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Abstract

This first chapter introduces on the heat entry problem in a channel
flow the techniques that will be used thereafter for the flow near the
wall in the ”Lower Deck”. Some asymptotic principles are presented on
the so called Lévêque and Graetz heat problems. Next the same ideas
are presented for the flow: first, the Couette flow with a small accident
(a bump) is presented following the previous analysis. Second, the flow
in a channel (or a in a pipe) with a small accident is presented. There
are two ”Lower Deck” layers (at the top and the bottom wall) which
interact through the ”Main Deck” consisting in the basic Poiseuille
flow. The different scales arising are presented, some numerical exper-
iments show the skin friction and pressure distributions. The upstream
influence is then discussed.

Part I

Heat Flow in a Channel

1 Introduction the Lévêque/ Graetz problem

1.1 Introducing the problem of asymptotic expansions

The problem that we will tackle is depending of a small parameter (in fact
the inverse of a large parameter). Even though now a lot of problems may
be solved numerically, it is interesting to observe which terms are important
in the equations. That is the aim of the method of Matched Asymptotic
Expansion. It is a tool to analyze and understand the flow structure. One of
the basic text book is Van Dyke one’s [35], he introduced there the technique
and the notations. A less centered of hydrodynamics text book is the Hinch
one’s [14]. It presents a large panel of the techniques on model equations.
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channel flow

More recently, Cousteix & Mauss [6] present a global survey of asymptotic
techniques and compare them.

We will here use those theories to explain with very few mathematical
details the ideas of the Triple Deck and Interactive Boundary Layer Theories.
To start we introduce a very classical example which in fact contains most
of the features.

1.2 Unit Step response of temperature in a Poiseuille steady
flow

As an introduction let us consider the steady laminar incompressible flow
between two parallel plates (in y = 0 and y = h). The flow solution is clearly
the Poiseuille one:

u = U0(y/h)(1− y/h), v = 0. (1)

Let say that for x < 0 the temperature at the wall is T0 and after T = Tw
(see figure 1 and 2 left for a sketch). We wish to compute the steady tem-
perature profile with asymptotic analysis bearing in mind that convective
effects are stronger than diffusive ones in this chosen case.

The first step is to adimensionalize the equations, this step is not so
trivial. A first good guess is to use the channel height as scale x = hx̄ and
y = hȳ. For the temperature, let write T = T0 + (Tw − T0)T̄ (other choices
are possible, this one is more simple to solve). The steady heat equation
(for constant conductivity k, density ρ and specific heat capacity cp and
neglecting dissipation by viscosity) will be called H(1/Pe) it reads:

H(1/Pe) ȳ(1− ȳ)∂T̄
∂x̄

=
1
Pe

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
) (2)

Figure 1: The Poiseuille flow in a pipe at temperature T0 in x < 0 is expe-
riencing a temperature discontinuity in x > 0 to Tw. Iso temperatures are
presented. This example contains several distinct scales near the disconti-
nuity, near the walls, etc.
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Figure 2: Left, the flow at temperature T0 in x < 0 and experiencing a
temperature discontinuity in x > 0 to Tw. Right, the numerically com-
puted temperature profile T̄ (x̄, ȳ) in the lower half of the flow, arrow in the
direction of increasing x.

where Pe = U0h
k/(ρcp) is the Péclet number (ratio of convective effects by

diffusive effects). This number is not small. This is an elliptic equation and
to solve it one has to impose boundary conditions. Those are:

T̄ (x̄→ −∞, ȳ) = 0 and T̄ (x̄, ȳ = ±1) = 0 and T̄ (x̄→∞, ȳ) = 1.

The problem may be solved numerically (here with FreeFem++ [12]). On
figure 2 right the numerically computed temperature profile T̄ (x̄, ȳ) is drawn
near the lower wall for various values of x̄. The more x̄ increases, the more
the flow is heated as it is indicated by the arrow in the direction of increasing
x̄. On figure 3 the iso temperature are plotted for several values of Pe
showing that for increasing Pe there is a thin layer near the wall where the
temperature increases abruptly.

In the sequel, the Péclet number Pe is assumed to be large.

1.3 the Lévêque (1928) problem

1.3.1 Singular problems

The PDE (2) as an heat equation problem is well posed and we guess that
the solution is smooth enough except in the vicinity of x̄ = 0. For any fixed
Pe even large, the solution is certainly continuous at fixed x̄ when ȳ goes to
0+ or 1−.

The inverse of the Péclet (1/Pe) is assumed to be small, so the first
problem consists to put (1/Pe) = 0 in the PDE (2). Let us call θ̄ the
solution of this problem (H0) which reads:

H0 ȳ(1− ȳ)∂θ̄
∂x̄

= 0,

which solution is θ̄ = 0 for 0 < ȳ < 1. This is called the outer solution.
The temperature is discontinuous at the wall where we should have θ(x̄ >
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Figure 2: Left, the numerical solution written with the selfsimilar variable η = ŷ/x̂1/3

compared to the selfsimilar solution labelled Γ and the slope at origin: 1 + g′(0)η. Right
the numerical solution of the mid channel value T̄ (x̄, 1/2) for several values of Pe with
x̄/Pe in abscissa, the curves collapse on the Graetz solution.

1.4.2 Fourier solution

One other useful tool is the Fourier transform that we will use extensively in numerical
studies. One may try to find solutions of problem (4) in term of Fourier series, looking for
solutions in e−ikx:

(−ik)ỹTF [θ̃] =
∂2TF [θ̃]

∂ỹ2
,

so that we see that TF [θ̃] is solution of the Airy equation (Ai′′(ξ) − ξAi(ξ) = 0 with
Ai(+∞) = 0, ξ = y(−ik)1/3 and Ai(0) = 1

32/3Γ( 2
3)

and Ai′(0) = − 1
3√3Γ( 1

3)
see Abramowitz

& Stegun p 446 [1] for details). Then, as the unit step function has i
k
√

2π
+ δ(k)

√
π
2 as

Fourier transform, we can evaluate:

TF [θ̃] = (
i

k
√

2π
+ δ(k)

√
π

2
)
Ai(y(−ik)1/3)

Ai(0)

and we then obtain the flux at the wall as: TF [θ̃′0] = (−ik)1/3( i
k
√

2π
+ δ(k)

√
π
2 )Ai′(0)

Ai(0) going
back in Real space, we reobtain the selfsimilar result:

θ̃′0 = −
3
√

3
Γ

(
1
3

)((x))−1/3 if x > 0, else θ̃′0 = 0

Remark All those Fourier transform are not so trivial to compute, and there is some
magick that Mathematica handles well. To be convinced, we have to evaluate

ϕ(x) =
∫

kne−ikxdk here, we have n = −2/3

5

Figure 3: Left, iso temperatures of the numerical solution for various values
of Pe. Right the numerical solution of the mid channel value T̄ (x̄, 1/2) for
several values of Pe with x̄ in abscissa.

0, ȳ = 0, 1) = 0. The highest derivative has disappeared, we can not fix
the boundary conditions. The problem is said to be singular, the solution
of the problem where (1/Pe) is put to 0, is not the limit when (1/Pe)
becomes infinitely small to the full solution of the problem. The two limits
are different:

lim
(1/Pe)→0

(
Sol[H(1/Pe)]

)
6= Sol[ lim

(1/Pe)→0

(
H(1/Pe)

)
] (3)

One clue of the problem is that one as to look near the wall at small values
of ȳ (the same for the upper wall, that we will no more consider).
To solve the problem we follow Van Dyke [35] page 86, ”The guiding princi-
ples are that the inner problem shall have the least possible degeneracy, that
it must include in the first approximation any essential elements omitted in
the first outer solution, and that the inner and outer solutions shall match.”

i) The first step is the Choice of inner variables, this is done following
Van Dyke first part of the sentence and more specifically the ”least possible
degeneracy”. We write ỹ = ȳ/ε meaning that we strech the variable. And
take θ̃ the temperature so that (2) is now:

εỹ(1− εỹ)∂θ̃
∂x̄

=
1
Pe

(
∂2θ̃

∂x̄2
+

∂2θ̃

ε2∂ỹ2
) (4)

the leading order of the left hand side is εỹ
∂θ̃

∂x̄
, whereas the leading order

of the right hand side is
1

Peε2
(
∂2θ̃

∂ỹ2
). Using Van Dyke Principle, the best
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choice for the streching is ε = Pe−1/3, with this choice, we have:

ỹ
∂θ̃

∂x̄
=
∂2θ̃

∂ỹ2
. (5)

We study the so called inner region which is near the wall where the effect
of diffusion are strong enough to permit to ensure the boundary condition.
In fact we see, that putting (1/Pe) = 0 in the problem (2) is not relevant
as, in doing this we suppose that variations according to ȳ are not fast, or
are always at scale 1. This is not true near the wall where the derivatives
are very large (of order Pe2/3).

ii) The second important ingredient is the Matching principle: which
is the last part of the Van Dyke sentence ”the inner and outer solutions
shall match.”, he writes it as:

inner representation of (outer representation)

=
outer representationof (inner representation)

this gives the boundary condition that was missing in the preceeding prob-
lem. This reads

lim
ȳ→0

θ̄ = lim
ỹ→∞

θ̃ (6)

In the bulk, the outer solution (of problem H0) was always 0. So, far away
from the wall, the inner solution θ̃ matches to this value.

1.3.2 Selfsimilar solution of Lévêque problem

Now, this problem (5) may be solved using the ”self similar technique”. This
technique is based on the observation that lot of problems admit solutions
with a shape which looks like always the same.

We have the numerical solution, it is plotted on the figure 2 right. This
figure clearly shows that all the temperature profiles have nearly the same
”shape” (a curve decreasing from 1 to 0) with increasing thickness in x̄ say
∆(x̄). So we guess that maybe there is a unique temperature profile function
of ỹ divided by this thickness such as θ̃(x̄, ỹ) = g(ỹ/∆(x̄)) where g decreases
from 1 to 0) .

The technique helps to find this dependance. We test whether the prob-
lem (5) is invariant trough stretching of the coordinates. It is the ”method
of invariance through a streching group”, Bluman & Kumei [2]. Writing:

x̄ = Xx̂, ỹ = Y ŷ and θ̃ = Θθ̂
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we wish to obtain a PDE problem invariant under the rescaling X,Y,Θ.
Clearly, we have Θ = 1 to full fit the invariance of the boundary condition
θ̃(x̄ > 0, 0) = 1 or θ̂(x̂ > 0, 0) = 1. Starting form the original PDE we want
it to be invariant after streching:

ỹ
∂θ̃

∂x̄
=
∂2θ̃

∂ỹ2
becomes after changing the scale: (

Y 3

X
)ŷ
∂θ̂

∂x̂
=
∂2θ̂

∂ŷ2
. (7)

so that Y 3 = X allows the invariance of the PDE, it means that if we stretch
with any Y > 0 the variables:

x̄ = Y 3x̂, ỹ = Y ŷ and θ̃ = θ̂

ỹ
∂θ̃

∂x̄
=
∂2θ̃

∂ỹ2
, θ̃(x̄ > 0, 0) = 1 is after streching: ŷ

∂θ̂

∂x̂
=
∂2θ̂

∂ŷ2
, θ̂(x̂ > 0, 0) = 1.

The next step is to take advantageof this invariance. If we have a solution
f for the temperature dependance in x̄ and ỹ then say θ̃(x̄, ỹ) = f(x̄, ỹ)
we may write it in an implicit way rather than in a usual explicit one:
θ̃ − f(x̄, ỹ) = F (x̄, ỹ, θ̃) so that

F (x̄, ỹ, θ̃) = 0, with the invariance F (Y 3x̂, Y ŷ, θ̂) = 0

this is true for any Y > 0, so we may imagine to change the function F , and
introduce another one, where we just changed

F (x̄, ỹ, θ̃) = 0, changed into G(Y 3x̂, ŷ/x̂1/3, θ̂) = 0

as this is valid for any Y , we guess that the first slot is empty, so that
θ̂ = g(η) with η = ŷ/x̂1/3, this reduced variable is called the selfsimilar
variable and by definition η = ŷ/x̂1/3 = ỹ/x̄1/3. Looking to a self similar so-
lution θ̃(x̄, ỹ) = g(η), the transformed problem is ηx̄1/3 g

′(η)η
−3x̄ = g′′(η)x̄−2/3 so

−η
2

3
=
g′′

g′
with g(0) = 1, g(∞) = 0.

The solution is written as:

g(η) = 1−
∫ η
0 exp(−ξ

3/9)dξ∫∞
0 exp(−ξ3/9)dξ

where we recognise the incomplete gamma function Γ(a, z) =
∫∞
z ta−1e−tdt.

So that

g(η) = θ̃(x̄, ỹ) = Γ(
1
3
,
ỹ3

9x̄
)/Γ(

1
3
).

The flux at the wall will then be θ̃′(x̄, 0) = −31/3/Γ(1/3)x̄−1/3 = −0.538366x̄−1/3
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ỹ2

,

so
th

at
w

e
se

e
th

at
T

F
[θ̃

]
is

so
lu

ti
on

of
th

e
A

ir
y

eq
ua

ti
on

(A
i′
′ (
ξ)
−

ξA
i(

ξ)
=

0
w

it
h

A
i(

+
∞

)
=

0,
ξ

=
y(
−

ik
)1

/
3

an
d

A
i(

0)
=

1
3
2
/
3
Γ
(2 3

)
an

d
A

i′
(0

)
=
−

1
3√

3
Γ
(1 3

)
se

e
A

br
am

ow
it

z

&
St

eg
un

p
44

6
[1

]
fo

r
de

ta
ils

).
T

he
n,

as
th

e
un

it
st

ep
fu

nc
ti

on
ha

s
i

k
√

2
π

+
δ(

k
)√

π 2
as

Fo
ur

ie
r

tr
an

sf
or

m
,w

e
ca

n
ev

al
ua

te
:

T
F

[θ̃
]=

(
i

k
√

2π
+

δ(
k
)√

π 2
)A

i(
y(
−

ik
)1

/
3
)

A
i(

0)

an
d

w
e

th
en

ob
ta

in
th

e
flu

x
at

th
e

w
al

la
s:

T
F

[θ̃
′ 0
]=

(−
ik

)1
/
3
(

i
k
√

2
π

+
δ(

k
)√

π 2
)A

i′
(0

)
A

i(
0
)

go
in

g
ba

ck
in

R
ea

ls
pa

ce
,w

e
re

ob
ta

in
th

e
se

lfs
im

ila
r

re
su

lt
:

θ̃′ 0
=
−

3√
3

Γ
( 1 3

) (
(x

))
−

1
/
3

if
x

>
0,

el
se

θ̃′ 0
=

0

R
em

ar
k

A
ll

th
os

e
Fo

ur
ie

r
tr

an
sf

or
m

ar
e

no
t

so
tr

iv
ia

lt
o

co
m

pu
te

,a
nd

th
er

e
is

so
m

e
m

ag
ic

k
th

at
M

at
he

m
at

ic
a

ha
nd

le
s

w
el

l.
To

be
co

nv
in

ce
d,

w
e

ha
ve

to
ev

al
ua

te

ϕ
(x

)
=

∫
k

n
e−

ik
x
dk

he
re

,w
e

ha
ve

n
=
−

2/
3

5

Figure 4: Left, the numerical solution T̄ written with the selfsimilar variable
η = ỹ/x̄1/3 collapsing on the selfsimilar solution labelled Γ and the slope at
origin: 1 + g′(0)η. Right the numerical solution of the mid channel value
T̄ (x̄, 1/2) for several values of Pe with x̄/Pe in abscissa, the curves collapse
on the Graetz solution.

Note
To be convinced on an example for the F to G:
Suppose f(x, y, z) = (x2 + y2)sin(z)
We may write it f(x, y, z) = x2(1 + (y/x)2)sin(x(z/x))
So that f(x, y, z) = g(x, y/x, z/x)
with g the function g(ξ, η, ζ) = ξ2(1 + η2)sin(ξζ).
or g(x, y, z) = x2(1 + y2)sin(xz).

1.3.3 Fourier solution of Lévêque problem

One other useful tool is the Fourier transform that we will use extensively
in numerical studies. One may try to find solutions of problem (5) in term
of Fourier series:

TF [φ](k) =
1√
2π

∫
φ(x)eikxdx,

looking for each mode in e−ikx:

(−ik)ỹTF [θ̃] =
∂2TF [θ̃]
∂ỹ2

,

so that we see that TF [θ̃] is solution of the Airy equation defined by

Ai′′(ξ)− ξAi(ξ) = 0

with Ai(+∞) = 0, after changing the variable in ξ = y(−ik)1/3 and by
definition Ai(0) = 1

32/3Γ( 2
3)

and Ai′(0) = − 1
3√3Γ( 1

3)
, there is another solu-

tion of this equation the Bi(ξ) function which is not bounded in ∞, see
Abramowitz & Stegun p 446 [1] for details). Then, as the unit step function
has i

k
√

2π
+ δ(k)

√
π
2 as Fourier transform, we can evaluate:

TF [θ̃] = (
i

k
√

2π
+ δ(k)

√
π

2
)
Ai(y(−ik)1/3)

Ai(0)
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and we then obtain the flux at the wall as:

TF [θ̃′0] = (−ik)1/3( i

k
√

2π
+ δ(k)

√
π

2
)
Ai′(0)
Ai(0)

going back in Real space, we reobtain the selfsimilar result:

θ̃′0 = −
3
√

3
Γ

(
1
3

)x−1/3 if x > 0, else θ̃′0 = 0

Remark All those Fourier transform are not so trivial to compute, and
there is some magick that Mathematica [33] handles well. To be convinced,
we have to evaluate

ϕ(x) =
∫
kne−ikxdk here, we have n = −2/3

so changing the variable k = λk′ gives ϕ(x) = λn+1
∫
k′ne−ik

′λxdk′ taking
λ = 1/x we have the expected power dependence (here, we have −(n+1) =
−1/3) so

ϕ(x) = x−(n+1)

∫
k′ne−ik

′
dk′.

Fowler [10] proposes to look at Gradshteyn and Ryzhik 1980 to compute
those integrals and remarks that we recover a Γ function:∫ ∞

0
k′neik

′
dk′ = Γ(n+ 1)eiπ(n+1)/2.

1.4 The Graetz problem

Now, let us look at what happens for x̄ large. On figure 3 we saw that at
fixed value Pe, there is always a position where the two thermal boundary
layers meet ultimately. So we study what happens for very large value of x̄,
let define x̌ a long variable (of scale say 1/ε, it is here a new ε) so that:

εx̄ = x̌

Now at this large scale, the temperature changes all across the flow so we
do not change the transverse scale ȳ. The temperature with the new scale
x̌ is denoted as Ť and the heat equation is now:

ȳ(1− ȳ) ∂Ť

ε−1∂x̌
=

1
Pe

(
∂2Ť

ε−2∂x̄2
+
∂2Ť

∂ȳ2
) (8)

the left hand side is εȳ(1− ȳ)∂Ť
∂x̌

and the dominant right hand side is

1
Pe

(
∂2Ť

∂ȳ2
), so the the least possible degeneracy choice is ε = Pe−1.

ȳ(1− ȳ)∂Ť
∂x̌

=
∂2Ť

∂ȳ2
(9)
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This problem has been solved by Nuβelt and is solved using separation of
variables as a infinite sum of terms like:

Ť =
N
Σ
n=0

ψn(y̌)exp(−λ2
nx̌),

each of the modes n verifies the eigen value equation:

−λ2
n(1− r̄2)ψn(y̌) = ψn(y̌)′′, ψn(0̌) = ψn(1) = 0.

We do not here solve this problem (a master piece of heat transfer theory
text Book), but on figure 4 right, we plot the numerical resolution of the
full problem 2 for various values of Pe with the x̌ variable. We observe that
as Pe increases the solution goes on the same master curve corresponding
to the solution of the Graetz problem.

1.5 Local scaling near the discontinuity

Up to now, we always neglect the longitudinal variation in the temperature,
it should come back somewhere. We did not study what happens just at
the point where the temperature changes, at this place x = 0, y = 0 there
is a huge longitudinal variation in the temperature. This place is a good
candidate to reintroduce the always removed second order derivative.

Then following the ”least possible degeneracy”. We write x̃ = x̄/ε, ỹ =
ȳ/ε meaning that we strech the variable with same scale. And take θ̃ the
temperature so that (2) is now:

εỹ(1− εỹ) ∂θ̃
ε∂x̄

=
1
Pe

(
∂2θ̃

ε2∂x̄2
+

∂2θ̃

ε2∂ỹ2
) (10)

the leading order of the left hand side is ỹ
∂θ̃

∂x̄
, whereas the right hand side

is the complete Laplacian.
1

Peε2
(
∂2θ̃

∂x̃2
+
∂2θ̃

∂ỹ2
). The local scale is then:

ε = Pe−1/2.

This is the convenient scale to study a local accident, with this scale we have
the exact equilibrium between the convection and diffusion.

In Pedley [22] one may find that this solution matches with the Lévêque
one at infinity.

It very important to notice here that at this scale, there is some upstream
influence. It means that at a given point before x̃ = 0, the flow ”feels” the
heat produced in x̃ > 0. That what we see at local scale on figure 1.5.
In the tilde variable, the Laplacian gives informations against the flow, the
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Convection Forcée

voisinage du point de changement de température, et on pose T = T0+(Tp−T0)θ̃.
Pour ε = Pe−1/2, on garde des termes de dérivées seconde :

ξ̃
∂θ̃

∂ξ̃
=

∂2θ̃

∂ξ̃2
+

∂2θ̃

∂ζ̃2

θ̃(ξ̃ < 0, 0) = 0, θ̃(ξ̃ > 0, 0) = 1, θ̃(ξ̃,∞)− > 0,
La résolution numérique nous montre des lignes iso température ayant la

forme suivante :

Fig. 10 – au voisinage de x = 0, à l’échelle de la longueur visqueuse.

On observe donc bien la remontée de l’information en avant de la disconti-
nuté. Pour mémoire, sachons que l’on peut résoudre ce problème par transfor-
mation de Fourier (eikξ̃). La solution (après beaucoup de calculs) se développe,
pour ξ̃ → 0 (ie. k grand) en :

∂θ̃(ξ̃, 0)
∂ξ̃

∼ 31/3Γ(2/3)/Γ(1/3)3/4(πξ̃)−1/2,

et pour ξ̃ →∞ (i.e. k petit) en :

∂θ̃(ξ̃, 0)
∂ξ̃

∼ (35/6)Γ(2/3)(2πξ̃)−1/3.

On retrouve la solution de Lévêque loin de la discontinuité de température que
nous développons au point suivant et que nous avons déjà vue en PC !

• Dans le problème sans dimension à résoudre :

(1− r̄2)
∂T̄

∂x̄
=

1
Pe

(
∂2T̄

∂x̄2
+

∂r̄T̄

r̄∂r̄
).

si Pe tend vers l’infini, il ne reste que :

(1− r̄2)
∂T̄

∂x̄
= 0.

La température reste constante le long d’une ligne de courant : elle reste nulle.
Il faut donc introduire une couche limite. Posons r̃ = (1 − r̄)/ε. Après choix
deε = (2Pe)−1/3 par moindre dégénérescence et réduction on a :

r̃
∂T̃

∂x̄
= (

∂2T̄

∂x̄2
+

∂2T̃

∂r̃2
).
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x̄ = 0
x̃ = 0

Figure 5: The iso temperature near the point where the flow is heated. Note
that the flow is heated upstream at scale Pe−1/2.

problem is ”elliptic”, the downstream influences the upstream.
At all the other scales the convection is too strong at a given point before
x̃ = 0, the flow does not ”feel” the heat produced in x̃ > 0. The equation is
”parabolic”. The downstream no more influences the upstream.

We may note that in this case the smaller interesting scale is

hPe−1/2 = h(U0h/κ)−1/2 = ((U0/h)/κ)−1/2

it means that when we are near the lower wall and near the temperature
discontinuity, only matter the shear of the velocity say U ′0 = (U0/h). The
scale which is then natural is √

κ

U ′0

it is the sole scale that we can construct in a shear viscous flow.

Of course, if we scale the flow at a scale which is smaller, the convective
term becomes negligible. We have only a Laplacian to solve:

∂2θ̃

∂x̄2
+
∂2θ̃

∂ỹ2
= 0. (11)

with θ̃(x̃ < 0) = 0 and θ̃(x̃ > 0) = 1. Note that this problem is not simple
to solve and that it implies a logarithmic term, but that is another story...
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Graetz Problem

Lévêque Problem x̄ ȳ(
Pe

x̄
)1/3

x̄

Pe ȳlocal Problemx̄Pe1/2

ȳP e1/2

Figure 6: The final scales in the thermal pipe flow which allow in each case
a peculiar convective diffusive equilibrium. First, the entrance where the
two scales are the same x̄Pe1/2, ȳP e1/2. Second the thin thermal boundary
layer where we have x̄ , and a thin ȳ(Pe/x̄)1/3. Third the long longitudinal
final scale x̄/Pe and ȳ where the boundary layers have merged.

1.6 Conclusion

•This simple example allows us to introduce the salient ingredients of the
asymptotics:
- non dimensional equations with small parameters,
- the least degeneracy principle,
- matching principle.

• We introduced some techniques and remarks that we will see again:
- variety of scales which can be intricated
- self similar/ Fourier solutions
- parabolic equations/ upstream influence
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Part II

Flow in a Channel

2 Pipe/ Channel flow: perturbation of a linear
shear flow.

Now, in fact we have seen most of the ideas that will be used in the sequel.
We will apply them to a slightly perturbed shear flow. We may consider the
flow in a pipe and study the flow near the wall where the Poiseuille profile
u = U0(y/h)(1 − y/h) reduces to u = (U0/h)y as it does for the Lévêque
problem, we then obtain a basic Couette profile. We will define the shear
as U ′0 = U0/h. The aim is to put a small perturbation in this simple shear
flow and evaluate the perturbation of the skin friction (τw = µU ′0) and the
perturbation of the pressure at the wall.

L

ΕL

Figure 7: A small perturbation (a bump) in a simple shear flow u = U ′0y.
The flow is not bounded in y > 0.

2.1 Simple shear flow problem

So, before looking at the ”Triple Deck” problem it self, let first look at a
simple case which is the hearth of the problem. Let imagine a pure shear
flow over a flat plate in y = 0 and extending to infinity. The basic velocity
is pure Couette flow u = U ′0y. We note that in this special case, only a
parameter dimensional to a frequency is given, we have no length scale.

We suppose now, that the wall is not flat but there is an ”accident”
such as a small bump. Let us use the longitudinal scale of the bump say
L as scale to adimensionalise the Navier Stokes Equations (with Reynolds
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number Re = U ′0L
2/ν):

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1
Re

(
∂2u

∂x2
+
∂2u

∂y2
),

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1
Re

(
∂2v

∂x2
+
∂2v

∂y2
).

(12)

Large Reynolds number analysis of the problem using the least degeneracy
principle forces us to balance the viscous terms and the convective ones.
This is necessary to recover the second order derivative which disappears
at large Reynolds. So near the wall, we introduce a thin layer of relative
size ε << 1, of longitudinal scale 1; in this layer the longitudinal velocity is
of scale ε as the basic profile is linear in y, so that the viscous convective
balance:

ε2ū
∂ū

∂x̄
∼ ε

ε2Re
(
∂2ū

∂ȳ2
)

so we obtain the scale ε = Re−1/3; we recover exactly, with no surprise, the
Lévêque scaling. Then with the following least degeneracy scales u = εū,
v = ε2v̄, x = x̄, y = εȳ and p = ε2p̄ we obtain in fact the Prandtl equations
with bars over all the variables, with then remove the bars:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
,

0 = −∂p
∂y
.

(13)

To be self consistent, if the accident is a bump, its size must scale with ε.
We therefore have a full non linear problem.

The boundary condition are the no slip conditions, the initial linear
velocity profile far upstream. At scale 1 in y the solution is not disturbed,
so a matching with the scale ε gives that there are no perturbation conditions
at infinity (it will be changed).

u = v = 0 on y = f(x), u→ y when x→ −∞, and u→ y when y →∞.
(14)

Note that the problem is such that the pressure is a result of the computa-
tion.

2.2 linear Fourier solution

We notice that in this case we have a simple analytical solution obtained
by linearisation: say the bump is small f(x) = αf1 with α << 1, then
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u = y + αu1, v = αv1 and p = αp1. The boundary condition is lin-
earised by ”transfer of boundary condition” [35]): in y = αf1 the veloc-
ity is zero: u(x, αf1) = 0, but as the velocity may be Taylor expanded at
the wall u(x, αf1) = u(x, 0) + (αf1) ∂∂yu(x, 0) + ... as ∂yu(x, 0) = 1 we have
u(x, αf1) = u(x, 0) + (αf1)1 + ... and as for y = 0 the development of the
velocity is u(x, 0) = 0 + αu1 then u1 = −f1. We will see thereafter another
trick known as Prandtl transform which gives the same result (but which is
more general).

We then go in Fourier space (∂x is −ik) and write for the Fourier Trans-
form

TF [φ](k) = φ̂ =
1√
2π

∫
φ(x)eikxdx

of the function (in fact û1 is TF [u1]):
−ikû1 +

∂v̂1
∂y

= 0,

−ikyû1 + v̂1 = ikp̂1 +
∂2û1

∂y2
,

(15)

Let define τ̂1 = ∂û1
∂y , then the second equation after derivation by y is:

−ikyτ̂1 = ∂2τ̂1
∂y2

(with help of the first and as the pressure does not depend
on y). This equation is again an Airy equation, so that: τ̂1 is proportional
to Ai((−ik)1/3y). Integrating the shear, gives the velocity. Integrating from
0 to infinity gives:

∫∞
0 (τ̂1)dy = û1(∞)− û1(0), with û1(∞) = 0 and û1(0) =

−f̂1. But as
∫∞
0 Ai(ξ)dξ = 1/3 (Abramowitz and Stegun [1]) we obtain

coefficient of proportionality and then the friction at the wall:

τ̂1(0) = 3(−ik)1/3Ai(0)f̂1.

The pressure follows from the second equation written at the wall

0 = ikp̂1 +
∂τ̂1(0)
∂y

so the pressure is:
p̂1 = 3Ai′(0)(−ik)−1/3f̂1.

τ = U ′S + U ′S(3Ai(0))(U ′S)1/3TF−1[(−ik)1/3TF [f ]] (16)

and the pressure over the bump is

p = (U ′S)2(3Ai′(0))(U ′S)−1/3TF−1[(−ik)−1/3TF [f ]]. (17)

where Ai(x) is the Airy function, Ai(0) = 0.355028 and Ai′(0) = −0.258819.
This result is relevant as long as f(x) has a physical height lesser than

LRe−1/3
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2.3 linear integral solution

The solution involves TF−1[(−ik)nTF [f ]], this may be written in an explicit
way. It is convenient to use the derivative of the bump, so the integral is
TF−1[(−ik)n−1TF [f ′]] which will be a convolution of the Heaviside function
H(x) times x−n and the slope of the wall f ′(x). This is for the skin friction:

τ = U ′S
(
1 +

( 32/3

Γ(2/3)2
)
(U ′S)1/3

∫ ∞

0

f ′(x− ξ)
ξ1/3

dξ
)
.

and for pressure

p = (U ′S)2
(
−

( 32/3√π
211/3Γ(1/3)2

)
(U ′S)1/3

∫ ∞

0

f(x− ξ)
ξ2/3

dξ
)
.

With this point of view it is clear that the solution presents no influence
of the bump upstream the bump. Perturbation exist at the first position of
the beginning of the bump. We will see that it is an important feature in
the flows.

2.4 Scale invariance of the problem

It is straightforward to see that if we change all the scales in :
If x→ Y 3x, y → Y y, f → Y f , v → Y −1v, y → Y y, and p→ Y 2p,
then the transformed equations are invariant. It means that, as in the
Lévêque problem, self similar solutions with yx−1/3 are relevant.

2.5 The Prandtl transform

There is a trick called ”Prandtl tranform” which allows to change the bumpy
wall in a flat one. One writes ỹ = y − f(x) and keeps x̃ = x. Then, as
∂x = ∂x̃ − f ′(x)∂ỹ and ∂y = 0 + ∂ỹ continuity equation becomes

∂

∂x̃
u+

∂

∂ỹ
(v − f ′u) = 0

and as the total derivative:

u
∂

∂x
u+ v

∂

∂y
u = u

∂

∂x̃
u+ (v − f ′u) ∂

∂ỹ
u

so the Prandtl transform is: ỹ = y − f(x) , x̃ = x, ũ = u and ṽ = (v − f ′u)
so that system is invariant:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −dp

dx
+
∂2u

∂y2
.

(18)

u = v = 0 on y = 0, u→ y when x→ −∞, and u→ y+f(x) when y →∞.
The sole difference lies in the boundary condition at the top.
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2.6 Numerical Solution of the problem

2.6.1 The ”Keller Box” technique

The problem is here solved with the ”Keller Box” technique [4] or [15]. The
baseline is to solve the problem as an heat equation u∂u∂x + ... = ∂2u

∂y2
+ ... As

the problem is a kind of heat equation, it seems natural that it is a marching
procedure in x such as the heat equation is solved in marching in time. The
system is ”parabolic”, Navier Stokes with is Laplacian is ”elliptic”.
The equations are written in introducing only first order derivatives:

∂u

∂y
= G,

∂G

∂y
= u

∂u

∂x
+ ...

then, the derivatives are centered in the ”box” of corners (i−1, j−1) (i−1, j)
(i, j−1) and (i, j). Values in (i−1, j−1) (i−1, j) been known. for examples
∂u
∂y = G, reads u(i,j)−u(i,j−1)

∆y = G(i,j)+G(i,j−1)
2 .

In fact we need four variables, ψ the stream function, G the shear and W
a fictionous variable such as ∂p

∂x = −∂(W 2/2)
∂x (denoted as Mechoul approach

by Cebeci & Keller) so that Prandtl equations are:

∂ψ

∂y
= u,

∂u

∂y
= G,

∂G

∂y
= −∂(W 2/2)

∂x
+ u

∂u

∂x
−G∂ψ

∂x
,

∂W

∂y
= 0.

(19)

As among others there are non linear terms, so u∂u∂x is discretized in

(u(i,j)+u(i−1,j)
2 + u(i,j−1)+u(i,j−1)

2 )
2

(u(i,j)−u(i−1,j)
∆x + u(i,j−1)−u(i−1,j−1)

∆x )
2

,

and then a Newton iteration is necessary. Writing the new step n + 1 as a
small increase of the preceding: un+1(i, j) = un(i, j) + δun(i, j), we obtain
a block tridiagonal system the δun(i, j), δGn(i, j) etc solved by Thomas
algorithm.

Boundary condition at the wall and at the entrance are simple. At the
top of the domain the velocity is equal to y so that the third equation of the
sytem (19) becomes 0 = −∂(W 2/2)

∂x +u∂u∂x−
∂ψ
∂x . His integral −W 2+u2−2ψ is

then a constant at the top of the domain. This last expression is linearised
to obtain the relation in j = J the last line

J∆yδun(i, J)− δψn(i, J)−Wn(i, J)δWn(i, J) = 0.
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A last important trick is to introduce the so called FLARE (introduced in
[8]) approximation: u∂u∂x is put to 0 when u < 0. We will see latter that
this approximation is not so strong, and that the upstream influence that it
introduces is very small.

2.6.2 Results

Examples of skin friction and pressure distribution are plotted on figure 8
for the linear response. We plot left the perturbation of the skin friction ∂u1

∂y

at the wall defined by a bump (arch of cosine: cos(πx/2)2, for −1 < x < 1)
and right the perturbation of pressure p1. On this bump we clearly see that
before x = −1 there is no response. The same feature is observed on the
non linear solution on figure 9, before the bump, there is no response by the
flow. We will say that there is no ”upstream influence”.

To emphasize the influence of the non linearities, we plot the non linear
solution on the next graph. We plot the skin friction ∂u

∂y at the wall defined

by a bump αe−(2x/3)2 (for various values of α). We notice that the skin
friction increases a lot due to the acceleration introduced by the bump. The
extremum is obtained before the crest. Next, the skin friction decreases and
may become negative. In those case, there is a small eddy after the bump. If
the bump increases a bit more the length of the separated region increases.
On the right part of the figure, the pressure is plotted. The minimum of the
pressure is a bit after the crest. Next it increases to a final negative value
indicating the small pressure drop.

An important result of the non linear resolution is that this asymptotic
model can compute reverse flow regions. Those are region where τ < 0
and where the velocity is reversed. The region of reverse flow is called the
”separated bulb”. What is called separation is described by the system of
equations. This is a very important remark.
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Figure 8: Linearised response over a bump defined by f1(x) = cos(πx/2)2,
for −1 < x < 1, linear perturbation of the skin friction τ1 (left) and linear
perturbation of pressure p1 (right).
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Figure 9: Non linear computation, left, the skin friction over a bump, the
pressure over the same bump αe−(2x/3)2 for α = 1, 2, 3, 4, 5. Notice that the
skin friction becomes negative indicating a reverse flow on the lee side of the
bump. In the separated bulb, the pressure is nearly linear.
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2.7 Smaller scale

As we mentioned, there is no length scale in the flow, the only one that we
can build is based on U ′0 and ν. It is worth to note here that with this scale
` =

√
ν/U ′0, we have Re = 1 so x = `x, y = `y, u = U ′0`u etc is exactly

the scale at which both terms in the Laplacian and in the Navier Stokes
Equation are present

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ (

∂2u

∂x2
+
∂2u

∂y2
),

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ (

∂2v

∂x2
+
∂2v

∂y2
).

(20)

This is the full problem with all the terms. We then have a lower bound:

` << L

for the size of the bump. This small scale in reminiscent of what happened
in the heat problem.

- I . 19-



channel flow

2.8 3D solution

In this section we present the 3D counterpart of this problem. The bump
was of length L and thickness εL with ε = Re1/3. To extend it to 3D, we
note that the convective diffusive balance is always relevant u ∂

∂xw ∼
∂2

∂y2
w.

But, we wish to reintroduce the pressure gradient − ∂
∂zp and the ∂

∂zw term
in the continuity equation. So we take u = εu, v = ε2v, w = εw, x = x,
y = εy z = εz, and p = ε2p.

u

x

z

L
L

ε  L

Figure 10: A bump in a shear flow

143
Skin friction on a 3D bump α = 1.0

Grenoble 15/02/06 / < − − >

Figure 11: Field of skin friction.

2.8.1 Equations of the lower Deck

Equations are now:

∂

∂x
u+

∂

∂y
v +

∂

∂z
w = 0, (21)

u
∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u = − ∂

∂x
p+

∂2

∂y2
u, (22)

u
∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w = − ∂

∂z
p+

∂2

∂y2
w, (23)

with boundary conditions:
u = v = w = 0 in y = f(x, z),
y →∞, u = y, w = 0
x→ −∞, u = y, v = 0, w = 0.

First we do the Prandtl transform which transform the wall in a flat one:
y = y − f(x, z) so boundary conditions now becomes:
u = v = w = 0 in y = 0,
y →∞, u = y + f(x, z), w = 0

- I . 20-



channel flow

x→ −∞, u = y, v = 0, w = 0.
The system (21-23) being inchanged.

2.8.2 linearisation

We look at a linearized solution: u = y + au1, v = av1, w = aw1, p = ap1

with a << 1. The system (21-23) becomes:

∂

∂x
u1 +

∂

∂y
v1 +

∂

∂z
w1 = 0, (24)

y
∂

∂x
u1 + v1 = − ∂

∂x
p1 +

∂2

∂y2
u1, (25)

y
∂

∂x
w1 = − ∂

∂z
p1 +

∂2

∂y2
w1, (26)

with boundary conditions:
u1 = v1 = w1 = 0 in y = f(x, z),
y →∞, u1 = +f(x, z), w1 = 0
x→ −∞, u1 = 0, v1 = 0, w1 = 0.
Looking at solutions in Fourier space:

(u1, v1, w1, p1) = (û(y), v̂(y), ŵ(y), p̂(y))e−ikxx−ikzz

we obtain for the two last (25-26) after substitution and after elimination of
the pressure by y derivation:

−ikxy(kx
d

dy
û+ kz

d

dy
ŵ) =

d2

dy2
(kx

d

dy
û+ kz

d

dy
ŵ)

we define a total skin friction τuw = (kx d
dy û + kz

d
dy ŵ) and its value at the

wall τ ′uw(0) = −i(k2
x + k2

z)p̂ so the equation is an Airy one:

−ikxyτuw = (τuw)′′

hence the solution of :

Ai′′(z) = zAi(z), is Ai(z) =
1
π

∫ ∞

0
cos(

t3

3
+ zt)dt.

we have:

τuw = −i(k2
x + k2

z)p̂Ai(y(−ikx)1/3)/((−ikx)1/3Ai′(0))

(kxû+kzŵ) = −i(k2
x+k2

z)(
∫ y
0 Ai(y(−ikx)

1/3)dy) p̂
((−ikx)1/3Ai′(0))

as ŵ(∞) = 0

we obtain; kxf = −i(k2
x+k2

z)p̂

3((−ikx)2/3Ai′(0))
.

The perturbation of pressure of mode (kx, kz) is then:

p̂ =
3((−ikx)2/3Ai′(0))kxf

−i(k2
x + k2

z)
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The final expression for the total skin friction:

(kxû+ kzŵ)′ = 3((−ikx)1/3Ai(0))kxf

To solve equation for ŵ:

−ikxyŵ = ikz p̂+
d2

dy2
w

We notice that the solution of :

L′′(z) = zL(z)− 1 is L(z) = − 2√
3

∫∞
0 cos( t

3

3 + zt− π
6 )dt

This allows to have ŵ as ŵ = −iky(−ikx)−2/3L((−ikx)1/3y).
This finally gives the perturbation for the skin friction

dû

dy
= 3((−ikx)1/3Ai(0))kx(1− c(kx, kz))f̂ (27)

dŵ

dy
= 3((−ikx)1/3Ai(0))

kxc(kx, kz)
kz

f̂ (28)

c(kx, kz) =
(−3Ai′(0))k2

z

9Ai(0)2(k2
x + k2

z)
(29)

It is striking to observe that there is upstream influence in the 3D case
see figures 12 and 13.
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Figure 12: Longitudinal perturba-
tion of skin friction ∂u1/∂y on a
gaussian bump
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of skin friction ∂w1/∂y on a gaus-
sian bump
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L

h

Εh

Figure 14: A small perturbation (a bump)of length L = x3h and of height
εh in a simple Poiseuille flow u/U0 = y/h(1− y/h).

3 Pipe/ Channel Flow

3.1 Core flow

The previous section was devoted to the perturbation of a Couette profile.
We showed the nonlinear response of the flow to a perturbation: in practice
a bump. This Couette flow was either a pure Couette flow either a Poiseuille
profile taken very near the wall. Now, in the sequel, we present what happens
when perturbations of the flow near the wall are enough strong to disturb
the core flow itself.

Of course, flow in pipes are very important and very common in all in-
dustrial devices and in biological flows. But, we will focus on flow between
parallel plates which are more simple to write. The pioneering work is from
Smith [26] and has been reexamined by Saintlos & Mauss [25].

The problem is defined on figure 14, there is a channel of width h. As we
introduce explicitly the channel section h, we will use this scale to construct
the Reynolds number. The basic solution is always the fully developped
Poiseuille profile

(Up(y), Vp(y)) = (U0(y/h)(1− y/h), 0), and p(x) = p0 − 2U2
0

x/h

Re

that we may writte without dimension y = ȳh... The pressure gradient is
then a constant −dp/dx = 2. We then introduce a bump in this flow and
look at what happens. This bump is of small height εh and of lenght L.
We will see what is the relation between L and εh in order to obtain a non
linear problem.

3.2 Lower Deck

The Navier Stokes System (12) is always the same but with a different
Reynolds number Re = U0h/ν. In the viscous lower layer of height εh the
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velocity is always of order of magnitude εU0 so the viscous inviscid balance
is

1
x3
ε2ū

∂ū

∂x̄
∼ ε

ε2Re
(
∂2ū

∂ȳ2
)

the scale is then
x3 = ε3Re

so a bump of length hε3(U0h/ν) and height εh will produce significant
perturbation. In the Couette flow we used the length of the bump as scale
L and found that height L(U ′0L

2/ν)−1/3 will produce significant perturba-
tion. Subsitution of L = hε3(U0h/ν) in L(U ′0L

2/ν)−1/3 (remembering that
U ′0 = U0/h in a Poiseuille flow) gives of course εh.

So near the wall we have a thin layer that we will call the ”lower Deck”.
Then with the following least degeneracy scales:

u = εū, v = ε2v̄, x = ε3Rex̄, y = εȳ and p = ε2p̄ we obtain in fact the
Prandtl equations with bars over all the variables, we then remove the bars:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
,

0 = −∂p
∂y
.

(30)

The boundary condition are the no slip conditions, the initial linear
velocity profile far upstream.

u = v = 0 on y = f(x), u→ y when x→ −∞, (31)

We now no more suppose that disturbances are zero at infinity but that they
still exist.

3.3 Main Deck

In the wall layer, the velocity is of order ε and the pressure is of order ε2,
using the matching principle, the velocity should match to the velocity when
y →∞ in the lower Deck to the velocity ỹ → 0 (with ỹ is mesured by h) in
the core flow. The same for the pressure.

We have the basic non dimensional profile Up(ỹ) = ỹ(1− ỹ) and Vp = 0
in the Pipe, now suppose that at longitudinal scale say x3 there is a pertur-
bation of this basic profile. We will call ”Main Deck” the region considered
which is of scale x3 but which is of scale 1 in the transverse direction. So,
suppose that at longitudinal scale say x3 there is a perturbation of this basic
profile of magnitude ε, then:

ũ = Up(ỹ) + εũ1
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as ỹ → 0, we see that the Poiseuille profile is linear Up(ỹ)→ ỹ and then the
velocity is ỹ + εũ1(x, 0), written in the inner variables this is (as ỹ = εy)

ε(y + ũ1(x, 0))

so we deduce that in the lower deck

lim
y→+∞

u = y + ũ1(x, 0)

In order to retain all the terms in the incompressibility and in the total
derivative equation,

ũ = Up(ỹ) + εũ1, ṽ = Vp(ỹ) +
ε

x3
ṽ1

longitudinal equation of momentum (Up ∂ũ1
∂x + ṽ1U

′
p), is of order ε/x3 which

is larger than the pressure term in ε2/x3 and the small viscous terms.
A first system to solve is then

∂ũ1

∂x
+
∂ṽ1
∂ỹ

= 0, (Up
∂ũ1

∂x
+ ṽ1U

′
p) = 0.

By elimination we find

U2
p

∂

∂ỹ
(
ṽ1
Up

) = 0

the classical notation is then to introduce a function of x say A(x), such as

ũ1 = A(x)U ′p(ỹ) and ṽ1 = −A′(x)Up(ỹ)

is solution of the system.
The velocity is then

ũ = Up(ỹ) + εA(x)U ′p(ỹ) or ψ̃ = ψp +Aεdψ̃p/dỹ

so the function −A(x) may be understood as a displacement of the stream
function. So it would have been a good idea to define this function with
a minus sign, but Stewartson choose the reverse sign (remember that ev-
erything is reversed in Great Britain... French joke!). We then obtain the
matching between the lower deck and the main deck as:

lim
y→+∞

u = y +A(x)

So when −A increases the velocity decreases.
Then, in the transverse momentum equation Up

∂ṽ1
∂x is of order ε

x2
3

the

transverse momentum is then of magnitude ε2:

ε

x2
3

(−A′′(x))U2
p ∼ −ε2

∂p̃1

∂ỹ
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so the least degeneracy principle gives ε
x2
3

= ε i.e.

ε = Re−2/7 and x3 = R1/7.

and by integration we have

p̃1(x, 1)− p̃1(x, 0) = A′′(x)
∫ 1

0
U2
p (ỹ)dỹ

There is a transverse pressure gradient across the flow.

Re-2�7

Re-2�7

Re1�7

Figure 15: A bump at the lower will disturb the core flow, the pressure
changes across the core flow, perturbations are induced at the upper wall.

3.4 upper lower deck

We have just obtained that the flow in the lower viscous layer matches with
the bulk, but as there is an upper wall, perturbation are induced at this
wall. So, writting ỹ = 1− εY , we have a viscous problem at the upper wall.

∂u

∂x
+
∂v

∂Y
= 0,

u
∂u

∂x
+ v

∂u

∂Y
= −dp

dx
+
∂2u

∂Y 2
.

(32)

The boundary condition are the no slip conditions, the initial linear
velocity profile far upstream.

u = v = 0 on Y = 0, u→ Y when x→ −∞, (33)

and the perturbation of stream lines due to the −A function imposes a
matching condition u→ Y −A. The pressure in this layer is p̃1(x, 1).

3.5 Full interacting problem

Near the wall we have :
∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −dp

dx
+
∂2u

∂y2

(34)
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with

u = v = 0 on y = f(x), u→ y when x→ −∞, and u→ y+A for y →∞.
(35)

the pressure is in fact p̃1(x, 0). We have exactly the same problem at the
upper layer, but the pressure is p̃1(x, 1) and we have the pressure jump
across the pipe

p̃1(x, 1)− p̃1(x, 0) = A′′(x)
∫ 1

0
U2
p (ỹ)dỹ

this gives the link between the pressure at the top and the bottom of the
Main Deck.
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3.6 The various scales in the Pipe

3.6.1 The x3 = R1/7 scale

We looked at a channel with a bump on a lower wall, we saw that there is
pressure variation across the channel and an interaction with the upper wall
layer even if the wall was flat.

Now we examine what happens if there are two indentations, one at the
lower wall defined by y = εf(x) and another at the upper wall defined by
y = 1 + εg(x). The problem is at the lower wall, in the lower layer after
having performed a Prandtl Transform, one solves: the problem (34) with

u = v = 0 in y = 0 and u→ y + f(x) +A for y → +∞

this gives the pressure which is matched to p(x, 1) at the top of the main
deck. At the upper one:

u = v = 0 in Z = 0 and u→ Z − g(x)−A for Z → +∞

this gives the pressure which is matched to p(x, 0) at the bottom of the Main
Deck, the relation between the pressures is

p̃1(x, 1)− p̃1(x, 0) = A′′(x)
∫ 1

0
U2
p (ỹ)dỹ.

Notice that in the case here of the Poiseuille flow
∫ 1
0 U

2
p (ỹ)dỹ = 1

30 .

Linear solution
A linear perturbation of this system may be obtained in Fourier space, In the
Lower Deck we have for the pressure 3Ai′(0)(−ik)−1/3(f̂1 + Â1) and in the
upper lower Deck we have 3Ai′(0)(−ik)−1/3(−ĝ1 − Â1) so as the difference
between this two pressures is −k2 1

30Â1, then, for example one can compute

Â1 =
f̂1 + ĝ1

2(1− 1/30
6Ai′(0)(−ik)7/3)

(36)

the pressure in the lower deck as:

p̂1 = (3Ai′(0)(−ik)−1/3)(f̂1 +
f̂1 + ĝ1

2(1− 1/30
6Ai′(0)(−ik)7/3)

)

There is a unique problem canonical problem to solve:

u = v = 0 in y = 0 and u→ y + 1
2(f(x)− g(x)) for y → +∞

If the constriction is symmetrical, we have A = 0:

u = v = 0 in y = 0 and u→ y for y → +∞
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3.6.2 The x3 >> R1/7 scale

In this case the bumps are larger than the interacting scale, coming back to
the transverse equation of momentum in the Main Deck:

ε

x2
3

Up
∂ṽ1
∂x

= −ε2∂p̃1

∂ỹ

If x3 is larger than R1/7 we then have ∂p̃1
∂ỹ = 0. There is no pressure drop

across the channel. At the lower wall, in the lower layer after having per-
formed a Prandtl Transform, one solves: the problem (34) with

u = v = 0 in y = 0 and u→ y + f(x) +A for y → +∞

this gives the pressure which is matched to p̃1(x, 1) at the top of the main
deck. At the upper one, as the displacement A is the same through the Main
Deck, it will reenter in the equation but with a minus sign (we are upside
down), then the upper wall is defined upside down by −g(x), so the Prandtl
transform gives:

u = v = 0 in Z = 0 and u→ Z − g(x)−A for Z → +∞

this gives the pressure which is matched to p̃1(x, 0) at the bottom of the
Main Deck, so we deduce that as the two pressure must be equal, then
the displacement function is such as the two displacements from the linear
profile must be the same −g −A = f +A so:

−A =
1
2
(f(x) + g(x)).

There is a unique problem to solve:

u = v = 0 in y = 0 and u→ y + 1
2(f(x)− g(x)) for y → +∞

re applying the backwards the Prandtl transform in f an g gives the solution
in each lower and upper lower decks.
Note
Notice that if the constriction is symmetrical (f(x) = −g(x)), we have
A = 0, the problem to solve is:

u = v = 0 in y = 0 and u→ y + f(x) for y → +∞

3.6.3 The 1 << x3 << R1/7 scale

We look now at short bumps, coming back to the transverse equation of
momentum in the Main Deck:

ε

x2
3

Up
∂ṽ1
∂x

= −ε2∂p̃1

∂ỹ
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fHxL

gHxL Re-2�7

Re-2�7

Re1�7

Figure 16: Two indentations in a channel at scales with interaction across the
Poiseuille flow. On this graph f is positive, and g is negative. A symmetrical
indentation is such as f(x) = −g(x)

we deduce that now that is ∂ṽ1
∂x which is zero, so that A = 0 is the solution

in the Main Deck.

The problem is then well known: it is the same as in the unbounded
Couette flow that we first examined.

3.6.4 The x3 = 1 scale

This scale is interesting as it is the same behaviour A = 0, so at order one,
so that there is no perturbation at order one. But, there is a perturbation
at order 2, which is driven by the pressure and which does not interact with
the wall layers.

ũ = Up(ỹ) + ε2ũ2, ṽ = ε2ṽ2,

so we have to solve the problem at order 2:

∂ũ2

∂x
+
∂ṽ2
∂ỹ

= 0, (Up
∂ũ2

∂x
+ ṽ2U

′
p) = −∂p̃1

∂x
, Up

∂ṽ2
∂x

= −∂p̃1

∂ỹ
.

It does not retroact on the wall layers.

3.6.5 The x3 = Re−1/2 scale

This structure in valid up to the smallest scale which is the scale such as
the convective and both diffusive terms (transversal and longitudinal) are
equal, i.e. x3 = Re−1/2. This scale is in fact the viscous scale constructed
on the shear U ′0 = U0/h:

x3h =
√

ν

U ′0
.
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x3

1
u = Up + ε2u2

p1(x, 1)− p1(x, 0) = A′′(x)
∫ 1

0
U2

p (y)dyp1(x, 1)− p1(x, 0) = 0 p1(x, 1)− p1(x, 0) = 0

Re1/7

p1(x, 1)

p1(x, 0)

ũ = Up + εAU ′
p˜ ˜

˜˜ ˜ ˜˜ ˜ ˜ ˜

˜

˜

Figure 17: the scales in the channel

3.6.6 Upstream influence

We saw that the A = 0 system described in the case of Couette flow or in
the case of no displacement (symmetrical channel etc) presents no perturba-
tion of the flow before the beginning of the bump. This behavior was clear
because:
• the ’Lower Deck” equations are a kind of heat equation (∂t = ∂2

yT ) and
are parabolic in x as the heat is in time t.
• as for the heat equation there is no influence of the future on the present,
in the Lower Deck equation there is no influence of the positions downstream
on a given position.
• this is clear on the expression with integrals, for example, the perturbation

of the skin friction involves:
∫ ∞

0

f ′(x− ξ)
ξ1/3

dξ. So when there is no bump,

there is no linear response.

• FLARE approximation reintroduces some influence on the downstream to
to upstream but, it will be done at a very small scale and after the beginning
of the bump.

We have seen on the numerical examples that when there is a pressure
variation across the Main Deck, before the very birth of the bump, the flow
is perturbed. So in this case, there is ”upstream influence”, it means that
the downstream experience of the flow retroacts on the upstream.

The striking feature associated to this is that a self induced interaction
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may appear (we will see this again in the thermal flows in hypersonic régime
and in mixed convection régime). This interaction is due to the deflection
of the stream line and to the difference of pressure due to the curvature:

pup − pdown = A′′(x̄)
∫ 1

0
U2
p (ỹ)dỹ.

In fact, suppose that there is a small perturbation of pressure in the flow
near the lower wall. Suppose that this small perturbation is a small increase
of pressure (say pdown), the response of the flow is a deceleration so that −A
start to zero and becomes positive, so −A′ is positive (or A′ negative). This
deceleration promotes a positive displacement −A in the Lower Deck which
affects the stream lines in the Main Deck and in the Upper Lower Deck as
well. In this Upper Lower Deck, it is a A displacement (sign reversed) so
the pressure (say pup) the exact opposite of the small increase of pressure of
the Lower Deck, it decreases: pup = −pdown < 0.

Then the second derivative of A is negative, so −A has a positive curva-
ture, so that A′ is more negative, A decreases a bit more, the displacement
−A increases a bit more, the velocity decreases a bit more so that the pres-
sure increases .... this increase of pressure increases again the displacement
−A, so it is a selfinduced interaction of the flow.

−A

pup

pdown

−A′′ > 0

pdown

Figure 18: Self induced interaction: ”upstream influence”, increase of pdown
increases −A, which in turn decreases pup, as pup = −pdown, the cross pres-
sure variation pup − pdown = A′′

∫ 1
0 U

2
pdy gives an positive curvature for −A

so −A increases again increasing pdown.

To put formulas on words, we look whether we can obtain eKx solutions
on the linearized system, with K > 0. u1 = eKxφ′(y) v1 = −eKxφ(y), p1 =
eKxP with φ(0) = φ′(0) = 0 and say φ′(∞) is the value of the perturbation
of A; as the incompressibility is fulfilled, the momentum is

Kyφ′(y)− φ(y) = −KP +
∂2φ′(y)
∂y2

, (37)

so ∂2φ′′(y)
∂y2

= Kyφ′′(y), and as φ′′(0) = KP , so φ′′ is K2/3Ai(K1/3y)P/Ai′(0)

and φ′ = K1/3P
Ai′(0)

∫ y
0 Ai(ξ)dξ so that we deduce φ′(∞) = K1/3

3Ai′(0)P For the
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upper layer, the same will be done with a change of sign, the pressure relation
is then

−3Ai′(0)
K1/3

− 3Ai′(0)
K1/3

= K2(
1
30

) hence K =
(
− 180Ai′(0)

)3/7
.

This is an eigen solution of the system. K ∼ 5.187 > 0. So self induced
interactions may appear in a pipe flow, in fact those solutions are the influ-
ence of the downstream accident on the upstream as we will see on figure 20.

This upstream influence is clear as well from linearised expression of

eq (36) which is: Â1 =
f̂1 + ĝ1

2(1− 1/30
6Ai′(0)(−ik)7/3)

, as one clearly see as well

that if the channel is symmetrical, Â1 = 0. Further more in going back in
real space there is a pole (1 − 1/30

6Ai′(0)(−ik)
7/3) which is of course the value

−ik = (
(
− 180Ai′(0)

)3/7). So the upstream influence may be interpreted as
the existence of this pole.

3.6.7 Example of linear computation

On figure 19 we plot the perturbation of skin friction in the linear case for
the A = 0 case and the A′′

∫ 1
0 U

2
pdỹ case. We see the that the case A = 0

presents no upstream influence as already mentioned, but we clearly see that
the case with A′′ promotes upstream response of the flow (before the first
position of the bump, the pressure has increased and the skin friction has
decreased). On figure 20 we plot the eigen solution in exp(Kx) and the A′′

response.
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-0.4

-0.2

0

p
1

Figure 19: Linear perturbation of skin friction τ1 (left) and pressure p1

(right) over a bump f1(x) = cos(πx/2)2, for −1 < x < 1. The A = 0 is in
plain line and the A′′ case is in dashed line.
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Figure 20: Linear perturbation of skin friction τ1 (left) and pressure p1

(right) over a bump f1(x) = cos(πx/2)2, for −1 < x < 1 In the A′′ case.
The eigen solution exp(Kx) is plotted as well.

4 Conclusion

One important scaling is the 1/3 one which comes from the balance

y
∂

∂x
∼ ∂2

∂y2
.

This balance was first seen by Lévêque. This scaling represents a balance
between convection and diffusion, it is valid for momentum as well.
One second point is the possibility of separation of the flow in the thin layer
near the wall where the basic flow is linear.
One third point is the parabolicity of the flow in the lower layer.
One fourth feature is the upstream influence when there are interactions
with other part of the flow.
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