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Abstract. The thin layer (or Boundary Layer scaling) approximation of the Navier Stokes equation with μ(I)
rheology for dry granular flows over an inclined plate is presented. It is called "Granular RNS/P" (Reduced

Navier Stokes/ Prandtl). Integrated over the depth, it gives the classical depth averaged equations (Shallow

Water type equations, popularized by Savage Hutter). But the process of depth averaging needs hypothesis

on the velocity shape profile trough a "shape factor coefficient". In the case of the displacement of the front

of an avalanche down a rough incline, we present comparisons of "Granular RNS/P" simulations versus depth

averaged model (which compares well with experimental data). One conclusion is that the shape factor goes

from 5/4, the Bagnold value, to a unit value, corresponding to a flat velocity profile, in a region very close to

the front of the avalanche.

1 Introduction

Considering dry avalanches, landslides, rockfalls, snow

avalanches, debris flow, or general geophysical flow as

depth averaged thin layer equations is a very common

and powerful point of view. These simplified continuous

models contain the dominant physics: gravity driven and

Coulomb friction dominated flow. Therefore the system is

smaller and faster to solve numerically. Indeed, the case

of dry avalanches (the one we will look at here) is up to

now too demanding for complete continuous flows such

as in [10]. The obvious reason being the small aspect ra-

tio of the avalanches, they are thin and long. This induces

numerical difficulties.

As a practical example of such flows reproduced in the

laboratory, we have revisited Pouliquen [12, 13] seminal

work (small-scale model of a granular layer of glass beads

flowing on a rough incline, see figure 1). In [17] the ex-

periment set up is reproduced. In this paper, larger Froude

numbers are tested. It is shown that the solution for the

global shape of the front of the avalanche proposed by

[7, 12, 13] is no more valid for Froude numbers of order

one. The analysis is based on depth averaged equations

in which several hypothesis are changed. One is about

the "shape factor" (defined as α latter, see Eq. 3). The

usual approximation is to take a shape factor of value one

(supposing a "plug flow"). In [17] it is shown that depth

averaged equations may be solved with an exact implicit

solution with a any shape factor α value. From compar-

isons with experiments, the value α = 5/4 (corresponding

to a Bagnold flow) is found to be the best one. The ef-

fect is clear for Froude numbers of order one. For small
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Froude, the value of α plays no role. This good compari-

son fails in the vicinity of the font it self. If one uses the

value α = 5/4, the very front of the avalanche is not sharp.

It presents an unphysical exponential decay. If α = 1, the

very front of the avalanche is sharp. It presents a finite

slope, which is more physical. This is one of the reasons

for the use of α = 1 in the literature.

In this work, we will present a set of equations "Gran-

ular Reduced Navier Stokes/ Prandtl" using the frictional

rheology μ(I) ([6, 8]). These equations have been pro-

posed by [4]. This set comes when reducing the number of

terms in Navier Stokes thanks to thin layer approximation

(Prandtl Boundary layer scaling). We present a numeri-

cal method to solve this system. An integration across the

depth gives then the classical depth averaged model. We

will then numerically solve these "Granular RNS/P" equa-

tions and compare to depth averaged solutions. The out-

come of the simulation will be the "shape factor", it will

be a result rather than an hypothesis. We will see that it

changes from α = 5/4 to α = 1 in the close neighbor-

hood of the front. This explains why the results of [17] are

good for α = 5/4, and removes the unphysical exponential

decay as α→ 1 at the front.

2 Models

2.1 Granular RNS/P equations

First we present the equations. We start from the continu-

ous Navier Stokes incompressible model (as in [10]) with

the μ(I) rheology. We write the thin layer system of equa-

tions associated as introduced by [4] recently. It means

that some derivatives are dropped in the equations leading
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Figure 1. A rough sketch of the experimental setup of ref

[17] describing a granular avalanche of hight h(x, t) of discharge
Q(x, t) along a plate at angle θ. The position of the front is x f .

to a kind of boundary layer system of equations. It results

in the following system with dimensions, we call it "Gran-

ular RNS/P" (Granular Reduced Navier Stokes/ Prandtl):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
+
∂v

∂y
= 0

ρ(
∂u
∂t
+
∂u2

∂x
+
∂uv
∂y

) = −ρgZ′b −
∂p
∂x
+
∂τxy

∂y

0 = −ρg − ∂p
∂y
.

(1)

Zb(x) is the topography on which flows the granular fluid.

The constitutive law for the stress is here τxy = νeq
∂u
∂y

with

νeq =
μ(I)p
∂u/∂y , it depends on the inertial number I = d√

p/ρ

∂u
∂y

(where d is the diameter of the grains) through a given μ(I)
function:

μ(I) = μ0 +
Δμ

1 + I0/I
,

see GDR MiDi [6], Jop et al. [8] for details on μ(I)-
rheology. The boundary conditions are no slip at the wall

u = v = 0 in y = 0, and no stress at interface p = 0 and

∂yu = 0 in y = h(x, t), plus any initial velocity field. It

is clearly a set of equations deduced from Navier Stokes

equations in which we have incompressibility, the convec-

tive term, the hydrostatic pressure term and the dominant

part of the derivative of the stress which follows a Druker-

Prager law.

This system is reminiscent to the RNS/P system ([3,

9]). This terminology comes from the efforts to reduce the

set of Navier Stokes in adding only the transverse deriva-

tive of the viscous forces in the equations (see Rubin et al.

[15, 16]). In simple words, these equations are no more

than the Prandtl Boundary Layer equations (see the funda-

mental book of Schlichting [19]), with the gravity terms as

sources and different boundary conditions.

2.2 Numerical discretisation

System (1) is a kind of Boundary Layer system. Numeri-

cal resolution of steady boundary layer equations presents

several traps, for instance it is well know that there is a

singularity when steady equations are solved with a given

pressure (Goldstein singularity, [19]). Furthermore, the

unsteady boundary layer equations are either instable or

may even lead to a finite time singularity if pressure is

given. Fortunately, Audusse et al. [1] proposed recently

a resolution of system (1) extended by [4]. The idea of

resolution is in fact a clever transverse discretization of (1)

in several layers, each layer being a Saint-Venant one (so

that in this paper, there is not any reference to boundary

layer theory but it is focussed on Shallow Water litera-

ture). Those layers are solved by finite volumes. Each

layer interacting one with the two others: the upper and

the lower, through the viscous force (viscosity νeq), and

by cross exchange of mass and momentum (in reference

[1] this exchange is done by the functions Gi which are

the difference between the velocity of the moving layer

and the real transverse velocity). This implementation has

been shown to be very robust.

The Multilayer Saint-Venant has been implemented in

the Gerris flow solver suite by Popinet [14] (and by Ghigo

et al. in arterial flow [5]). The viscosity is here νeq =

μ(I)p/( ∂u
∂y
) with I = d( ∂u

∂y
)/
√

p/ρ.

2.3 Depth averaged models (or Saint-Venant
Savage-Hutter 1D models)

We have defined a full 2D problem (1) and we have pro-

posed a numerical method to solve it. The usual model

is the 1D depth averaged model. The 1D depth averaged

model is a simplification of system (1). Indeed, integrat-

ing equation (1) from y = 0 to y = h(x, t), we have without

new hypothesis:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂h
∂t
+
∂

∂x

∫ h

0

udy = 0

ρ(
∂

∂t

∫ h

0

udy) +
∂

∂x
(

∫ h

0

u2dy + g
h2

2
) = −ρgZ′bh − τxy|0.

(2)

At this point of the analysis comes the choice of the ve-

locity profile to close the system to obtain the 1D model.

In aerodynamics, the integral equations arising are the Von

Kármán equations, and the closure maybe the Pohlhausen

one (see [19]). In hydrodynamics, the integral equations

arising are the Saint-Venant (Shallow Water) equations,

and the closure involves plug flow and turbulent friction

(or half a Poiseuille in viscous films). In granular flows,

the integral equations arising are the Savage-Hutter equa-

tions. First the basal friction term τxy|0 has to be modeled,

usually since [18] by a Coulomb friction: τxy|0 = μρgh
(with a constant friction coefficient μ). Second, the shape

of the profile has to be defined to link the flux of velocity

(the volume flow rate) to the flux of kinetic energy, defin-

ing the shape factor (as a constant in those models):

α = (h
∫ h

0

u2dy)/(
∫ h

0

udy)2. (3)

The usual approximation is to use a plug profile so that if

we define the discharge as Q =
∫ h

0

udy then
∫ h

0

u2dy is

approximated by Q2/h (i.e. α = 1 in the following equa-

tion, if the profile is supposed to be a Bagnold one, then

     
 

DOI: 10.1051/, 03046   (2017) 714003046140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

2



α = 5/4, see [17]):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂h
∂t
+
∂

∂x
Q = 0

ρ
∂

∂t
Q +

∂

∂x
(α

Q2

h
+ g

h2

2
) = −ρgZ′bh − μρgh.

(4)

These are the Savage-Hutter Saint-Venant equations for

granular flows [18]. This hierarchy of simplifications is

justified by the fact that the avalanches are very thin com-

pared to their longitudinal extent. Indeed, numerical simu-

lation of Navier Stokes equations with μ(I) rheology (as in

[10]) is very difficult, and numerical simulations of these

thin layer approximations ([4] or [18]) are more tractable.

The approximation α = 1 is used in nearly every pa-

per as it helps the numerics and as it gives a sharp front

(Poulinquen [12, 13]).

2.4 Analytical solution of the front shape,
comparison with experiments

It has been shown in [17] that an analytical solution of

Savage-Hutter Saint-Venant system (4) may be obtained

in the case of the flow over an inclined flat plate with

Z′b = − tan θ. It is an implicit solution were the position

is function of the reduced hight:

(x − u0t)(tan θ − μ0)
hmax

= F (
h(x, t)
hmax

,
tan θ − μ0
Δμ

, α, Fr), (5)

valid for any α, see reference [17] for details and for the

exact expression of F which involves arc tangent and log-

arithm functions. This implicit analytical solution extends

the Gray and Ancey’s one [7] valid only for plug flows or

for small Froude.

In [17] a flume of 2 meters long and of 40 cm of width,

with a variable inclination angle starting by a silo has been

build. Several avalanches at various angles, and with var-

ious initial height of aperture of the silo have been per-

formed (see reference for details). With optical techniques

(laser sheet), profiles of the front span wise and stream

wise were measured. The aimwas to explore larger Froude

number values. The constant front velocity as in [12] was

reobtained. Very good comparisons between measured

fronts and analytical solution Eq. 5 for values of Froude

of order one and α = 5/4 have been obtained. The effect

of increase of inertia (by increasing the angle) is clearly

reproduced by the analytical solution.

One of the drawbacks of the solution Eq. 5 is the exis-

tence of a precursor film with an exponential decay, which

is not observed in the experiments. For α = 1, there is no

such precursor film.

3 Discussion

In the depth averaged formulation of system (4), the shape

factor is constant by construction. With this formulation

an analytical solution may be obtained, this is Eq. 5.

It allows quantitative comparisons with experimental

data as just explained and presented in [17]. The sole

problem being this spurious exponential decay, which is

not observed in the experiments. Hence, now we turn

to the numerical solution of (1) in the case of the front.

We compute the shape factor as a result, it is no more an

hypothesis. On figure 2 several computed shape factors

are ploted for different values of Froude number. We ob-

serve that indeed the computed α from (1) is mostly equal

to Bagnold’s value 5/4. Nevertheless, close to the front

it goes to one (indeed, longitudinal velocity at the very

front is more like a plug flow instead of a Bagnold profile).

On each plot of figure 3, three curves are presented.

First is the analytical solution with α = 1 or Fr = 0 (that

is the same) corresponding to the Savage-Hutter Saint-

Venant solution [7, 13]. This is for reference. Second is

the present numerical solution of system (1). Third is the

analytical solution with α = 5/4 and the corresponding

Fr value from the second. As we can notice, the second

and the third are very close. It is only very near the front

that we see the differences. As the value of α is fixed to

5/4, the solution of equation (5) presents a slight difference

when approaching the front. Furthermore, the solution of

equation (5) presents the exponential unphysical precursor

layer.

The agreement between (system (1) and equation (5) with

α = 5/4) and Savage-Hutter Saint-Venant (equation (5)

with α = 1) is only good for small values of Froude num-

ber (Fr � .5). Then, the higher the Froude the smaller the

slope of the front and the larger the departure from system

1 to α = 1 models.

4 Conclusion and perspectives

This paper is devoted to the solution of a reduced system

(1) issued from the non-Newtonian μ(I)-rheology of
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Figure 2. Numerical resolution of "Granular RNS/P". Plot of α

the shape factor ratio of flux and kinetic flux (defined by equation

3) at a fixed time as a function of (x−x f )/hmax the position before

the front divided by the value of the thickness of the avalanche

for three values of the Froude number (upper curve Fr = 0.43,

middle curve Fr = 1.03, lower curve Fr = 2.09). Far from the

front, the value starts from the Bagnold 5/4 value and goes to-

wards 1 at the front on a scale of several thicknesses. The smaller

the Froude, the better is the approximation α = 5/4, except close

to the front.
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Figure 3. In red h(x, t = 150)/hmax as function of (x− x f )/hmax at

same time (t = 150) for various increasing θ of various increasing

initial thickness giving a Froude from 0.348 to 2.09 (from top to

bottom). The analytical solution (equ. 5) is plotted as well in

blue for the corresponding values of θ and Fr (with α = 5/4).

For reference the analytical solution (equ. 5 with α = 1 or F = 0)

of the usual Savage-Hutter Saint-Venant resolution is plotted in

black and labelled F = 0 (colors online).

the Navier-Stokes equations leading to kind of Prandtl

equations. This system is showed to reproduce the

expected behavior in the case of avalanche: in steady

conditions far from entrance and far from the front we

obtain the Bagnold solution. Our method allows to focus

on the front, we notably compute the local value of the

shape factor α. It starts from 1 in the very beginning of

the front. This corresponds to a very first plug flow. It

goes then to 5/4 the Bagnold expected value at constant

height. The numerical resolution uses the robust multi

layer approach in finite volumes as proposed by [1] and

[4]. The numerical resolution is shown to be very close to

the analytical solution established in [17], this analytical

solution was itself very close to experimental data. The

conclusion is that the usual Savage-Hutter Saint-Venant

equations (with α = 1) are not a very good description

of the avalanche front at Froude of order one. A better

description is with α = 5/4, but there is a small unphysical

exponential tail. A better description is this Granular

RNS/P description. Note that reduced system (1) seems

not to have the instability, or "ill posed" behavior found

by [2] in the full system.

Finally, those equations are in between full resolution

(Navier-Stokes) and a too much simplified one (depth

averaged Savage-Hutter Saint-Venant). They create the

missing link between a too complicated Navier-Stokes

resolution (useful to focus on details) and the Savage-

Hutter Saint-Venant. This latter depth averaged method

is too crude maybe, but it is fast and efficient enough

to compute a reasonable and realistic description of an

avalanche on an actual topography [11].
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