic  thickness,  since here  u ~ Au). Therefore ,  on the basis  of relat ions (1.8) the 
total  change in the boundary layer  thickness in the region (1.10) is 

408 

1.3 Self-Induced Separation 11

Fig. 1.4 The form of the free streamlines for Kirchhoff flows with various posi-
tions of the separation point.

A detailed derivation of the relations that are the basis for the for-
mulas (1.3.1), (1.3.2) can be found in the book by Birkhoff and Zaran-
tonello (1957) or in the work of Imai (1953) and of Ackerberg (1970).

It should be noted that for k < 0 the flow is physically impossible:
in this case the free streamline intersects the body surface (Figure 1.4),
since its curvature according to (1.3.1) acquires an infinitely large pos-
itive value. The case k > 0 is usually rejected on the basis that the
corresponding infinitely large positive pressure gradient (1.3.2) would
lead to earlier separation of the flow as it approaches the point x = 0.
Therefore the requirement k = 0, which is referred to as the condition
of "smooth separation" of Brillouin (1911) and Villat (1914),5 is usually
used as the condition defining a unique solution of the problem. But
in this case the positive pressure gradient along the surface of the body
is totally absent, and the appearance of separation cannot be explained
from a physical standpoint.

The way out of this paradox was indicated for the first time in the work
of Sychev (1972). The main idea of this work consists in the fact that
the constant k is taken to be positive and depends upon the Reynolds
number such that

fc(Re) -> 0 as Re -> oo. (1.3.3)

This assumption implies that the limiting flow state as Re —» oo will
be an inviscid flow satisfying the Brillouin-Villat condition. However,
such a limit process is singular: at any arbitrarily high Reynolds num-
ber there will be a vanishingly small vicinity of the point \x\ = 0 with a

For example, for a circular cylinder the separation point, according to this
condition, is located at 0 — 55°, where 6 is the polar angle measured from
the forward stagnation point (Brodetsky, 1923).

Figure 45: Steady separation on a cylinder, Brillouin Villat condition the curvature of the free streamlines is tangent

to the body at the ”separation point”. Left from original 1972 Sychev’s paper. Center from Vladimir V. Sychev,

Anatoly I. Ruban, Victor V. Sychev, Georgi L. Korolev ”Asymptotic Theory of Separated Flows”. Left, from the

initial edition Sychev Sychev, which is more clear.

In the freestreamline framework of 2D steady ideal fluids, we showed that the pressure on the body in
a neighborhood of the separation point is (changing Imai notations, xs − x = −s, ududx = − dp

dx ) so that
pressure gradient and pressure are:

dp

dx
=

k

2
√
xs − x

+ .... before separation, and after p = p0.

p = p0 − k
√
xs − x+ .... before separation, and after p = p0.

whereas the curvature (
dθ

ds
) of the free stream line is k

2
√
x−xs

, where xs is the point of separation. The

streamline shape is ys(x) =
3k

2
(x− xs)3/2 (Smith uses −k in his 1977 paper).

It was noticed that this solution presents it self a paradox:
• If k < 0, pressure decreases to 0 (see figure 42 left), but stream lines enter in the obstacle (see figure 41
left). This is impossible.
• If k > 0, stream lines live the obstacle with an angle (see figure 41 right). The pressure decreases and
increases just before xs. So that its gradient will create a boundary layer separation before xs, so before the
”separation point” it self.... This is impossible.
• The sole solution is k = 0, this is the Brillouin-Villat condition: the curvature of the free streamlines
is tangent to the body at the ”separation point”. This continuity of curvature was written by Brodetsky
1923 as well. But the flow is smooth, there is no counter pressure. So there is no separation. This is the
”Brillouin-Villat” paradox.

This is discussed in Sychev Book and in Stewartson (d’Alembert’s Paradox 1981). With complicated
analysis Brillouin 11 Villat 14, Birkhoff 57. See Ruban [19] p201. We will see latter that the good idea
comes from Sychev, a small positive counter pressure exists:

k(Re)→ 0 as Re→∞,

it is vanishingly small with the Reynolds number.

7.1.4 Separation on a cylinder, Landau analysis

In the early 60’s, Sychev had the idea that if a pressure gradient ∆p can cause separation, the scales he
proposed are exactly what is then used in the Triple Deck theory settled by Stewartson, Neiland and Messiter
in 1969.
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he considers that perturbations occurs near the wall in a layer of thickness δ3 in the boundary layer of
thickness δ. Near the wall, the velocity can be written

u ∼ δ3

δ

as very close to the wall the velocity is linear, with δ = Re−1/2 the boundary layer thickness and were δ3

represents the order of magnitude of the transverse position. Then pressure inertia balance (u∂xu ∼ ∂xp)
gives:

∆p ∼ u2.

This is the good order of magnitude to create a change in the sign of the longitudinal velocity. Then, the
inertial pressure balance is after substitution

∆p ∼ δ2
3

δ2

but the viscous inviscid equilibrium (u∂xu ∼ Re−1∂2
yu) gives at a new small scale say x3:

(
δ3

δ
)2 1

x3
= Re−1(

δ3

δ
)

1

δ2
3

gives δ3 = ∆x1/3Re−1, so that it gives the estimate between pressure and scale in x:

∆p ∼ x2/3
3 .

Visiting Sychev institute (TsAGI), Landau reproduced this in his book as an ”problem” end of §40 p 156 of
reference [14]. We then deduce that the pressure gradient near the separation on a cylinder is k/

√
∆x (due

to the square root behavior of the pressure). Hence the previous estimate

∆p ∼ k
√

∆x ∼ ∆x2/3

gives that
k ∼ ∆x1/6.

This is the first clue that the Brioullin Villat conditions holds: k is smaller and smaller as Re → ∞ as
∆x→ 0 forRe→∞

7.1.5 Separation on a cylinder, Sychev Triple Deck analysis

With a bit more estimates, we are close to the triple deck analysis that we will develop later, the displacement
of the stream lines is then Y/∆x, the curvature of the flow is then Y/∆x2 which is Re−1∆x−5/3 this is of
same order of magnitude as the pressure gradient (by the potential flow theory). So ∂p/∂x ∼ Re−1∆x−5/3

but ∆p ∼ ∆x2/3 hence ∆x−1/3 ∼ Re−1∆x−5/3 which gives

∆x ∼ Re−3/8 and k ∼ Re−1/16

This is part of the resolution of the ∂’Alembert paradox with the ingredients of the Triple Deck that we
will see more precisely in the next chapter. Before, we have to look at second order boundary layer theory.
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8 Second order boundary layer

8.1 Sequence.

We may think that the second order of the boundary layer may fix the problems. But in fact not!
Nevertheless, the scheme is as depicted on figure 46. The first order expansion of the ideal fluid creates a
first order expansion of boundary layer. This first expansion disturbes the ideal fluid and creates a second
order expansion. This perturbation creates a second order expansion in the boundary layer and so on.

Figure 46: Classical sequence, image taken from Van Dyke’s book.

8.2 Second Order

Let us look at the transverse velocity in the Boundary Layer, we up to now never match the transverse
velocity. The reason was that is is of order Re−1/2, which is negligible for the Ideal Fluid. We see that this
velocity induces in the Ideal Fluid a perturbation.

Starting from the incompressibility equation and adding and substracting the same derivative of the
velocity (in the spirit of Von Kármán integral equations):

∂ṽ

∂ỹ
= (−∂ũ

∂x
+
∂ūe
∂x̄

)− ∂ūe
∂x̄

,

we obtain, after integration up to an ỹ (x̄ and ỹ are independent variables) the velocity is:

ṽ(ỹ)− ṽ(0) = − ∂

∂x̄

∫ ỹ

0
(ũ− ūe)dỹ − ỹ

∂ūe
∂x̄

so, if ỹ is large enough and as ṽ(0) = 0 we obtain the behavior for large enough ỹ:

ṽ(ỹ) ' ∂

∂x̄
(ūeδ̃1)− ỹ ∂ūe

∂x̄

This velocity must be multiplied by Re−1/2; and ȳ = Re−1/2ỹ. Now, we write the velocity in the ideal fluid
as a Taylor expansion near the wall for small ȳ:

v̄ = v̄(x̄, 0) + ȳ
∂v̄

∂ȳ
+ ... = v̄(x̄, 0)− ȳ ∂ūe

∂x̄
+ ...

matching this velocity and the boundary layer velocity show that:

v̄(x̄, 0) = Re−1/2 ∂

∂x̄
(ūeδ̃1)
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So that the boundary layer disturbates the ideal fluid at order Re−1/2. It is called the ”blowing velocity”.
So the velocity in the ideal fluid (called transpiration boundary condition as well):

ū = ū1 +Re−1/2ū2, v̄ = v̄1 +Re−1/2v̄2 p̄ = p̄1 +Re−1/2p̄2....

with ū1(x, 0) = ūe(x).

Note that we have always slip boundary condition for u2.

8.3 Flat plane case

We substitute this in Euler equation and have to find what is the flow created by a flat plate with a given
blowing velocity which is in β

√
x̄/2 with β = 1.7.

∂ū2

∂ȳ
− ∂v̄2

∂x̄
= 0,

∂ū2

∂x̄
+
∂v̄2

∂ȳ
= 0.

(23)

We easily see that an irrotationnal solution in cylindrical variables r̄, θ like ψ̄ = −β
√
r̄ cos( θ2):

ū2 = − β

2
√
r̄

sin(
θ

2
), v̄2 =

β

2
√
r̄

cos(
θ

2
),

as a result we have a solution with ū2 = 0 at the wall allows to fit the boundary conditions, the two velocity
are plotted on figure 47. We observe that the ideal fluid longitudinal velocity is zero at the wall, so it has
no effect at the next order on the boundary layer. The Blasius solution is valid up to the order 2 for a flat
plate in an external constant flow!
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Figure 47: Second order velocity field ū2 and v̄2 induced by the blowing of the displacement thickness at x̄ = 1 for

ȳ increasing.

On figure 48 we plot the iso ψ̄ over a flat plate. On the middle figure, we plot the solution of the linear
system ∂2

x̄ψ̄ + ∂2
ȳ ψ̄ = 0 with naive boundary conditions x̄ < 0 and ȳ = 0 ψ̄ = ȳ (like an incoming constant

flow), x̄ > 0 and ȳ = 0 ψ̄ = −βx̄1/4. x̄ = 0, ψ̄ = ȳ on ȳ = ȳmax ψ̄ = ȳmax (as if there is no more perturbation

far from the plate) and on x̄ = x̄max, ∂ψ̄
∂x̄ = 0 (a Neuman condition).

So we clearly see that the influence of the blowing is not negligible (Re = 500) and that it as an influence
on the incoming profile. One should then be very careful to compute the Navier Stokes flow with a numerical
solver.

8.4 Curvature effects

Nevertheless it is not so simple in the other cases. We examine now the case of non flat plates. Starting
from Navier Stokes equations (see all the Van Dykes articles [26] [27]) written in curvilinear coordinates: s
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exact approached approachedexact

Figure 48: Inviscid first + second order iso ψ field induced by the blowing of the displacement thickness. Left the

exact solution rsin(θ)− βRe−1/2
√
rcos( θ2 ), center solution of Laplacian, right superposition of both.

measured along and n normal to the surface, with h = 1 + κ(s)n, where the curvature κ is positive on a
convex surface. 

∂u

∂s
+
∂(hv)

∂n
= 0,

u
∂u

∂s
+ v

∂(hu)

∂n
= −∂p

∂s
+ h

∂

∂n

(
h−1(

∂(hu)

∂n
)
)
,

−κu2 = −h∂p
∂n
.

(24)

Expanding in the boundary layer variables in powers of Reynolds number:

u = u1 +Re−1/2u2 + ...

gives at first order the classical equations the second order is then

∂u2

∂s
+
∂v2

∂n
= −κ∂(nv1)

∂n

u1
∂u2

∂s
+ v1

∂u2

∂n
+ u2

∂u1

∂s
+ v2

∂u1

∂n
= −∂p1

∂s
+

∂

∂n

∂u2

∂n
− κ[

∂

∂n
(n

∂

∂n
u1)− v1

∂

∂n
(nu1)],

−κu2
1 = −∂p2

∂n
.

(25)

so all the effect of curvature appear as a linear contribution to the non-curvature case. Again the pressure
is constant in y if there is no curvature effects.

In n = 0 u2 = v2 = 0, the matching at infinity is

u2(x,∞) = u2(x, 0)− κu1(x, 0)n

and for large n the matching in pressure requires

p2(x, n→∞) = p2(x, 0)− κu1(x, 0)2n.

8.5 Rotational effect

Ideal incompressible fluids are rarely rotational. Compressible fluids are mainly rotational due to shock
waves. Nevertheless we may imagine a rotational flow at first order u1 = 1 + ωy, v1 = 0 (first done by
Murray [16] before than a clear definition of second order equations had been settled by Van Dyke the next
year, see Brazier [3]).
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At first order, we have the standard boundary layer equations; again the velocity at infinity creates the
second order of Ideal Fluid, again the solution at order two is the solution on a parabolöıd ψ = −β

√
rcos( θ2).

Even u2 is always zero at the wall, now there is pressure gradient due to the vorticity:

−∂p2

∂x
= v2(x, 0)− ∂u1(x, 0)

∂y
=

β

2
√
x
ω.

In the boundary layer: 

∂u2

∂x
+
∂v2

∂y
= 0

u1
∂u2

∂x
+ v1

∂u2

∂y
+ u2

∂u1

∂x
+ v2

∂u1

∂y
= −∂p1

∂x
+

∂

∂y

∂u2

∂y
,

0 = −∂p2

∂n
.

(26)

in y = 0, u2 = v2 = 0 and then in ∞ u2 → u2(x, 0) + y ∂u1(x,0)
∂y = ωy so we search u2 as u2 = ω

√
xg′(η) after

substitution:
2g′′′ + fg”− f ′g′ + 2f ′′g = −β

After computation we find the correction to the skin friction which is

Cf
2

=
0.332√
xRe

+ 3.12
ω

Re

8.6 finite flat plate

We just remark that there is a far wake solution in exponential which describes the finite flat plate problem.
But the trailing edge problem is not simple, it requires a new development. Kuo in 1953 supposed that teh
displacement thickness remains constant at the trailing edge and presented a kind of second order problem
for x > L where v2 = 0 in y = 0 (instead of 1/

√
x). After difficult computations he obtained the global drag

coefficient:
CD
2

=
1.33√
Re

+ 4.12
1

Re

But the triple deck theory that we will see soon shows that there is an extra term which is larger than
the second order one.

8.7 The Lock-Ting Wake problem
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9 Annex 1: An example of NS computation on a flat plate

For sake of illustration we use FreeFem++ to compute the flow over a flat plate at Re = 500 (figure 49 left). If
we plot several velocity profiles with the self similar variable ȳ(Re/x̄)1/2 all the profiles are the same (figure
50 left for ȳ(Re/x̄)1/2 < 7). If we go further, for values of ȳ(Re/x̄)1/2 larger than 7; we see an overshoot of
velocity. This is a second order effect.

But this is a spurious effect do to the boundary conditions. In fact, to compute it, we imposed naive
boundary conditions. On the entrance: ū = 1, v̄ = 0. On the top ∂ȳū = ∂ȳv̄ = ∂ȳp̄ = 0. At the output p̄ = 0
and ∂x̄u = ∂x̄v̄ = 0.
The boundary condition at the top of the domain produces a kind of channel effect. To confirm this, we
compute the solution of the linear system of Ideal Fluid ∂2

x̄ψ̄ + ∂2
ȳ ψ̄ = 0 with naive boundary conditions

x̄ < 0 and ȳ = 0 ψ̄ = ȳ (like an incoming constant flow), x̄ > 0 and ȳ = β
√
x̄/Re ψ̄ = 0. x̄ = 0, ψ̄ = ȳ

on ȳ = ȳmax ψ̄ = ȳmax (as if there is no more perturbation far from the plate) and on x̄ = x̄max
∂ψ̄
∂x̄ = 0

(a Neuman condition). The streeam line are on figure 49 right and are similar to the Navier Stokes ones
on figure 49 left. The ideal fluid velocity is larger at the wall 1.7(Re)−1/2x̄1/2. This extremum is visible on
figure 50 right and correspond to the overshoot of the Navier Stokes solution of figure 50 middle.

So we clearly see that the influence of the blowing is not negligible (Re = 500) and that it as an influence
on the incoming profile. One should then be very careful to compute the Navier Stokes flow with a numerical
solver.

Figure 49: Left Navier Stokes solution by FreeFem++ at Re = 500, stream lines. Right, Ideal Fluid solution by

FreeFem++ over a body 1.7(Re)−1/2x̄1/2, stream lines are nearly the same and one see the displacement effect induced

by the boundary layer..

0

1

0 1 2 3 4 5 6 7

0

1

0 7 14 21 28 2 3 4

Figure 50: Navier Stokes computation by FreeFem++ at Re = 500, left we have the selsimilar Blasius profile

(superposition of several profils tracés plotted with ȳ(Re/x̄)1/2). Middle, the same profiles but up to a larger value of

ȳ(Re/x̄)1/2, we see the decrease of the velocity. Right Ideal Flow over a body in 1.7(Re)−1/2x̄/2, the velocity decreases

from the body to the top of the domain. This overshoot of velocity is a spurious second order effect of displacement

of the stream lines.
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10 Annex 2: Hypersonic Strong interaction

The strong interaction (p = M2θ2) and the x3/4 shock and boundary layer.
the Weak intearction (p = 1 +Mθ) (see Hayes en Probstein [12])

Figure 51: Weak and strong interaction

11 Annex 3: Von Kármán equation axi and plane

Let us look again Von Kármán equation, we write the total derivative:

u
∂u

∂r
+ w

∂u

∂z

in conservative form
1

rα
∂rαu2

∂r
+
∂uw

∂z
= [

u

rα
∂rαu

∂r
+ u

∂w

∂z
] + u

∂u

∂r
+ w

∂u

∂z

because (α = 1, 0 in axi or 2D)
1

rα
∂rαu

∂r
+
∂w

∂z
= 0

as
r−α∂r(r

αuue) = uer
−α∂r(r

αu) + u∂r(ue)

again using incompressiblilty and as ue does not depend on z, we have ue∂zw = ∂z(wue) so that

r−α∂r(r
αuue) = u∂r(ue)− ∂z(wue)

we substract the momentum equation

r−α∂r(r
αuue)−

1

rα
∂rαu2

∂r
+ (ue − u)∂r(ue) + ∂z(w(ue − u)) = −∂

2u

∂z2

allows to write the momentum equation as:

1

rα
∂rα(u(ue − u))

∂r
+ (ue − u)

∂

∂r
(ue) +

∂

∂z
(w(ue − u)) = −∂

2u

∂z2

remember the 2D expression:

∂

∂x̄
(ũūe − ũ2) + (ūe − ũ)

∂ūe
∂x̄
− ∂

∂ỹ
(ṽ(ũ− ūe)) = −∂

2ũ

∂ỹ2

Defining the displacement thickness, the momentum thickness and the shape factor

δ̃1 =

∫ ∞
0

(1− ũ

ūe
)dỹ, δ̃2 =

∫ ∞
0

ũ

ūe
(1− ũ

ūe
)dỹ and H =

δ̃1

δ̃2

,
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and defining a function f2 linked to the skin friction as: ∂ũ
∂ỹ = f2

Hūe
δ1

gives the following equation where the
ideal fluid promotes the boundary layer:

1

rα
∂rα(u2

eδ2)

∂r
+ δ1ue

∂

∂r
(ue) =

∂u

∂z
|0

or

u2
e

1

rα
∂rα(δ2)

∂r
+ δ2

∂u2
e

∂r
+ δ1ue

∂

∂r
(ue) =

∂u

∂z
|0

developing the derivative

u2
e

1

rα
∂

∂r
(rα

δ1

H
) + (1 +

2

H
)δ1ue

∂

∂r
ue =

∂u

∂z
|0

with α = 0 we have again:

d

dx̄
(
δ̃1

H
) +

δ̃1

ūe
(1 +

2

H
)
dūe
dx̄

=
f2H

δ̃1ūe
, i.e. δ̃1 = F (ūe), (27)

Initial condition is for example δ̃1(0) = 0 (but the Hiemenz value may be a good first guess) and ūe(0) = 1.
In the classical approach, δ̃1 is obtained through the knowledge of ūe, which we write formaly δ̃1 = F (ūe).

12 Annex 4 Pohlhausen closure for Hiemenz flow

We use the polynomial closure at order 4, so that

u(η)

ūe
= (2η − 2η3 + η4) +

1

6
Λ(η − 3η2 + 3η3 − η4)

with Λ = δ2dūe/dx̄ in the Hiemenz case ūe = x̄ then Λ = δ2, The Von Kármanán equation

d

dx̄
(ū2
e δ̃2) + δ̃1ūe

dūe
dx̄

=
u′(0)

δ̃
ūe,

reads

2δ̃2 + δ̃1 =
u′(0)

δ̃
,

which is an equation were δ1/δ = (36−Λ)/120 and δ2/δ = 37/315−Λ/945−(Λ2)/9072, and u′(0) = 2+Λ/6)
and remember that Λ = δ2, we then substitute in VK:

δ

(
3

10
− δ2

120

)
−

δ2

6 + 2

δ
+ 2δ

(
− δ4

9072
− δ2

945
+

37

315

)
= 0

we solve and find numericaly δ = 2.65562 this gives Λ = 7.05 and δ1 = 0.640617, and H = 2.30809 and

τ = u′(0)

δ̃
= 1.1957

The real Hiemenz flow f ′′′ + ff ′′ + (1 − f ′2) = 0 as solution f ′′(0) = 1.2325 (compare to 1.1957 for
Pohlhausen4), the displacement thickness is

∫
(1− f ′)dη = 0.6479 (compare to 0.640617 for Pohlhausen4).

Note that the axi Hiemenz flow f ′′′ + 2ff ′′ + (1 − f ′2) = 0 as solution f ′′(0) = 1.31194 (in 2D 1.2325),
the displacement thickness is

∫
(1− f ′)dη = 0.568902 (compare to 0.6479 in 2D).
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Figure 52: Pohlhausen (dashed) compared to Hiemenz (line)
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13 Annex 5 : Falkner Skan with Mathematica

(** Falkner Skan Equation **)

eqf = f’’’[y] + f[y] f’’[y] + b (1 - f’[y]*f’[y]);

fs[fpp_?NumberQ, beta_?NumberQ, etamx_?NumberQ] := Block[{fpinf, dinf},b = beta;

sol = NDSolve[{

(eqf ) == 0,

f[0] == 0, f’[0] == 0, f’’[0] == fpp }, {f }, {y, 0, etamx}];

fpinf = f’[etamx] /. sol[[1, 1]];

dinf = etamx - f[etamx] /. sol[[1, 1]];

(* Print[ "1=",fpinf," ",dinf]; *)

Return[{fpinf,dinf}]]

fs1[fpp_?NumberQ, beta_?NumberQ, etamx_?NumberQ] := Block[{fpinf, dinf},b = beta;

sol = NDSolve[{

(eqf ) == 0,

f[0] == 0, f’[0] == 0, f’’[0] == fpp }, {f }, {y, 0, etamx}];

fpinf = f’[etamx] /. sol[[1, 1]];

dinf = etamx - f[etamx] /. sol[[1, 1]];

(* Print[ "1=",fpinf," ",dinf]; *)

Return[{ fpinf}]]

FindRoot[fs1[xx, 0, 4] == {1}, {xx, .44, .48}, MaxIterations -> 20]

p1p21 = Plot[{Evaluate[f’[y] /. sol[[1, 1]]] , 2*(2*y/3 - (y/3)^2)/2}, {y,

0.01, 7}, PlotRange -> {{0, 7}, {-1, 1}}]

14 Annex 4: Navier Stokes

Navier Stokes computation with Gerris

#####################################################################

# Blasius par PYL, sauver dans "blasius.gfs"

# lancer avec

# gerris2D -DRe=1000. blasius.gfs | gfsview2D v.gfv

# 29/09/10

# valeur du Reynolds

#Define Re 100000.

# definition de 3 boites avec 2 connections

3 2 GfsSimulation GfsBox GfsGEdge{

# met le coin gauche decalle - > paque 2 est en 0,0

x = -0.5 y = 0.5 } {

SourceViscosity {} 1./Re

PhysicalParams { L = 2 }

# precision 2**(-4.) = 1/16=0.06 5-> 32 0.03 6 -> 0.015625 2**(-8.) = 0.00390625 pr 2**(-8.) *sqrt(1000) = 0.12

Refine 6

# temps initial 0
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Init {} { U = 1

V = 0 }

Init {istep = 1}{

dyU = dy("U"); }

AdaptVorticity { istep = 1 } { maxlevel = 8 minlevel = 4 cmax = 1e-2 }

# sortie tous les 20 pas de calculs du temps en cours

OutputTime { istep = 20 } stderr

# valeurs qui vont sortir pour entrer dans gfsview

# tous les 30 pas de calcul

OutputSimulation { istep = 30 } stdout

OutputLocation { step = 0.1 } vals.data cut.dat

OutputSimulation { step = 0.25 } SIM/sim-%g.txt { format = text }

EventScript { step = 0.25 } { cp SIM/sim-$GfsTime.txt sim.data}

OutputPPM { step= 0.05 } { ppm2mpeg > blastok.mpg } { min = 0 max = 1 v = Velocity }

# p[0:10][0:1.5]"< awk ’{if($1>.7){print $0}}’ sim.data" u ($2/sqrt($1/1000)):6,sin(pi*x/2/4.79)*1.05,1

# p[0:10][0:1.5]"< awk ’{if($1>.9){print $0}}’ sim.data" u ($2/sqrt($1/1000)):6,sin(pi*x/2/4.79)*1.0,1

# p[0:5][0:1.5]"< awk ’{if($1>0){print $0}}’ SIM/sim-3.txt" u ($2*sqrt(1000)):6,1,erf(x/2/sqrt(3))

#p[][:] "< awk ’{if($2<0.01){print $0}}’ sim.data" u ($1):($9),.33/sqrt(x/1000)

# arret lorsque la variation de U devient "petite"

EventStop { istep = 10 } U 1.e-4 DU}

#conditions aux limites

# first box free stream

GfsBox {

left = Boundary {

BcDirichlet U 1

BcDirichlet V 0 }

bottom = Boundary {

BcNeumann U 0

BcDirichlet V 0 }

top = Boundary {

BcNeumann U 0

BcNeumann V 0 }

}

GfsBox {

# en bas vitesse nulle

# second box the flat plate

bottom = Boundary {

BcDirichlet U 0

BcDirichlet V 0 }

top = Boundary {

BcNeumann U 0

BcNeumann V 0}

}

GfsBox {

# thrid box

bottom = Boundary {

# BcNeumann U 0

#the trailing edge

BcDirichlet U 0

# or the plate

BcDirichlet V 0 }
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top = Boundary {

BcNeumann U 0

BcNeumann V 0}

right = Boundary {

BcDirichlet P 0

BcNeumann U 0 }

}

1 2 right

2 3 right

######################################################################

15 Annex 5: Massive separation

Separation with FreeFem++

exec("echo \"Kirchhoff\"");

/* Lausanne fev 2013 */

/* OK 2018 */

verbosity=-1;

real s0=clock();

real t=0;

// solution de Kirchhof-Helmoltz

real h0=17; //hauteur domaine

real L1=15; //longueur gauche

real L2=20; //longueur droite

real hb=1; //hauteur free init

real R=1; // rayon

real ts,xs,ys,alpha; // freestream droite

real hm=0.01; //0.01

real hM=.25; //.5

int n=8; //nbre de points

int i=0;

real coef=1;

real U0=1.1,Uf=0,UfmU0=1;

real psi0=h0;

ofstream ff("U0.txt");

for (int ia=0;ia<27;ia++)

{

alpha=10+ia*5;

UfmU0=1;

coef=1;

i=0;

t=0;

hb=0;

ts= cos((180-alpha)/180.*pi);
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xs=R*ts;

ys=sqrt(R*R-xs*xs);

// definition des cotes Maillage

border bas1(t=-1,0) { x= t*(L1-2*R)-2*R; y = 0 ; label = 2; };

border bas2(t=-2,-1){ x= R*t; y = 0 ; label = 2; };

border bas3(t=-1,ts){ x= R*t; y = sqrt(R*R-x*x); label = 1; };

border bas4(t=ts,1) { x= R*t; y = ys; label = 799; };

border free(t=0,1) { x= t*(L2-R)+R; y = ys; label = 799; };

border droit(t=0,1) { x= L2; y = ys+(h0-ys)*t; };

border haut(t=1,0) { x= L2*(t) - (1-t)*L1; y = h0; label = 33;};

border gauch(t=1,0) { x= -L1; y = h0 * t ; };

border c1(t=0,1) { x= R; y = (R*1.5-ys)*t+ys; }

border c2(t=1,-2) { x= R*t; y = 1.5*R; }

border c3(t=1,0) { x= -2*R ; y = 1.5*R*t; }

mesh Zoom = buildmesh(bas2(30)+bas3(30)+bas4(30)+c1(30)+c2(30)+c3(30));

mesh Th= buildmesh(bas1(n*L1)+bas2(10)+bas3(100)+bas4(100)+free(L2*n)+droit(n*(h0-ys)/4)+haut(n*L1/4)+gauch(n*h0/4));

plot(Th,wait=0);

//espace EF

fespace Vh2(Th,P2);

Vh2 psi,psiT;

Vh2 phi,phiT;

Vh2 w,wT;

fespace Vh1(Th,P1);

Vh1 u,v,U;

fespace Vhz1(Zoom,P1);

Vhz1 Uz,wz;

// visu

real [int] visopsi=[ 0,0.5,1,1.5,2,2.5,3,4,6];

real [int] visophi=[-5,-3,-2, -1.5, -1, -0.5, 0,0.5,1,1.5,2,2.5,3,3.5,4,5,7];

real[int] viso(61);

for (int i=0;i<viso.n;i++) viso[i]=i*h0/60.;

/** problemes */

problem freeb(w,wT,solver=CG) =

int2d(Th)(

dx(w)*dx(wT)+dy(w)*dy(wT))

+ on (gauch,w=0)

+ on (33, w=0)

+ on (bas1,bas2,bas3, w=0)

+ int1d(Th,799)(-wT*(U0 - U));

problem Lappsi (psi,psiT) =

int2d(Th)(

(dx(psi)*dx(psiT) + dy(psi)*dy(psiT)) )

// + on(gauch,psi=y)
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+ on(2,psi=0)

+ on(1,psi=0)

+ on(799,psi=0)

+ on(33,psi=psi0) ;

//

problem Lapphi (phi,phiT) =

int2d(Th)(

(dx(phi)*dx(phiT) + dy(phi)*dy(phiT)) )

+ on(gauch,phi=-L1)

+ on(droit,phi=L2); ;

while((abs((UfmU0))>.00001))

{

if (i>1666) break ;

i++;

Lappsi;

u= dy(psi);

v=-dx(psi);

U=sqrt(u*u+v*v);

Uz=U;

plot(Uz,fill=1);

if(i%50==1) plot(Th,cmm="psi=",psi, viso=viso,fill=0,wait=0);

freeb;

// xs=R*ts-2*hm;

// xs=R*ts;

// ys=sqrt(R*R-xs*xs);

// dernier point

real xm=-10000,ym=0;

for (int i=0;i<Th.nt;i++)

{ for (int j=0; j <3; j++){

if(Th[i][j].label==1){

if( Th[i][j].x >=xm)

{ xm = Th[i][j].x;

ym = Th[i][j].y;}

}

}

}

xs=xm;

ys=ym;

Uf=U(xs,ys);

UfmU0=Uf-U0;

if((i>1) ) { U0=U0+.005*(UfmU0);} // relaxation

if(i%15==1)
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{

ofstream ff2("free.txt");

for (int i=0;i<Th.nt;i++)

{ for (int j=0; j <3; j++){

if((Th[i][j].label==799)||(Th[i][j].label==1)||(Th[i][j].label==2)){

ff2<<Th[i][j].x << " "<< Th[i][j].y << " "<< U[][Vh1(i,j)] << " " << U0 << endl;

}

}

}

}

//

cout <<" "<< t <<" w max="<< abs(w[].max)+abs(w[].min)<<" +++++++++++++++++ +++++++ +++ U0= "<< U0 <<" "<< alpha << endl;

real minT0= checkmovemesh(Th,[x,y]); // the min triangle area

while(1) // find a correct move mesh

{

real minT=checkmovemesh(Th,[x,y+coef*w]); // the min triangle area

if (minT > minT0/5) break ;

coef=coef/1.5;

// if big enough

}

Th=movemesh(Th,[x ,y+coef*w]);

wz=w;

Zoom=movemesh(Zoom,[x ,y+coef*wz]);

if((i%15==1)&&(i<100))Th = adaptmesh(Th,dx(u),dx(v),w,hmax=hM,hmin=hm,iso=true,ratio=1);

if((i%15==1)&&(i<100))Zoom = adaptmesh(Zoom,dx(Uz),wz,hmax=hM,hmin=hm,iso=true,ratio=1);

if(i%10==6) plot(Th, U,fill=1,wait=0);

t=t+coef;

coef=.1;

}

Lappsi;

Lapphi;

cout << " " << t << " w max=" << abs(w[].max)+abs(w[].min) << " aa== " << alpha << " +++ U0= "<< U0 << endl;

plot(Uz,fill=1,ps="uz.eps");

plot(phi,psi,U,fill=0,wait=0);

ff << alpha << " " << U0 << endl;

exec(" sort -n -k 1 free.txt > tfree"+alpha+".txt");

exec(" cp uz.eps uz"+alpha+".eps");

}

cout << "CPU " << clock()-s0 << "s " << endl;

exec(" gnuplot kirchoff.gnu");
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16 Annex 6 : Speed of sound

Acoustics corresponds to perturbation of steady state, there is no free stream velocity U0, but there may
be a characteristic velocity constructed with p0 and ρ0 which is U0 =

√
(p0/ρ0) say that ε

√
(p0/ρ0) is the

velocity of the sound source of pulsation ω so that the scale of length will be L = U0/ω, then

u = U0(εu1 + ...), u = U0(εv̄1 + ...), p = p0(1 + εp1 + ...)

and t = t̄/ω and x = Lx̄.... the first order equations of perturbation are:

∂ρ̄1

∂t̄
+
∂ū1

∂x̄
+
∂v̄1

∂ȳ
= 0,

∂ū1

∂t̄
= −∂p̄1

∂x̄
,

∂v̄1

∂t̄
= −∂p̄1

∂ȳ
.

(28)

Eliminating the velocity gives :
∂2ρ̄1

∂t̄2
− ∂2p̄1

∂x̄2
− ∂2p̄1

∂ȳ2
= 0.

We need a final relation, the one coming from entropy or from any equation of state like p = P (ρ), the
isentropic cas gives p/p0 = (ρ/ρ0)γ so that p̄1 = γρ̄1 and

(
∂2p̄1

∂x̄2
+
∂2p̄1

∂ȳ2
)− 1

γ

∂2p̄1

∂t̄2
= 0.

This is the ∂’Alembert equation with wave velocity γ. Coming back to dimensions

(
∂2p1

∂x2
+
∂2p1

∂y2
)− 1

c2
0

∂2p1

∂t2
= 0,

with c2
0 = γp0/ρ0 the speed of sound. This is the usual equation for linear acoustics.

Note that if p = P (ρ) (any given relation) then c2
0 = dP (ρ)

dρ .
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