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Abstract

An integral Interacting Boundary Layer theory is presented for the
steady laminar flow in a asymmetrical bidimensional channel at high
Reynolds number. The effect of asymmetry of the geometry is taken
into account into the ideal fluid pressure expression. The effect is small
but noticeable. Comparison with a Navier Stokes solution shows the
trend of asymmetry: increasing the pressure drop on the more curved
wall, decreasing it on the other. Separation and reattachment of the
boundary layer are obtained and compare well.

1 Introduction

Computing the flow in locally constricted pipe is important in numerous
applications in biomechanics. Of course this can be achieved with accuracy
through Navier-Stokes solvers. For example, in local constrictions of blood
vessels (Berger and Jou [1], Siegel et al. [20]), in veins (collapsible tubes
Luo & Pedley [14]) in aneurysms (or dilated tube, Budwig et al. [2]), or in
the upper airway (Shome et al. [19]). Here we will focus on steady laminar
flows at high Reynolds number that can be considered as bidimensional, but
not symmetrical. A typical example is on figure 1. In fact we will study a
model example. Our aim is to present the simplest model for steady laminar
pipe flow at large Reynolds number and to observe the effect of asymmetry.

We will compare some NS (Navier Stokes) solutions to solutions of
asymptotic equations because we think that they provide a better under-
standing of the flow structure and relevant scalings. Using asymptotic equa-
tions, computational time is drastically reduced. Therefore, parameters may
be changed easily and their influence can be thoroughly investigated.
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Most of such simplified previous studies considered symmetrical flows
(Pelorson et al. [16], Lorthois et al. [13], Lagrée et al. [10], Lagrée et
al. [11], de Bruin et al. [6] and Kalse et al. [9]). In [10] and [9] it was
observed that integral Interacting Boundary Layer and NS give very similar
results. Predictive simplified formula for values of the skin friction and for
the pressure drop based on the boundary layer were presented in [13] and
[10]. In [11], the links between the ”Triple Deck” theory and Interactive
Boundary Layers in internal flows is presented. Furthermore [9] proposed
part of the equations for a non symmetrical channel but did not solved them.
Hence, we present an asymptotic derivation of the effect of non symmetry in
the framework of the Interactive Boundary Layer theory (IBL). This theory
is presented in Cebeci & Cousteix [3] or Sychev et al. [22], as not complete
in the asymptotical framework. But, they point out that numerous results
of calculations for different flows showed good agreement with experimental
data in the description of flow separation in aerodynamics. In Veldman
[24] the IBL and its links with the ”Triple Deck” theory in open flows is
explained. Some industrial examples comparing IBL and experiments are
presented too.

Mainly, the descriptions of IBL use the length of the bump as fundamen-
tal scale (say L). The Reynolds number is then constructed with this length
(RL = U0L/ν, here we are in a 2D channel, h0 is the distance between
the two plates, and U0h0 is the flux). The boundary layer is then scaled

by LR
−1/2
L , the displacement thickness is about 1.7LR

−1/2
L . This length L

must be smaller that the length of entry (say Le) which is such that the two

boundary layers merge between the plates: LeR
−1/2
Le

= h0. This length is
Le = h0(U0h0/ν). The idea of the IBL theory is to couple the ideal fluid
flowing in the core to variations of the displacement thickness of the bound-
ary layer. For example, before the constriction, where the walls are flats, it
means that the ideal fluid in the pipe experiments no more the section h0

but a smaller section reduced by twice 1.7LR
−1/2
L . So the flow is acceler-

ated. In ”classical boundary layer theory” it is impossible: the Reynolds is

infinite (R
−1/2
L = 0). The entry length is reject at infinity. This boundary

layer effect is an order two effect (Van Dyke [23]), the velocity remains U0.

But in ”IBL theory” this is possible. It means that R
−1/2
L is small but not so

much. Hence, effect of second order and first order are mixed: the boundary
layer retroacts on the ideal fluid. This was the paradox of IBL.

But, recently, Dechaume et al. [7] (and Cousteix and Mauss [4] and [5])
established on rational basis the IBL equations. They break the paradox.
They use a ”modified Van-Dyke” principle and ”successive complementary
expansion method”. The existence of a small parameter in the equation is
then no more a problem. The link with ”Triple Deck” theory is done as well.
They show that with this technique the IBL equations are fully justified.

Here, as we are in pipe, we prefer to use h0 to construct the Reynolds

2



(Re = U0h0/ν) and to scale the boundary layer. So to have a small boundary
layer as just mentioned, we have to be near the entrance of the pipe at a
distance smaller than Le = h0(U0h0/ν) (so that we are before the merging of
the boundary layers). Compared to the previous approach where we gave L,
it is just a change of scale of the boundary layer equations. This length must
be larger than the distance between the plates in order to do the expansion
in the ideal fluid. But we will observe that the system is very robust and may
be used even if the width of the bump is h0. One reason of this robustness
is that the flow is accelerated, so that the boundary layer is thinner. The
other one belongs to magic of asymptotic expansion which give often good
results even if the small parameter is not so small (Van Dyke [23]).

First we present the problem and the basic scales for the NS problem.
Then we introduce a simplified set of equations: Reduced Navier Stokes.
The integral IBL system is introduced thereafter. A comparison between
the three models shows that the integral IBL catches most of flow features
(with a very short computational time, about 500 times less).

2 Equations

2.1 Navier Stokes

We solve the Newtonian steady laminar incompressible bidimensional Navier
Stokes equations with the numerical code Castem 2000 [15]. The geometry
consists in a straight channel with a bump on one wall (figure 1), we used the
channel height h0 to nondimensionalise the scales of x∗ and y∗. A Poiseuille
velocity (of total flux U0h0 equal to 1 in non dimensional scales) is imposed
at the entrance, a zero stress is imposed at exit. The exit and the entrance
are far enough from the stenosis to avoid their influences. We present (on
fig. 1 to 5) only results for Re = 500 (Re = U0h0/ν). Increasing the
Reynolds increases the number of points and the computational time. It
creates problems at the output where the jet may oscillate. But we do not
focus here on the NS problem.

2.2 Reduced Navier Stokes

We now present two simplifications of the NS equations issued from bound-
ary layer theory (Schlichting [18], Sychev et al. [22], Rubin and Tannehill
[17]). The first simplification consists in neglecting the transverse variation
of pressure. This leads to a system we call RNSP (Reduced Navier Stokes/
Prandtl) because this is a reduced system obtained from Navier Stokes and
because this is in fact the Prandtl partial differential equations (with differ-
ent boundary condition than in the classical boundary layer theory). It has
been shown that this system is a good approximation of NS in symmetrical
stenoses (Lagrée et al. [10]) and that its axisymmetrical version (Lagrée &
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Lorthois [11]) includes most of IBL/ Triple Deck/ Double Deck asymptoti-
cal régimes. These equations are obtained from NS by supposing that the
transverse scale is smaller than the longitudinal one and that the Reynolds
number is large. To settle the equations, u∗ is scaled by U0, v∗ by U0/Re,
x∗ by h0Re, y∗ by h0 and p∗ by ρU2

0 . The flow is supposed quasistatic:
Strouhal number is low, in fact the spatial acceleration is large. The system
is:

∂

∂x
u +

∂

∂y
v = 0, u

∂

∂x
u + v

∂

∂y
u = −

∂

∂x
p +

∂2

∂y2
u, 0 = −

∂

∂y
p. (1)

The boundary conditions are no slip u(x, y = fb(x)) = 0, v(x, y = fb(x)) = 0
at the lower wall defined by fb(x) (whose dimension is h0) and at the upper
wall u(x, y = 1−fh(x)) = v(x, y = 1−fh(x)) = 0. At the entrance, pressure
is zero, the first velocity profile is given (for example a flat profile u = 1,
v = 0, or Poiseuille).

We note the invariance by Prandtl transform (yp = y−fb(x)) that allows
to solve the problem from yp = 0 to yp = 1 − fh(x) − fb(x).

We note that there are two transverse boundary conditions (u(x, y =
fb(x)) = 0 and u(x, y = 1−fh(x)) but there is no outflow boundary condition
(only u = 1 is given at the entrance). This is because the system is parabolic
in x (u∂xu ≃ ∂2

yu). The Navier Stokes equations must have an output
condition, which is not the case here.

2.3 IBL

2.3.1 Ideal Fluid

Previous studies used mainly a symmetrical approximation, so that ideal
fluid pressure or ideal fluid velocity was a function of the longitudinal vari-
able alone. We want to introduce a small effect of transverse variation of
pressure. Then we will couple the ideal fluid with the two boundary layers.

We solve linearized Euler equations in a channel with a slowly varying
indentation with (ξ = εx∗/h0, y = y∗/h0). Thereafter ξ will be identified
with x. In practice, we will discuss the flow with a flat upper wall (yh = 1
or fh = 0), with an indentation at the lower wall (yb = fb). The maximum
value of fb is α the degree of stenosis, the indentation may be severe, it
means that α may be close to 1. Expanding as:

u = U0(ξ) + εu1(ξ, y) + ε2u2(ξ, y) + ..., (2)

v = εv1(ξ, y) + ε3v3(ξ, y) + ..., (3)

p = p0(ξ) + εp1(ξ, y) + ε2p2(ξ, y) + ..., (4)

so that Euler system (we note that the perturbations u1 and p1 are zero) is
at order 0 and 1:

U0
∂U0

∂ξ
= −

∂p0

∂ξ
, (5)
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and

ε
∂U0

∂ξ
+ ε

∂v1

∂y
= 0. (6)

(The flow was supposed irrotational ∂yU0 −O(ε2) = 0). Writing the no slip
condition on the upper and lower walls (resp. yh and yb):

v1(ξ, yb = fh) = U0
∂fb

∂ξ
, v1(ξ, yh = 1 − fh) = −U0

∂fh

∂ξ
,

we integrate twice the continuity equation (6) to obtain the classical expres-
sion of U0 and by the momentum equation (5) we obtain P0:

U0(ξ) =
1

1 − fb(ξ) − fh(ξ)
, P0(x) =

1

2
−

1

2

( 1

1 − fb(ξ) − fh(ξ)

)2
. (7)

The expression for transverse velocity follows:

v1(ξ, y) = U0
∂fb

∂ξ
+

y − fb

1 − fh − fb
(−U0

∂fb

∂ξ
− U0

∂fh

∂ξ
) (8)

The next order is:

ε2U0
∂v1

∂ξ
= −ε2 ∂p2

∂y
, (9)

ε3 ∂U0u2

∂ξ
= −ε3 ∂p2

∂ξ
, (10)

ε3 ∂u2

∂ξ
+ ε3 ∂v3

∂y
= 0. (11)

From the integration by y of the incompressibility at order 0 and 2, we
obtain that ∂ξ(

∫ yh

yb
(U0 + ε2u2)dy) = 0, once developed using (8) and from

Euler equation (10) we then obtain
∫ yh

yb
p2dy = 0. After some algebra, from

(9) and (8), we find the pressure value at order 2 on the lower wall:

p2(ξ, fb) =
−4 f ′

b(ξ)
2
− 2 f ′

b(ξ) f ′

h(ξ) + 2 f ′

h(ξ)2

6 (−1 + fb(ξ) + fh(ξ))
+

+
(−1 + fb(ξ) + fh(ξ)) (2 f ′′

b (ξ) − f ′′

h (ξ))

6 (−1 + fb(ξ) + fh(ξ))
, (12)

and the pressure value at order 2 at the upper wall:

p2(ξ, 1 − fh) =
−

(

−2 f ′

b(ξ)
2 + 2 f ′

b(ξ) f ′

h(ξ) + 4 f ′

h(ξ)2
)

6 (−1 + fb(ξ) + fh(ξ))
+

+
(−1 + fb(ξ) + fh(ξ)) (f ′′

b (ξ) − 2 f ′′

h (ξ))

6 (−1 + fb(ξ) + fh(ξ))
. (13)
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We define the total transverse pressure drop as ε2(p2(ξ, yh)−p2(ξ, yb)), which
is a bit more simple:

ε2(p2(ξ, yh) − p2(ξ, yb)) = ε2
( (f ′

h(ξ)2 − f ′

b(ξ)
2)

1 − fb(ξ) − fh(ξ)
+

(f ′′

h(ξ) − f ′′

b (ξ))

2

)

. (14)

Of course, a symmetrical channel (fb = fh) gives ∆P0 = 0, in practice we
will use fh = 0. We note that Kalse et al. [9] derived with more severe
approximations this same pressure drop (but not (12) nor (13)). Here the
result comes only from the hypothesis.

2.3.2 Boundary layer

Up to now in this section, we supposed that the fluid was ideal. Here we
introduce the Boundary Layer equations which may be deduced from Navier
Stokes supposing that the Reynolds number is large and that viscous effects
are restricted to two thin layers near the walls (see figure 2). We simplify
much more the boundary layer in using the integral Kármán equation ([18],
[8]). We define δb

1 and δh
1 the displacement thicknesses at the lower and the

upper walls. The choice of the scalling comes here from the RNSP case, x
is scaled by h0Re and δb,h

1 by h0, in fact the boundary layer will be small
at those scales (see Lagrée & Lorthois [11]). This slow variation in x allows
to identify Re−1 and ε. So, this gives the following system where the ideal
fluid (computed in the preceding section) promotes the boundary layer. We
have two boundary layers, one at the top:

d

dx
(
δh
1

H
) +

δh
1

uh
e

(1 +
2

H
)
duh

e

dx
=

f2H

δh
1 uh

e

, δh
1 = F (uh

e ), (15)

and another at the bottom:

d

dx
(
δb
1

H
) +

δb
1

ub
e

(1 +
2

H
)
dub

e

dx
=

f2H

δb
1u

b
e

, δb
1 = F (ub

e). (16)

Initial condition is for example δh,b
1 (0) = 0 and uh,b

e (0) = 1. In the classi-
cal approach, δ1 is obtained through the knowledge of ue, which we write
formaly δb,h

1 = F (ub,h
e ). To solve these boundary layer equations, a closure

relationship linking H and f2 to the velocity and the displacement thickness
is needed. This is of course a strong hypothesis. Defining Λ1 = δ2

1
due

dx , (of
course it is δb

1, u
b
e or δh

1 , uh
e ) the system is closed from the resolution of the

Falkner Skan system as follows:

H =

{

2.5905e−0.37098Λ1 if Λ1 < 0.6
2.074 if Λ1 > 0.6

}

, f2 = 1.05(−H−1 + 4H−2).

It means that we suppose that each profile remains a Falkner Skan one in
the boundary layer.
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This closure allows flow separation for decelerated flows, we will see in
the next section that one has to solve these equations (15 and 16) in an

”inverse way” (ub,h
e = F−1(δb,h

1 )) to compute flow separation.
Those simplifications are in the spirit of Lorthois et al. [13], but here

in 2D. Recently, Kalse et al. [9] used nearly the same modelisation.

2.3.3 Integral IBL

The Integral Boundary Layer equations (IBL) suppose that the wall is no
more at the bottom yb = fb and at the channel height yh = 1 − fh but it is
changed by the amount of the displacement boundary layer thickness δh

1 at

the upper wall and δb
1 at the lower wall. That is why we scaled δb,h

1 by h0

and why we identified ε to be Re−1 and x = ξ.
This gives a coupled system where the ideal fluid promotes the boundary

layer: (15) and (16) that, in growing, retroacts (with the help of the concept
of displacement thickness) on the ideal fluid through the flux conservation.
The mean velocity (7) is no more (1 − fb(x) − fh(x))−1 but is now (1 −

(fb(x) + δb
1(x)) − (fh(x) + δh

1 (x)))−1. The ideal fluid relation is now:

P0(x) =
1

2
−

1

2

( 1

1 − (fb(x) + δb
1(x)) − (fh(x) + δh

1 (x))

)2
. (17)

Using IBL idea (where first and second order are mixed), we say that the
pressure are in fact pb = P0(x) + ε2pb(x, yb = 1 − (fb + δb

1)) and ph =
P0(x)+ε2ph(x, yh = fh+δh

1 ). The pressure at the bottom (pb(x, yb = fb+δb
1))

is (12) with fb changed by fb+δb
1; the same for ph(x, yh = 1−(fh+δh

1 )) which
is (13) with fh changed by fh +δh

1 . As the expressions for pb(x, yb = fh +δh
1 )

and ph(x, yh = fh + δh
1 ) are a bit complicated, we just write their difference

ph
− pb = ∆P0:

∆P0 = ε2
(((f ′

h + δ′h1 )
2
− (f ′

b + δ′b1 )
2
)

1 − (fb + δb
1) − (fh + δh

1 )
+

(

f ′′

h + δ′′h1 − f ′′

b − δ′′b1

)

2

)

. (18)

Note that we recover a result that looks like Smith [21] result in pipe
flow, the transversal perturbation of pressure in a perturbed Poiseuille flow
is ph−pb = A′′/30 where −A is a displacement of the stream lines as δb

1− δh
1

is. Of course the two configurations are very different.
We note that this coupling relation produces upstream influence, it means
that before the bump, the flow ”knows” that it is comming. This creates
solutions in ekx with k > 0, we see it on the numerical solutions.

2.3.4 Numerical resolution of the Integral IBL

We solve the interactive system by a semi inverse method (Le Balleur [12]).
This means that the boundary layer is solved in an inverse way (the displace-
ment thickness is imposed and the velocity is a result of the computation).
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This inverse way allows to compute flow separation (the direct way would
lead to a singularity at separation). The ideal fluid is computed in ”di-
rect way” from the geometry changed by the amount of the boundary layer
displacement thickness.

At iteration n, we have a set of two displacement boundary layer thick-
ness (δb

1)
n and (δh

1 )n. They give, by solving in an inverse way (15) and
(16), two associated boundary layer velocities: (uh

e )n = F−1((δh
1 )n) and

(ub
e)

n = F−1((δb
1)

n).
The two corresponding pressures in the boundary layers (ph

e )n and (pb
e)

n

are computed from these velocities, i.e. Bernoulli:

(p(b,h)
e )n =

1

2
(1 − ((u(b,h)

e )n)2). (19)

From the expressions of ph(x, yh = fb + δb
1)) and pb(x, yb = fb + δb

1)) (defined
before equation 18), the ideal fluid pressures are computed. A new boundary
condition associated to the second derivative must be used. At the output
∂ph

∂x = 0 and ∂pb

∂x = 0 are imposed.
The semi inverse relaxation is done as follows (figure 3):

(δh
1 )n+1 = (δh

1 )n + λ((ph)n − (ph
e )n) (20)

(δb
1)

n+1 = (δb
1)

n + λ((pb)n − (pb
e)

n). (21)

The relaxation parameter λ is chosen by trial and error in order to obtain
convergence. In order to obtain estimate of λ the theory proposed by Le
Balleur [12] is relevant.

3 Some numerical comparisons

We compare then the NS results to the RNSP and IBL results. We suppose
that the upper wall is flat fh = 0, and that the lower wall is a given function
of x∗, for example the following function is close to half a circle:

ζ =
x∗

− x∗

c

4αh0/3
, fb(ζ) = 1 −

ζ2

2
−

ζ4

8
−

ζ6

16
+

1445ζ8

13122
−

1385ζ10

59049
,

which is nearly
√

1 − ζ2 around ζ = 0 up to order ζ8. Notice that on
every figure we used the physical longitudinal scale (h0) to plot the curves;
numerically in (1) and (15, 16), the width of the bump is of order (1/Re) in
our scales.

The first curves show the pressure (Fig. 4) and the skin friction (Fig
5) computed by RNSP and NS. We see that the pressure p(x) from RNSP
is an approximation of the mean NS pressure. The NS pressure displays a
larger drop just after the throat on the curved wall and a smaller pressure
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drop on the flat wall. The recompression is over predicted by RNSP. In the
symmetrical cases ([11]) the difference was smaller.

The RNSP skin friction overall distribution looks like the NS one. There
is a kink in the skin friction at the flat wall which does not exist in NS
because of the smoother pressure gradient on the flat wall.

The next curves show the pressure (Fig. 6) and the skin friction (Fig.
7) computed by integral IBL and NS. They show ”upstream influence”, the
upstream part of the flow is influenced by the downstream part. On the
pressure curve, before the throat, the upstream influence of the bump is to
produce an over pressure drop on the curved wall. This upstream influence
comes from the order two derivative in the transverse pressure relation (Eq
18), it has an exponential behavior (ekx with k > 0). This influence is
responsible for the incipient separation before the bump, increasing α leads
to flow separation before the bump. This upstream influence is due to the
curvature of the stream line. It does not exist in the symmetrical case.

The integral IBL skin friction looks like the NS one, but it is overesti-
mated by the IBL (results from integral IBL will never be perfect because
there is a strong closure hypothesis). The integral IBL well predicts the po-
sition of the point of separation but overpredicts the negative skin friction.
The incipient separation before the bump is well predicted and is related to
the upstream influence.

The displacement functions δb
1 and δh

1 (IBL flat) are plotted on figure
(Fig. 8). A large value of the displacement thickness is associated to a
deceleration of the flow and eventually to boundary layer separation. A thin
value is associated to the large acceleration at the throat. The difference of
pressure ph

− pb is plotted too. As this difference of pressure has scale Re−2

the effect of asymmetry becomes smaller with larger Re.
The integral IBL gives good trends in the influence of asymmetry, its

main advantage is that it is a extremely quick method compared to full
Navier Stokes which is time and memory consuming. For example, using
a Linux x86 workstation at 3.0 GHz we may roughly compare the three
methods. Navier Stokes solver CASTEM takes about 15 minutes to compute
the flow (200 times 16 nodes) for a maximal error of 10−5 between two
iterations. RNSP solver takes 2 seconds to compute the flow (on a very fine
mesh 3000 times 1000). Finally, the integral IBL solves a symmetrical case
in less than 0.5 second; it needs 2 more seconds to obtain a maximal error
of 10−5 between two iterations in the non symmetrical case (in about 800
iterations). Those figure are indicative, faster NS solvers may exist, and our
code is not optimised.

Increasing the Reynolds number will disadvantage the Navier Stokes
computation: the IBL remains always precise, but the NS mesh has to be
refined.

9



4 Conclusion

We have presented here a simplified model issued from asymptotic analysis.
The expressions of the pressure at the upper and lower wall were presented.
The effect of asymmetry is an order two effect. The integral Boundary
Layer equations are solved together with the ideal fluid equations thanks to
Interactive Boundary Layer Theory.

A symmetrical pipe has no upstream influence, it means that changing
the downstream conditions does not change the flow upstream. This is
broken by the asymmetry. Concerning the pressure, the effect of asymmetry
is to increase the pressure drop at the curved bottom wall and to lower the
pressure at the flat upper wall. The smallest pressure is on the curved wall,
the minimum pressure on the bottom wall is more upstream that the pressure
minimum on the top wall. The two minima are after the throat. A massive
separation appears after the throat on the curved wall, a small separation
appears before the throat on the curved wall, no separation occurs at the
flat wall. The effect of downstream on upstream that is not present in the
RNSP theory is a pure effect of the wall and displacement curvature. This
effect creates an increase of pressure on the lower wall which is responsible
for the upstream flow separation.

Solving the equations of IBL theory is very fast (from factor 2000 in the
symmetrical case to a factor 500 in the non-symmetrical case), so we plan to
use it in biomecanical fluid structure interactions such like the Obstructive
Sleep Apnea syndrome.
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Figure 1: A zoom of the channel with its stenose. The constriction is a
smoothed ellipsis (the lower wall is fb, the upper is here flat, fh = 0). The
transverse scale is adimensionalised by the unperturbed channel width h0.
Here, the entry profile is a Poiseuille profile (u = UPois = y(1 − y) and
v = 0), but any other is possible. The NS computational domain is larger
to avoid entrance and output effects, iso pressure (gray scale) and the mesh
(white grid) are plotted.
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Figure 2: A larger zoom of the channel (here a RNSP computation at Re =
500) with the stenose and the upper flat wall. The two upper and lower
boundary layers and the ideal fluid appear from the computation. The
interaction between the ideal fluid and the boundary layers is the core of
the Interactive Boundary Layer theory.
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Figure 3: A chart of the iterative ”semi inverse” interaction: the two bound-
ary layers are solved in an inverse way. The correction of boundary layer
thickness is proportional to the difference of pressure.
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Figure 4: Comparison of RNSP and NS pressures, RNSP solution is an
approximation of the two NS pressures. The geometry is plotted as well.
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Figure 5: Comparison of RNSP and NS wall shear stress. The flat wall
shear stress is over predicted by RNSP at the maximum, but in the wake
(x∗/h0 > 1) it is better.
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Figure 6: Comparison of integral IBL and NS pressures. The IBL approach
well predicts the over pressure on the flat wall and the positions of the
minima of of the pressures after the throat.
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Figure 7: Skin friction, comparison of integral IBL and NS. The integral IBL
over predicts the maximum of skin friction but well predicts the position of
the point of separation. The incipient separation before the bump is well
predicted.
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Figure 8: Left: the displacement functions δb
1 (IBL bump) and δh

1 (IBL flat).
A large value of δ1 is associated to boundary layer separation. A thin value
is associated to the large acceleration at the throat. Right: the difference
of pressure ph

− pb is plotted, the ”final effective” channel is plotted: 1− δh
1

and fb + δb
1; the jet due to separation is visible.
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