bh. Other exact selutions

The preceding examples on one-dimensional flows were very simple, becanse the
convective acceleration which renders the equations non-linear vanished identically
cverywhere. We shall now proceed to examine some exact solutions in which these

terms are retained, so that non-linear equations will have to be considered. We shall,
however, restrict ourseclves to steady flows.

| 9. Stagnation in plane flow (Hiemenz flow). The first simple example of this
Boundary-Layer The()ry type of flow. represented in Fig. 5.10. is tlm‘f leadine to a stagnation noint in nlane
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Fig. .10, Stagnation in plane flow
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i, e., two-dimensional flow. The velocity distribution in frictionless potential flow
in the neighbourhood of the stagnation point at & =y =0 is given by

; UV=ax; V=-—ay,
Seventh Fdition N

where @ denotes a constant. This is an example of a plane potential flow which ar-
rives {rom the y-axis and impinges on a flat wall placed at y = 0, divides iuto two
streams on the wall and leaves in both directions. The viscous flow must adhere to

the wall, whereas the potential flow slides along it. In potential flow the pressure is
MoGRAW-HLLL BOOK GOMPANY given by Bernoulli’s equation. If p, denotes the stagnation pressure, and p is the
New York - St. Louis - San Francisco - Auckland - Bogoté - pressure at an arbitrary point, we have in potential flow
Diisseldorf - Johannesburg - London « Madrid - Mexico - Montreal -

New Delli - Panama - Paris - Sio Paulo - Singapore + Sydney - Tokyo * Toronto Po — P = 4 p(U2 -V =10 a®(x? |- y*) .

For viscous llow, we now make the assumptlions

w=xf(y); v=—[y), (5.34)

and

P — p=Leax® |- F(y)]. (5.35)

In this way the equation of continuity (4.4¢) is satisfied identically, and the two
Navier-Stokes equations of plane flow (4.4a,b) are sufficient to determine the func-
tions f{y) and F({(y). Substituting eqns. (5.34) and (5.35) into eqn. (4.4a,b) we ob-
tain two ordinary differential equations for { and F':

frz . i /tr — 2 - ',f"’ (536)

and

[ =1a2F —vj". (5.37)
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b. Other exact solutions 97

The boundary conditions for f and F are obtained from % == » == ¢ at the wall, where
¥ == 0, and p == p, at the stagnation point, as well as from # == {7 —a z at a large
distance from the wall. Thus

y=0: f=0: [ :=0: F-=0; Yoo [

Kqus, (5.36) and (5.37) are the two dilferential equations for the functions {(y) and
F(y) which determine the velocity and pressure distribution. Since F(y) does not
appear in the first equation, it is possible to begin by determining f(y) and then to
proceed to find F(y) from the second equation. The non-lincar djfferential equation
(5.36) eannot be solved in closed terms. In order to solve it numerically it is con-

venient to remove the constants a2 and » by putting
[(y) = A ().
0(2 4‘12((;{7’2 _¢¢r,) — ng ' y A a::d)nf’

W ==y
Thus

where the prime now denotes differentiation with respect to 2. The coellicients of the
equation become all identically equal to unity il we put.

a2 A% = a2 oy At a2

A:}/;&; oc:]/—f

n=]/‘-:,-- yi 1y =Var$ (.

or

so Lhat

(5.38)

The differential equation for ¢(7) now has the simple form
¢ru _’*¢¢” . ¢12 _'_ I :()
with the boundary conditions

n=0: ¢ =0, ¢ =0,

The veloeity component parallel to the wall becomes

(5.39)

7] - XD

¢ 1.

u

= lrm=¢0.

The solution of the differential equation (5.39) was first given in a thesis by K. ilie-
menz [12] and later improved by L. Howarth [14]. It is shown in Fig. 5.11 (sce
also Table 5.1). The curve ¢'(n) begins to increase lincarly at » =0 and tends
asymptotically to unity. At approximately » = 24 we have ¢ =099, i. e. the
final value is reached there with an accuracy of 1 per cent. If we consider the corre-
sponding distance from the wall, denoted by y = §, as the boundary layer, we have

b=}/ =24]/2.

(5.40)

98 V. Exact solutions of the Navier-Stokes cquations

Table 5.1.  Functions occurring in the solution of plane and axially symmetrical flow wit
stagnation point. Plane case from L. Howarth [14]; axially symmetrical case fror

N. Froessling [8]

plane axially aymmetrical
a dé u d2é e 2a dé u d2é
"“’Vyy ? i =T ap |2 ‘:”sz $ aFr=u| a

0 0 0 1-2326 0 0 0 1-3120
0-2 0-0233 0-2266 1-0345 0-2 0-0127 0-1755 1-1705
04 0-0881 04145 0-8463 04 0-0487 0-3311 1-0298
0-6 0-1867 0-5663 0-6752 -6 0-1054 0-4669 0-8910
08 0-3124 0-8859 0-5251 0-8 0-1799 0-5833 0-7563
1-0 0-4592 0-7779 0-3980 1-0 0-2695 0-6811 0-6283
1-2 0-6220 0-8467 0-2938 1-2 0-3717 0-7614 0-5097
1-4 0-7967 0-8968 0-2110 1-4 0-4841 0-8258 0-4031
i-6 0-9798 0-9323 0-1474 1-6 0-6046 0-8761 0-3100
I8 1-1689 0-9568 0-1000 1-8 0-7313 0-9142 0-2315
2-0 1-3620 0-9732 0-0658 2-0 0-8627 0-9422 0-1676
2:2 1-5578 0-9839 0-0420 2-2 0-9974 0-9622 0-1175
2-4 1-75563 0-9905 0-0260 24 1-1346 0-9760 0-0798
26 1-9538 0-9946 0-0156 26 1-2733 0-9853 0-0523
2-8 2-1530 0-9970 0-0090 2-8 1-4131 0-9912 0-0331
3-0 2-3526 0-9984 0-0051 3-0 1-5536 0-9949 0-0202
32 2-5523 0-9992 0-0028 32 1-6944 0-9972 0-0120
34 27522 0-9906 0-0014 34 1-8356 0-9985 0-0068
36 2-9521 0-9998 0-0007 3-6 1-9769 0-9992 0-0037
3-8 3-1521 0-9999 0-0004 38 21182 0-9996 0-0020
4-0 3-3521 1-0000 0-0002 4-0 2-2596 0-9998 0-0010
4-2 3-56521 1-0000 0-0001 4-2 2.4010 0-9999 0-0006
4-4 37521 1-0000 0-0000 44 2-56423 0-9999 0-0003
4.6 3-9521 1-0000 0-0000 4-6 2-6837 1-0000 0-0001

Hence again, as before, the layer which is influenced by viscosity is small at low
kinematic viscositics and proportional to J/ ». The pressure gradient op[dy becomes
proportional to pa Yva and is also very small for small kinematic viscosities.

It is, further, worth noting that the dimensionless velocity distribution ulU
and the boundary-layer thickness from eqn. (5.40) are independent of z, i. e., they
do not vary along the wall. '

]

The type of flow under consideration does not occur near a plane wall only, but
also in two-dimensional flow past any cylindrical body, provided that it has a blunt
nose near the stagnation point. Tn such cases the solution is valid for a small neigh-
bourhood of the stagnation point, if the portion of the curved surface can be replaced
by its tangent planc near the stagnation point.
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