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Abstract

Cohesion forces strongly alter the flow properties of a granular material. To investigate this influence, we focus on a simple configuration: the
collapse of a cohesive granular column. To do so, we adopt a numerical approach and implement a peculiar rheology in a Navier—Stokes
solver (Basilisk): the so-called u(I)-rheology, usually used for dry granular materials, supplemented by a yield stress for cohesion. With this
approach, we recover the stability of the column, assuming the classical Mohr—Coulomb criterion for failure. We then compare this approach
with a code based on contact dynamics, which implies forces at the grain scale: we recover the stability of the column as well. Furthermore,
this comparison enables us to estimate the macroscopic yield stress based on the cohesive contacts between grains, which bridges the gap

between continuous and discrete approaches of cohesive granular matter. © 2020 The Society of Rheology.

https://doi.org/10.1122/8.0000049

l. INTRODUCTION

Cohesion forces strongly alter the flow properties of a gran-
ular material. Instead of flowing homogeneously, grains aggre-
gate and flow intermittently. In nature, a loss of cohesion in
soils can trigger catastrophic landslides [1]. In industrial pro-
cesses, cohesion sometimes prevent materials, like gypsum
or plaster, to flow properly. In worst cases, it can clog and
stop the flow during a process chain. Techniques have been
devised to characterize these materials and, in particular, deter-
mine their “flowability.” Although these measurements can be
useful to compare two powders or give qualitative properties
of the material, they still lack a physical base.

To this end, cohesive forces have been modeled at the grain
scale, theoretically and numerically. These cohesion forces can
be van der Waals forces [2], electrostatic forces, or induced by
capillary bridges [3]. However, it is not an easy task to link
these properties to the macroscopic flow of an assembly and, in
particular, to the friction coefficient or the yield stress. Recently,
Gans et al. [4] elaborated a coating agent based on a polymer
that enables them to get a stable and reproducible cohesive gran-
ular material. Doing so, they linked the force between two
grains with the macroscopic rheology of the material.

In the wake of these results, we investigate numerically the
link between the rheology of cohesive material and cohesive
forces at the grain scale. To do so, we develop two numerical
implementations based on different approaches: a continuum
approach based on the macroscopic, material scale, and a dis-
crete approach based on the grain scale.

From the macroscopic point of view, we describe the
material as a fluid of a peculiar rheology. In the first instance,
the u(l)-rheology is a good candidate as it successfully
modeled the flow of dry granular materials [5—7]. According
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to the latter, the shear stress 7 is related to the pressure P
through [8-10]

|z] = u()P, (1

where u(7) is the friction, which can involve the static friction
coefficient u,, as well as a complex dependence on the shear
rate encapsulated by the inertial number /.

To take into account cohesion in the material, we intro-
duce a yield stress 7. in the rheology such that

T =1, +ul)P, 2

and then solve the flow with a Navier-Stokes solver
(Basilisk) [5].

We compare these simulations with a code based on contact
dynamics [11,12], solving the motion of individual grains and
giving access to individual grain-scale quantities, such as the
forces between grains and the number of cohesive contacts.

In this article, we test our numerical implementations on a
simple configuration: a granular column (Fig. 1). This is a
challenging test because it covers a large range of flow
regimes; meanwhile, its duration is short enough for the sim-
ulations. We expect the column to remain stable below a
threshold height due to the yield stress induced by cohesion.
The column then flows when its initial height H, exceeds the
threshold value,

44,
He= —mmt— 3
auy + _luS

where g is gravity and ¢, is a cohesive length defined as

0=, )
124

with p being the density of the material.
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FIG. 1. Two-dimensional cohesive column of height / in a gravity field. At
equilibrium, friction u; and cohesion 7, balance the weight of the upper
corner along the surface of length A/ sina. This surface of incipient rupture
forms an angle a with the horizontal.

Equation (3) is easily shown by considering the upper
corner above the column, of mass M = pHé /2tana, sliding
with friction g, and cohesion 7, along a slope of angle «
(Fig. 1). In this configuration, the initial height of the column
rewrites as a function of the fracture angle

Te 2cos(arctan u,)

0= "— - .
pg cos asin(er — arctan g )

This height is minimal, equal to H,, when the angle of
rupture is given by the Mohr—Coulomb failure criterion on
the Mohr circle [13],

_arctan(u,)

2 4 ©)

For example, with u, = 0.3, the column must exceed
about 54, to flow. Although this length controls the granular
macroscopic cohesion from a continuum point of view, it is
not well defined at the grain scale. In the following, we
attempt to bridge the gap by relating its value to the discrete
contact forces.

To do so, we first test this threshold with the continuous
approach (Sec. II) and then with the contact dynamics simu-
lations (Sec. III). Finally, we compare them and discuss the
relation between the material and the grain-scale cohesion
(Sec. IV).

Il. CONTINUOUS APPROACH
A. Rheology

We describe here our continuous approach to model cohe-
sion in the granular material. As mentioned in the Introduction,
we consider the granular column as a fluid of a peculiar rheol-
ogy, namely, a dry granular material supplemented by a yield
stress [Eq. (2)].

For dry granular materials, the so-called u(f)-rheology is
commonly used to model dense flows. This rheology takes
into account the granular threshold to initiate the flow and
involves a complex dependence on the shear rate, encapsu-
lated by the inertial number [8,14],

P 6)
P/p

We defined y = \/EDZ, where D, = +/D:D is the second
invariant of the rate of strain tensor D, P the pressure,
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and d and p are the diameter and density of the grain,
respectively.

Then, the friction coefficient evolves as the following
function of I:

uld) = u, + (N

M
Ly/I+1°
where i, is the static friction coefficient, Au is the difference
between the dynamic and static friction coefficient, and I is
an initial inertial number. This rheology, first introduced by
MiDi [8] for stationary flows, was shown to be valid in the
intricate flow configuration of dry granular collapse by
Lacaze and Kerwell [10] and implemented successfully in
continuum models [6,7,15,16] since Lagrée et al. [5].

Now, to account for the cohesion, we supplement this
rheology by a yield stress 7., which is classically used for
viscoplastic fluids such as Bingham fluids. This threshold,
on the contrary to the granular one, does not depend on the
pressure. Overall, this peculiar rheology for our cohesive
granular material translates in a relation between shear stress
and pressure,

| = (P + 7. ®)

More generally, we assume that the internal stress tensor
follows

c +uP
Withn*T H

o= —PI+ 21D, = ,
T V2D,

(€))

where 7 is an effective viscosity.

This rheology assumes that frictional properties, described
by the term u(I) are independent of cohesive properties,
encapsulated by 7. only. This may not be the case, in
general, where, for example, y, could vary with cohesion
[4,17] and grain stiffness [18]. Also, it has been shown that
cohesion decreases with inertial number [19]. Here, as we
focus the study on the initiation of the granular motion, and
for lack of a comprehensive theory, we decide not to take
these effects into account in the following.

In our simulations, we start by using the values of Jop
et al. [9] for the static coefficient u; = 0.38, Au = 0.26, and
Iy = 0.279. We also fix the grain size such that we have 30
grains in a column width (d = Ry/30, with Ry the width
of the column). However, this grain size does not have a
physical meaning in our description.

B. Numerical implementation and parameters

We now solve the Navier—Stokes equations for this fluid
using the flow solver Basilisk, which is based on a projection
method and a volume-of-fluid approach [5,20]. Thus, we
define two phases: the granular column and its surrounding
air. The properties of the surrounding air does not affect the
column dynamics provided that its viscosity and density are
small enough compared to the column’s ones [5].

This solver uses an adaptive mesh refinement method
[21]. Thus, we maximally refine the grid in the column and
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FIG. 2. Adaptive mesh refinement during a simulation of the collapse of a
cohesive granular column (continuous approach). The color indicates the
phase of the fluid. In red (or dark area): cohesive granular material. In green
(or light area): surrounding air.

decrease its size in the surrounding fluid, which optimizes
the time of computation (Fig. 2). In the computation, equa-
tions are solved using non-dimensional variables (Table I).

According to the rheology, the fluid then flows with an
effective viscosity. However, as granular matter must stop
when its viscosity diverges, we thus regularize its motion by
introducing a maximum VisScosity, 7. As a result, the
column freezes and slowly creeps at the end of the simula-
tion. We then have the following expression for the viscous
stress and the effective viscosity [5]:

7. +u(l)P
— /=~ > 'lmax |- 10
/2D, n ) (10)

There is not a unique manner to regularize the viscosity
[15,22], but we chose the simplest one by limiting the viscos-
ity with a maximum, as did Lagrée et al. [5]. They found
that, for dry granular material, the values of 7n,,, does not
affect the final shape of the deposit as long as it is larger
than 100.

We checked this dependency for our cohesive material by
measuring the creeping velocity of the front, when it reached
its final shape, and thus after typically t =51/Ry/g. We
observe that for n,,, of above 100, this variation remains
smaller than about 107°R,, which we find to be negligible
(Fig. 3).

t=2nD, wheren= min(

C. Simulations

We now show a first example for the slumping of a granu-
lar column with 7,,,, = 100 (Fig. 4). In this example, we fix
the domain size to Lp = 10 and chose Hy =1 and Ry =2
for the initial geometry of the column. At its maximum, the
grid size is then Lp/28. We take the cohesive length equal to

TABLE 1. Parameters used for the dimensional analysis.

Width Pressure Velocity Time
Ro pg Ro V&Ro Ro/g
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FIG. 3. Runout of the column as a function of time, for different regulariza-
tion viscosity (continuous approach) 7., (with £./Hy = 0.1). Inset: Final
velocity of the material against the boundary viscosity 7.

£./Hy = 0.1, which remains small compared to the height of
the column; the column thus releases and flows.

By plotting the intensity of the inertial number I, we
observe that a band appears, where the shear rate is
maximum. In the corner above this band, the shear remains
negligible such that the corner does not deform and is almost
undisturbed in the final shape. The final runout of the col-
lapse, defined as the maximum distance traveled by the front
of the flow, is then smaller than that of a cohesionless
column.

This band makes an angle a with the horizontal. We
expect that this angle is a function of the friction coefficient,
through Eq. (5).

To measure this angle properly, we detect where the mate-
rial moved from 1072,/gR, (dashed line, Fig. 4). Although
this trend is well reproducible for a cohesionless granular
material, it is not the case for a cohesive one (Fig. 5). In par-
ticular, the theory systematically overestimates it. This may
come from the uncertainty in the detection of the angle,
which requires a local threshold criterion. Overall, as the
trend is smooth, the angle has the good order of magnitude,
and we will see that it does not affect the threshold of slump-
ing, on which we focus in the following.

D. Stability of the column

We now perform a series of simulations where we vary
the height of the column and the yield stress, and thus the
cohesion length /.

First, we fix a small cohesion in the granular bulk
(¢./Rp = 0.1) and vary the column’s height (vertical line in
Fig. 6). If the column is high enough, it releases, then flows
and acquires a stationary shape after approximately
t =54/Ro/g. Conversely, if the height is too small, the
column does not flow and is cohesive enough to remain in
its initial shape. This threshold follows Eq. (3) for a given
cohesion.

Then, we keep the height constant, and vary the cohesion
of the granular material /. (horizontal line in Fig. 6). Still,
the column releases for a low cohesion, and it exists a thresh-
old above which cohesion forces are sufficient to keep the
column stable.
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FIG. 4. Slumping of the cohesive granular column (continuous approach) with time. The colorbar indicates the intensity of the velocity. (a) and (d) t = 0; (b)

and (e) = 1.5\/Ro/g; (c) and (f) r = 31/Ry/g (final shape).

On the same figure, we plot the theoretical threshold
given by Eq. (3), which provides a good agreement, without
any fitting parameter (dashed line, Fig. 6). This limit vali-
dates the implementation of cohesion in the granular column
for small to moderate cohesion lengths.

Furthermore, we will prefer to use the grain diameter d to
compare our results with the discrete approach, which we do
in Sec. III.

lll. DISCRETE APPROACH
A. Contact dynamics simulations

The cohesive granular matter is simulated applying the
contact dynamics (CD) algorithm [11,12,23], already applied
for column collapse problems in [5,24,25]. The basic ingredi-
ents of this method are Coulombic solid friction and hardcore
repulsion. Solid friction imposes locally that the normal
contact force f, and tangential contact forces f; satisfy
fi <u.fn, where u, is the coefficient of friction at contact,
while hardcore repulsion ensures that the values of normal
forces computed are such that the overlap characterizing the
existence of contacts remains as small as possible. In the
case of noncohesive material, forces at contacts are exclu-
sively compressive; in the cohesive case, forces in extension
are allowed. This implies the introduction of a contact adhe-
sive force F,g, that imposes the maximum value attainable
by a force in extension before the contact is disrupted and

Lc/Ho _-=7
— 60 1 i 0 PR
[S] § 0.1 PR
g 55 e
[o)] T g
S o gl
a IR
E g i 4
b d
a5+ % LA S
00 01 02 03 04 05 06 0.7

Friction coefficient, us

FIG. 5. Rupture angle as a function of the friction coefficient (continuous
approach). Dashed red line: Mohr—Coulomb theory [Eq. (5)]. Blue square
markers: for granular columns without cohesion. Grey diamond markers: for
cohesive columns, with a cohesion length of ¢, /Hy = 0.1.

opens. Based on the literature [26,27], we set the value of
F ., proportional to a granular Bond number and the mean
weight of the grains involved in the contact,

Foan = —Bonamy;g, (11

with my; = (2/m; Jr2/mj)71 and i and j are the two grains
involved. Its value is systematically changed and its influence
analyzed in Subsection IV.

The contact friction ¢, was set to 0.5 and its value/influ-
ence was not investigated nor discussed here. We may just
make clear that the friction forces are computed for the
normal forces without any cohesive contribution. Moreover,
a coefficient of restitution e set the amount of energy dissi-
pated in collisions. Its value was set to e = 0.1 (namely,
rather inelastic) and not varied.

B. Numerical setup

The systems simulated in this contribution are columns in
2D, as shown in Fig. 7. The columns are made of circular
beads of mean diameter d = 0.005 m, uniformly distributed
in the range [0.004, 0.006] to avoid geometrical ordering that
may strongly dominate the failure and stability of the granu-
lar construction. The column are prepared by random rain in
containers with initially a zero cohesion to ensure a volume
fraction, or compacity, such as expected in a random packing
with this size disparity; we obtain ¢ = 0.85 + 0.03. Once

0.8 1 -
L 4 2 L 4 2 0//
n\é Collapse /’/
I 06 7 ,//
£ * * o e ]
o o
g 0.4 4 V'S V'S ///. u m
c -7 Stable
S ¢ A n n n
2 0.21 s
' d
o A | ] | ]
0.0 +¥—

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Cohesion length, £./Ro

FIG. 6. Stability map. Gray dashed line: analytical limit [Eq. (3)]. Points :
numerical simulations with Basilisk (continuous approach). Blue square
markers: the pile is stable and never collapses. Red diamond markers: the
column collapses.
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FIG. 7. An example of the discrete collapse of a cohesive column with the
initial state (top) and the final state (bottom). The number of grains is 1500;
the B,,q number is 100.

the packing has reached his final equilibrium state, a last
series of computation time steps with B,,; # 0 are per-
formed; this ensures that the initial condition for slumping
(once the container walls are no longer there) is compatible
with cohesion and the first few time steps of the computa-
tions do not see grains losing equilibrium because contact
open before computation may restore their viability through
cohesion. We should recall here that DC does not rely on an
explicit formulation of the cohesive contact law using very
small time steps but on a nonsmooth condition requiring
going through an implicit iteration.

The dimension of both columns, namely, initial height Hy
and initial width Ry, changed. The intensity of the contact
cohesive threshold is also systematically varied [through
varying the B,,; number, Eq. (11) in Sec. IV]. We essentially
performed three series of simulations, with dimensions,
number of grains, and cohesive threshold (B,,; number), all
independently varied; a summary of the values adopted is
given in Table II B. Considering these values, the behavior
obtained in each series varies from collapse with spreading
of most of the materials to slumping of part of the material
following a well-defined failure zone, to equilibrium/stability
with slow creeping. Figure 8 shows these three occurrences
for a B,,s number of successively 50, 100, and 150.

C. Evaluating the equilibrium of the discrete
columns

We need a criteria to decide whether a column is stable or
unstable. Although this may sound an obvious thing to do,
discrete columns do not always fall clearly into one category
or the other, but might simply lose a small part of an edge,

TABLE II. Table of discrete simulations performed.

1231

or see only few grains rolling down while the rest of the pile
remains static, or see one angle perfectly static while the
other loses equilibrium. In order to define a criterion for the
stability of the column, we simply quantify the slumping as
the relative distance traveled by the secondary centers of
mass G and G’ (i.e., centers of mass of each half of the initial
column) following both axis, namely, vertical slumping and
horizontal outspread, computing

_ xGo) — XGo)l

AX , (12)

XG0

Ay = G —yGol

Y(G.0)

13)

where x(G,0), X(G.w)» YGo» and Y (respectively, X o),
X(G 00)> Y(.0)» and Y/ «0)) are the initial and final coordinates
of the secondary center of mass G (respectively, G'). For
each simulation, AX and AY are computed for both secondary
centers of mass G and G’ and then simply averaged. The ver-
tical slump AY is plotted as a function of the horizontal out-
spread AX in log-log coordinates for all simulations, from
Table II B, in Fig. 9. We obtain two very distinct clouds of
points for stable and unstable columns, joined by a handful
of more uncertain realizations where only few grains roll
down, creating a more ambiguous group closing the gap
between two clear well-separated clouds of points.
Nevertheless, these points are distinct enough to be distribu-
ted to one group or the other so that we can now map out a
stability graph plotting for each group, namely, stable or
unstable, the initial height Hy (normalized by d) as a function
of the B,,; number, and compare it with the theoretical pre-
diction (3), and with continuum simulations.

Using this criteria, we determine the behavior (stable or
not) of all simulations presented in Table II B. The result is
displayed in Fig. 10, where two well-defined spaces for
stable or unstable (Hy, B,yq) pairs come out. From visual
inspection, the linear dependence Hy/d = 0.45B,,, forms a
satisfactory boundary between both states, defining a discrete
yielding height.

We can now compare the discrete granular failure behav-
ior with the continuous one.

IV. STABILITY ANALYSIS OF DISCRETE AND
CONTINUUM COLUMNS

A. Comparing continuum and discrete approaches

As reminded above, the stability of a continuum cohesive
column of rheology 7 = 7. + u(I)P requires that the height

Simulations Initial height, Initial width, Initial aspect ratio, Number of Cohesion number,
series H, Ro a grains Bona

simu A (I) 31d [10d; 42d] [0.72, 3.06] [580, 2500] [0, 200]
simu B (H) [10d, 46 d] [10d, 46d] 1.00+£0.02 [186, 4228] [0, 250]
simu C (G) [6d, 43 d] 16d [0.377, 2.667] [153, 1326] [0, 200]
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FIG. 8. An example of the final slumping of a discrete cohesive column
with a B,,; number of 50, 100, and 150 (top to bottom). In black are parti-
cles whose total displacement is greater than 5d; the gray scale for the other
grains is linear in cumulative displacement.

of the wedge remains below the yield value H, defined by
Eq. (3). This threshold height, however, depends on the term
7. referring to the macroscopic cohesion, or yield stress, valid
over any representative volume of the continuum, at any rate
valid for a whole column or wedge. No such quantity is
readily available for the discrete counterpart of a cohesive
column; indeed, the sole fully controlled ingredient in the dis-
crete method is the cohesive contact force, namely, hardly a
quantity that one may identify with a “macroscopic cohesion.”
The effective macroscopic cohesion of a granular packing will
of course reflect the intensity of contact forces at first order,
but not only. The orientation of the contacts, the volume frac-
tion of the system, and microtextural aspect such as particle
shape will certainly play a role, as discussed in [28,29].

1e+00 T L
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Meanwhile, determining computationally a quantity equivalent
to 7. would require a systematic analysis of the stress tensor
for well-defined configurations (such as shear cells), and this
for steady flows so that the friction could be unambiguously
computed. This is hardly feasible in the transient complex
dynamics studied here. Hence, in a first step, we will stick to
the contact cohesion F,4 and discuss how to relate the B,
number to the macroscopic yield stress 7.

The definition of F,4, as used locally for each contact of
the discrete systems in the CD simulations is given by

Foan = —Bona mpyg. (14)

In the following, we consider the mean contact adhesive
force, replacing the weight of the two grains precisely in
contact m;; by the mean particle weight m, = zd*/4, with d
being the mean grains diameter: In order to compare quanti-
tatively the behavior of discrete slumping collapses with their
continuum counterparts, we a priori define a macroscopic
cohesive stress representative for the granular packing simu-
lated with the mean contact cohesive force F,4,. Therefore,
we introduce a characteristic length L, which we assume to
be the macro-/mesoscale over which cohesive stress applies,

Fudh Bondﬂ:d2
| 7 I . 1 P% (15)

which, if we write 7, > F,q,/L, gives

1, 7md>
— =—X B,

pg AL (10

The characteristic length L is unknown; we may only
guess that it probably is greater than a grain diameter (the
smallest length scale in the system if we omit the explicit
description of contacts) and of the order of few grain diame-
ters by analogy with the often besought force chains. These

L
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B, equilibrium
C, equilibrium
A, spreading
B, spreading
C, spreading
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FIG. 9. Vertical slumping AY against horizontal outspread AX for all discrete simulations. We chose the value AY = 0.1 to distinguish columns at equilibrium
(O symbols) from those slumping (O symbols), although there are few simulations who do gather around this value. The gray scale for the three series of simu-

lations A, B, C is presented in Table II B.
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FIG. 10. Initial height Hy (normalized by d) as a function of the B,,; number for the three series of discrete simulations A, B, C is presented in Table II
B. The full line which divides stable columns (CJ symbols) and unstable ones (O symbols) verifies Hy/d = 0.45B,,4. The dotted line shows the favorable case

of the “Rumpf-Richefeu” prediction [28] (Sec. IV C) with 1 = 0.3 [Eq. (20)].

are, however, if reasonable, yet only guesses, which ignore
the fundamental role of the granular fabric when trying to
model the mean mechanical properties of a granular sample.
In the absence of a clear idea, we will merely assume that
L = nd, where n would be the typical number of grains onto
which macroscopic cohesive stress builds up, and we will
derive its value from the stability analysis of the simulated
discrete columns shown in Fig. 11.

The latter shows that the linear dependence
Hy/d = 0.45B,,; forms a satisfactory boundary between both
states, defining a discrete yielding height that can be confronted
with prediction (3). We can rewrite (3) using (16) so that

H, /4 1
— =———— X=X By, (17
d \V :usz +1-= Hy n
301 Collapse‘ ¢ ¢ t’///
<o <o Lo _--B
ii 40 0/" .
2 *0 o % o % u
530 8 g B B
2 o Q.- O =]
c | -0 m]
52 * om0 m o |
8 R [m] O
10 1 ,I’g m H = H B
-7 O O
Rad Stable
0 T T T T
0 2 4 6 8 10

Cohesion length, £./d

€ Continuous & Discrete

FIG. 11. Stability map with discrete and continuous data. Filled symbols:
continuous simulations with Basilisk. Empty symbols: discrete simulations
with contact dynamics. Gray dashed line: analytical limit [Eq. (3)]. Blue
square markers: the pile is stable and never collapses. Red diamond markers:
collapse of the granular pile occurs.

where u, is the macroscopic friction, whose value for our
systems is unknown. Considering that the contact friction is
H.=0.5, a reasonable estimate is u, = 0.3 [30], which
leads readily to H./d = 4.22/n X B,u4, which gives n =9,
namely, L = 9d, which seems a reasonable value. Note that
assuming i, = 0.5 leads to L = 11d so that the result is poorly
depending on the details of the friction coefficient (whose
value remains generally bounded in a small interval) [30].

B. Comparing discrete and continuum

From the analysis above, we found that the stability analy-
sis based on Mohr—Coulomb applies to discrete piles provid-
ing the cohesive stress is determined over a characteristic
length of L = 9d. Injecting this result in Eq. (16) gives

l. B

d - 36 ond>»
which we can use to plot on a single graph both discrete and
continuum data points for stable and unstable piles. Note that
the grain diameter, in continuum simulations, plays a role
only through the rheological model which accounts for the
dependence on the inertial number 7, inducing the frictional
properties to vary with d. Verifying that this dependence is
very small (since the I-dependence is virtually nil at the
onset of the failure), we neglected it and varied d in order to
allow the normalized height Hy/d for continuum piles to fall
in the same interval as for discrete piles. Doing so, we can
map discrete and continuum simulations onto a single final
graph in Fig. 11.

C. Discussion

Alternatively, we can adapt the analysis developed by
Richefeu e al. [28] from the Rumpf equation [29] for 3D
wet granular media, merely modifying it for 2D dry quasi-
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monodisperse systems, and using expression (14) for contact
cohesive forces F,4, rather than capillary forces. Following
[28], the density of cohesive contacts is given by half the
mean number of cohesive contacts per particle Z. divided by
the free volume in 2D, i.e., the mean volume of a Voronoi
cell surrounding the particle, i.e., the average particle volume
V, = rd* /4 divided by the solid fraction ¢. Considering the
cohesive forces to be Fug, = mgBona = pgVpBona, We obtain
for the theoretical tensile strength for an assembly of cohe-
sive particles,

d
O, = Zd’zc X pg X Bond, (18)

with ¢ being the packing volume fraction and Z, being the
mean number of cohesive contacts per particle. Hence, the
theoretical cohesion 7, = u,o, readily gives

. d
% L4 bZe X Bona. (19)
pg 4

Replacing theoretical expression (19) in the theoretical stabil-
ity condition (3), we obtain

He _ My
d V #32 + — U

which we can confront to the stability graph (Fig. 10).We,
therefore, need to evaluate Z.; in Richefeu et al. [28], Z. (the
number of capillary bounds in 3D) is assumed to be 6. In our
system, Z. is simply the mean number of contacts bearing
negative forces per grain; its value for a 2D system counting
4228 grains with B,,; = 125 is Z, = 1.3 (the mean number
of contacts irrespective of the force transmitted is between
3 and 3.5). Taking ¢ = 0.82 (as measured), and assuming
u = 0.3, prediction (20) yields H./d = 0.426B,,,, in good
agreement with what is observed from numerical simulations
(Fig. 10). However, the result is sensitive to the value of u
chosen; taking u = 0.5 leads to H./d = 0.86B,,4, in a much
lesser agreement with observations.

More to the point, prediction (20) is very dependent on
the value taken by ¢ and Z.; a rapid inspection of the

X d’Zc X Bonda (20)

1.5

0.5

|
25 50 75 100 125
Bond

FIG. 12. Mean number of cohesive contacts (i.e., mean number of contacts
bearing negative forces) per particle Z. as a function of the normalized cohe-
sive force Byug = Faan/mg for simulations from series B [Table II B], with
Ry = Hy = 46, counting 4228 grains.
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simulations shows that both quantities are dependent on
the B,,; number. For simulations taken from series B
[Table IT B], we find that ¢ varies between 0.78 (for
Byna = 100) and 0.82 (for B,,; = 125), namely, a modest
5% variations; but the mean number of cohesive contacts per
particle varies between 0.75 (for B,,; =50) and 1.3 (for
Bona = 125), creating alone a 40% uncertainty in expression
(20) (see Fig. 12). A dedicated work would be needed to
clarify this aspect.

V. CONCLUSION

In this article, we investigated how cohesion influences
the release of a granular column. We first developed a code
where we solve Navier—Stokes equation with a VOF solver
(Basilisk). We checked this code by investigating the thresh-
old height over which a column flows or not. We found good
agreement with the Mohr—Coulomb criterion, which predicts
this threshold, without any fitting parameter.

We then compared this approach with a code of contact
dynamics, which models the dynamics of the column at the
grain scale. By comparing the height threshold, we link cohe-
sion forces at the grain scale with the macroscopic cohesive
length, and thus the yield stress, as follows:

%: (0.087 + 0.005)Bonas 2D

for the given granular material simulated. This prefactor,
however, depends on the grain-scale parameters used in our
contact-dynamics algorithm, as the contact friction, or the
grain-size distribution. Thus, we estimated this relationship in
the light of the work of Rumpf-Richefeu, which provides an
expression for the macroscopic cohesive length, as a function
of the number of cohesive contacts, the compacity, and the
friction coefficient

be  u,dZ,

e Bops. 2
7 1 d (22)

We measured Z. and ¢ in our contact dynamics simulations
and calculated the friction coefficient based on the contact
friction coefficient. This expression thus yields a coefficient
of 0.08 + 0.01, which is in good agreement with our
simulations.

Now that cohesion is numerically validated for the stabil-
ity threshold of a column, much remains to be done to under-
stand how cohesion alters the dynamics of the collapse and
the final shape of the deposit. To do so, we will likely need
to compare numerics with experiments. Ideally, experiments
would be conducted with a controlled-cohesive granular
material, recently developed by Gans et al. [4]. This would
provide new insights into the flow properties of a cohesive
material and, hopefully, on the concept of “flowability.”
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