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We study the behavior of the pulse waves of water into a flexible tube for application to blood flow
simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to
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evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by
fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is
connected to a piston pump at one end and closed at another end. The pressure and wall displacements
are measured simultaneously. A good agreement between model predictions and experiments was
achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as
important as that of fluid viscosity.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Although the modeling of blood flow has a long history, it is still a
challenging problem. Recently 1D modeling of blood flow circulation
has attracted more attention. One reason is that it is a well-balanced
option between complexity and computational cost (see e.g. Alas-
truey et al., 2012a; Cousins and Gremaud, 2012; Olufsen et al., 2012;
Reymond et al., 2013; van de Vosse and Stergiopulos, 2011; Yama-
moto et al., 2011). It is not only very important to predict the time-
dependent distributions of flow rate and pressure in a network, but it
is also important to be able to predict mechanical properties of the
wall (see Lombardi, 2014), it is clear that could help the under-
standing of cardiovascular pathologies.

The 1D fluid dynamical models are non-nonlinear and are able
to predict flow, area and pressure. Within the dynamical system
there exist several damping factors, such as the fluid viscosity, the
wall viscoelasticity, and the geometrical changes of vessels. Pre-
vious studies have shown that in vessels without drastic geome-
trical variations (i.e. no severe aneurysms or stenoses), the fluid
viscosity and the wall viscoelasticity are the most significant
damping factors (Matthys et al., 2007). Comparisons between the
1D model and in vivo data (Holenstein et al., 1980; Reymond et al.,
2009) suggest that the predictions of a viscoelastic 1D model is
significantly more physiological than those of an elastic one which
contains high frequencies in the pulse which is not observed
a).
experimentally. But the comparisons were only qualitative or
semi-quantitative due to the limited accuracy of associated non-
invasive measurements and the lack of patient-specific parameter
values of the 1D model for each subject.

Quantitative comparisons can be done with in vitro experimental
setups. Reuderink et al. (1989) connected a distensible tube to a
piston pump, which ejects fluid in pulse waves throughout the tube,
and the experimental data were compared against numerical pre-
dictions of several formulations of the 1D model. In the first for-
mulation, they proposed an elastic tube law and Poiseuille's theory
to account for the fluid viscosity, and their studies underestimated
the damping of the waves and predicted shocks, not observed in the
experiments. In another formulation, still linear, the fluid viscosity
was predicted from the Womersley theory with a viscoelastic tube
law which gave a better match between the predictions and the
experiments. A similar experiments setup was proposed by Bessems
et al. (2008) using a 3-component Kelvin viscoelastic model to
model the wall behavior, however in this work, both the convective
and fluid viscosity terms were neglected. Alastruey et al. (2011)
presented a comparative study using an experimental setup with a
network, they measured the coefficients of a Voigt viscoelastic
model by tensile tests instead of fitting them from the waves. For
the fluid viscosity term, they adopted a value from the literature,
which was fitted from waves of coronary blood flow with an elastic
wall model (Smith et al., 2002).

In this paper, we study the friction and wall viscoelasticity
using the 1D model and a similar experimental setup where pulse
waves are propagating in one distensible tube. However, there are
three main differences between our study and previous ones:
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1. Both the two damping factors (fluid friction and wall viscosity) are
modelled. Although there are several theories to estimate the
friction term (see, e.g. Bessems et al., 2007; Lagrée, 2000;
Olufsen et al., 2000), the value is rarely determined experimen-
tally besides the study of Smith et al. with an elastic model
(Smith et al., 2002). It is well known that fluid viscosity and wall
viscoelasticity have damping influences on the pulse waves.
These slight differences are discussed in Wang et al. (2014),
nevertheless it is difficult to evaluate them separately from
pulse waves. However, the viscoelasticity has smoothing effect
on the waveforms whereas the fluid friction does not (Alastruey
et al., 2012b), we investigated this claim by only accounting for
the amplitude or the sharpness of the signal. The study shows
the results of including both effects, one, or the other.

2. The viscoelasticity of the wall is measured in a new manner. The
viscoelasticity of a solid material is difficult to measure accu-
rately, even in an in vitro setup. In our study, the viscoelasticity
is determined through the pressure–wall perturbation relation
of the vessel under operating conditions. The internal pressure
is measured by a pressure sensor and the perturbation of the
wall is measured by a Laser Doppler Velocimetry (LDV).

3. A shock-capturing scheme is applied as the numerical solver. In a
nonlinear hyperbolic system, shocks may arise even if the initial
condition is smooth (even for small viscoelasticity values). The
Monotonic Upstream Scheme for Conservation Laws (MUSCL)
scheme is able to capture shocks without non-physical oscilla-
tions, and is applied to discretize the governing equations and
compared to the MacCormack scheme.
Fig. 1. Experimental setup: the elastic tube (in yellow) is closed by a stainless rod at
the right end (in grey). The points A and B indicate the measurement sites. Para-
meters of the tube and fluid are summarized in Table 1. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
2. Methodology

2.1. One-dimensional model

We use the 1D governing equations for flows passing through an elastic
cylinder of radius R expressed in the dynamical variables of flow rate Q, cross-
sectional area A¼ 2πR and internal average pressure P. The 1D equations can be
derived by the integration over a cross-sectional area of the axi-symmetric Navier–
Stokes equations of an incompressible fluid at constant viscosity, giving the fol-
lowing mass and momentum 1D conservation equations
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where vx is the axial velocity, ρ is the fluid density and ν is the kinematic viscosity
of the fluid. The parameter α and the last term, the viscous or drag friction, depend
on the velocity profile. In general, the axial velocity is also a function of the radius
coordinate r, viz vx ¼ vxðr; x; tÞ. If we assume that the profile has the same shape
Ψ ðrÞ in every vessel cross-section along the axial direction, the velocity function
can be separated as vx ¼Uðx; tÞΨ ðrÞ, U being the average velocity. If Ψ ðrÞ is known,
the parameter α and the derivative ∂vx

∂r that appears in the friction term can be
therefore calculated. The friction drag can be approximated by �Cf Q=A. The radial
profile Ψ ðrÞ is strongly dependent on the Womersley number defined by R

ffiffiffiffiffiffiffiffiffiffi
ω=ν

p
,

where the quantity ω is the angular frequency which characterizes the flow. If ω
and ν are approximately constant, only the radius R influences α and Cf, whose
values should be determined by experiments for vessels with various diameters.
When the transient inertial force is large, the profile is essentially flat, α¼ 1 (Smith
et al., 2002). With a thin viscous boundary layer, the inviscid core and a no-slip
boundary condition, the friction term can be estimated (see e.g. Bessems et al.,
2007; Olufsen et al., 2000). When the transient inertial force is small, the profile is
parabolic, α¼ 4=3; the viscosity force is then dominating and Cf ¼ 8πν. Using the
power law profile proposed by Hughes and Lubliner (1973), Smith et al. (2002)
compute from coronary blood flow, Cf ¼ 22πν and α¼ 1:1. This value of Cf is used
on other numerical works (Alastruey et al., 2011; Marchandise et al., 2009) but
setting α¼ 1 for simplification.

The viscoelasticity of the wall can be described using different viscoelastic
models, e.g. Holenstein et al. (1980), Reymond et al. (2009), and Steele et al. (2011)
with displaying distinct numerical problems (Raghu et al., 2011; Steele et al., 2011).
In this study we use the two-component Voigt model, which relates the strain ϵ
and stress σ in the equation

σ ¼ Eϵþϕ
dϵ
dt

; ð3Þ

where E is Young's modulus and ϕ is a coefficient for the viscosity. In Saito et al.
(2011) and Wang et al. (2013) we have shown that the model (i) fits experimental
data and (ii) it is able to filter high frequencies.

For a tube with a thin wall, the circumferential strain ϵθθ can be expressed as

ϵθθ ¼
R�R0

ð1�η2ÞR0
; ð4Þ

where R0 is the reference radius without loading and η is the Poisson ratio, which is
0.5 for an incompressible material. By Laplace's law, the transmural difference
between the internal pressure P and the external pressure Pext is balanced with the
circumferential stress σθθ in the relation

P�Pext ¼ hσθθ
πR

: ð5Þ

Combining Eq. (3)–(5), we get

P�Pexp ¼ νeðR�R0Þþνs
dR
dt

; ð6Þ

with

νe ¼ Eh
ð1�η2ÞA0

; and νs ¼ ϕh
ð1�η2ÞA0

:

Note that the radius R in the denominators of the two coefficients is approximated
by R0 under the assumption that the perturbations are small.

If we assume that Pext is constant, inserting Eq. (6) into the 1D momentum
equation to eliminate P gives
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The 1D model was numerically solved by two approaches: MacCormack and
MUSCL. More details on the integration schemes and on the treatment of the
boundary condition are in Delestre and Lagrée (2013) and Wang et al. (2014). More
precisely here the boundary condition modeling the stainless rod in the experi-
ment, a total reflection boundary condition, can be numerically achieved by
imposing a mirror condition at the end of the elastic tube.

2.2. Experimental setup

The experimental setup is shown in Fig. 1. The piston pump (TOMITA Engi-
neering) injects fluid (water) into a polyurethane tube. The output of the pump is a
sinusoidal function in time, whose period and duration can be programmed
through a computer. At the measurement points, a pressure sensor (Keyence, AP-
10S) is inserted into the tube. The perturbation of the tube wall is measured by a
LDV (Polytec, NLV-2500). The pump, the pressure sensor and the LDV are controlled
by a computer, which synchronizes the operations of the instruments and stores
the measurement data at 10 kHz. The end of the tube is closed by a stainless rod
and thus a total reflection boundary condition is imposed at the outlet. Pulse waves
are bounced backward and forward in the tube multiple times before the equili-
brium state is restored. We measured at two points, A and B, which are respectively
close to the proximal and distal ends of the tube. Table 1 summarizes the para-
meters of the elastic tube and fluid: the thickness of the wall h, the reference
diameter D, the total length of the tube L, the distances from the inlet to the two
measurement points LA and LB, the fluid density ρ and the kinematic viscosity ν.



Table 1
Parameters of the tube and fluid.

h ðcmÞ D ðcmÞ L ðcmÞ LA ðcmÞ LB ðcmÞ ρ ðkg=cm3Þ ν ðcm2=sÞ

0.2 0.8 192 28.3 168.2 1:050� 10�3 1� 10�2

Fig. 2. Experimental pressure–radius (P–R) loop. Inset: one period loop. Note that
the system in the linear regime.
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Fig. 3. Pressure time series at measurement point A. The elastic model predicts
shocks. Increasing the friction term can damp the amplitude effectively, but the
shocks still exist. E¼ 2:08� 105 Pa and ϕ¼ 0. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)
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To evaluate independently Young's modulus of the elastic tubes we complete
the experimental setup with a tensile device. We prepared two specimens of the
polymer of the elastic wall to use in the tensile test (Shimadzu EZ test). The spe-
cimens were elongated at a rate of 0.5 m/min and then released at the same rate.
We applied the least square method (linear regression) to fit the curve against the
function F ¼ C0þESΔL=L, where C0 is a constant, E is Young's modulus, S is the
cross-sectional area of the specimens and L is the original length. Dividing the fitted
slope of the curve by S, we can estimate experimentally Young's modulus as
1.9270.06 105 Pa.

2.3. Parameter estimation

We present the method used for the evaluation of Young's modulus, the wall
viscosity and the fluid friction.

2.3.1. Young's modulus
In order to estimate Young's modulus E we propose two different methods:

using numerical simulations and by integration of the experimental pressure–
radius curve shown in Fig. 2. We note that the system is in the linear zone. The
values of E computed in each approach will be compared to those given by the
tensile test.

Numerical simulations: In the first approach, using the fact that the velocity of
pulse wave is directly related to the stiffness through the Moens–Korteweg formula
(Formaggia et al., 2003), we vary Young's modulus in numerical simulations to
match the wave peaks coming from experimental signal taken in points A and B.
The best fit will give the optimal Young's modulus E0.

Integration of the experimental pressure-radius signal: In the second approach
we use the experimental data and impose a sinusoidal wave of only one full period
strictly. The net volume of fluid injected into the tube was zero, and the tube
returned to the original state with the amplitude dampened roughly in a oscillatory
way. In this situation the energy loss is due to the wall viscosity. Integrating the
viscoelastic tube law (6) times the wall velocity dR

dt from the starting time t0 to the
final time te we found that the work done by the mechanical system is

Z te

t0
ðP�Pext Þ

dR
dt

dt ¼
Z te

t0
νeðR�R0Þ

dR
dt

dtþ
Z te

t0
νs

dR
dt

� �2

dt: ð8Þ

From the time series of the pressure P(t) and the wall displacement R(t) the eva-
luation of the viscoelastic term νs is straightforward as long as both the external
pressure Pext and the work done by the elastic component (the 1st term of the rhs
of Eq. (8)) are zero. Once the viscosity coefficient νs is calculated, the tube law (6)
can be rearranged to give P�Pext�νsðdR=dtÞ ¼ νeðR�R0Þ and the elastic coefficient
νe can be estimated by linear regression. We note that we have additionally esti-
mated the viscoelastic term.
2.3.2. Viscoelastic parameters
For the estimation of the viscoelasticity parameters, we introduce a cost

function defined by the normalized root mean square (NRMS) error between the
experimental signal of pressure Pexp and the numerical predictions Psim

NRMS¼ 1
maxðPexpÞ�minðPexpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
NðPsim�PexpÞ2

N

s
;

where N is the number of temporal data points and Psim depends on the fluid
friction and wall viscosity for fixed Young's modulus E0. For each run we obtain
numerically the temporal series of the cross-sectional area A from Eq. (1) and
compute the numerical prediction of the pressure using Eq. (6). In practice, we
fixed Cf for different values from 8πν to 33πν, and for each value, we fitted the
parametersϕ by minimizing the NRMS. As Cf was fixed for each step we only did an
one-dimensional minimization by doing small variations ofϕ to find the minimum.
This is particular case of the steepest descent approach for a functional minimum,
where the new search direction is orthogonal to the previous. The parameter
optimization was done on the two measurement points A and B, and the con-
sistency of the results estimated from the two sets of data was checked.
3. Results

In this section we present the results of the parameter esti-
mations using the methods described before. Note that the final
state on the experimental data as well as the numerical results has
a higher pressure than the initial state. That is because we
imposed a half sinusoidal wave at the inlet and thus a net volume
of about 4.5 cm3

fluid was injected into the tube. Only in the case
when we do the integration of the experimental pressure–radius
signal to compute the wall viscosity and the fluid friction we
impose a complete period at the inlet in order to have no net extra
volume inside the elastic tube.

3.1. Young's modulus

We vary Young's modulus E in different simulations imposing a
half sinusoidal wave at the inlet. Numerical simulations were done
for E starting from 2:00� 105 Pa to 2:15� 105 Pa, with a step of
0:01� 105 Pa. We have found that for the value of
E� E0 ¼ 2:08� 105 Pa, the difference of the arrival times between
the experimental signal and predictions at the measurements
points A and B was minimal (smaller than 0.02 s for each of the
first 10 peaks). Fig. 5 shows the variations of the arrival times
when we change Young's modulus.

This value is in the range estimated with the integrated method
½1:45�2:9� 105� and is about 8% bigger than those give by the
tensile device (1.9270.06�105). Besides the measurement error,



Table 3
Parameters of fluid friction and wall viscosity and the corresponding NRMS. Each
wave correspond to a different run.

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7

Cf ðπνÞ 8 14 18 22 26 30 33
ϕ ðkPa sÞ 2.0 1.6 1.3 1.0 0.8 0.5 0.4
NRMS (%) 1.96 1.75 1.66 1.64 1.74 1.92 2.15
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Fig. 4. Experiments (line labelled exp) and simulations at measurement point A.
Left (a): pressure time series. Right (b): spectrum of the pressure series (only fre-
quencies less than 20 Hz are shown). E¼ 2:08� 105 Pa. For the elastic case, Cf ¼
22πν and ϕ¼ 0. The values of Cf and ϕ for the three viscoelastic waves are shown in
Table 3.

Table 2
Young's modulus and viscoelasticity of the polymer computed using three different
approaches: 1D model optimization, pressure–radius experimental data and
tensile test.

Method E ð105 PaÞ ϕ ðkPa sÞ

Numerical 2.08 1.0
Integration P–R data 1.45—2.90 0.97—1.94
Tensile test 1.9270.06 –
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Fig. 5. Sensitivity study. Pressure time series at measurement point A. E0 is the best
fit for Young's modulus. If E0 is perturbed 10%, the arrival time of each peak changes
significantly. Cf ¼ 22πν and ϕ¼ 0:9 kPa s.
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the variance in the home-made polymer tubes may also contribute
to the difference.
3.2. Fluid friction and wall viscosity

The friction and wall viscosity terms are both damping factors
in the model equation. The key point is to be able to discriminate
them when we are looking for the optimal values.

First we used an pure elastic model (the wall viscosity ϕ is set
to 0) and we varied the friction coefficient Cf. Fig. 3 presents the
runs (called waves) with three values of the friction coefficient Cf:
8πν;22πν and 33πν. Using the first value, derived from a parabolic
velocity profile, the predicted pressure wave has two main
unrealistic features: (i) we have an overestimated pressure
amplitude and (ii) we develop discontinuities or shocks, in con-
tradiction to the experimental measurement (blue line, Fig. 3). The
second value comes from Smith et al. (2002), and we can see that
the amplitude becomes closer to the experimental one (red line,
Fig. 3). The third value gives the best prediction in terms of pres-
sure amplitude but there are still discontinuities or shocks (green
line, Fig. 3). We recall that, for a pure elastic model, we have
always a finite time discontinuities, which is proper to the
hyperbolic structure of the governing equations.

Table 3 summarizes the runs (waves 1–7) for different values of
Cf, together with the optimal value of ϕ found by optimization and
the corresponding residuals of NRMS. We observe that for
increasing values of Cf the parameter ϕ decreases. The minimal
residual of NRMS achieves for wave 4 and the limit cases (wave
1 and wave 7) are the worsts.

We plotted waves 1, 4 and 7 in Fig. 4(a). First we noticed that
the discontinuities or shocks disappear and that the amplitude of
the three waves is close to the experimental data. However, in the
first 2 s of the temporal series, the wave-front of wave 7 is steeper
than the others. This difference is more clear when we plot the
power spectrum of the time series (Fig. 4(b)), which shows that
the high frequency components of wave 7 are underdamped. This
is because the damping effect of wall viscosity is stronger on high
frequency waves while that the fluid friction does not depend on
the frequency in our model. In the last part of the time records,
only the main harmonic is still present, thus the difference
between the three simulated waves is very small. The viscoelastic
parameters estimated by the presented methods are summarized
in Table 2. The values estimated by the data fitting with the 1D
model fall into the range measured by the integrated approach of
the pressure–radius (P–R) series data.

3.3. Sensitivity study

Fig. 5 presents the parameter sensitivity for Young's modulus E
having a variance of 10% around E0. The arrival time of each peak is
significantly later when E decreases and vice versa.

We also tested the sensitivity of the model to Cf, ϕ and α. For Cf
and ϕ, an uncertainty of about 20% produces a moderate variance
on the predicted wave (see Fig. 6(a) and (b)). The sensitivity of the
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output to Cf and ϕ is in the same order. In contrast, when α is
tested in the range from 1.0 to 1.3, there is no noticeable difference
between the numerical predictions. Thus, the value of α can be set
to 1.0. There exist indeed more sophisticated sensitivity techniques
(Xiu and Sherwin, 2007) but it is beyond the presented study.

3.4. Integration schemes

We tested two different integration schemes: MacCormack and
MUSCL. We compared the performances for a pure elastic as well
as for a viscoelastic model. In Fig. 7, we plotted the pressure waves
for the numerical predictions against the experiments data at the
two measurement points: left column for point A and right col-
umn for point B.

The discontinuities or shocks predicted by the elastic model are
very obvious. The MacCormack scheme produces numerical
oscillations (top row) whereas the MUSCL scheme depresses them
because it includes a slope limiter (bottom row). For the viscoe-
lastic model, the shocks disappear and a much better agreement is
found at both locations A and B. If the solution is quite smooth,
there is essentially no difference between the two numerical
schemes in accuracy. The consistency between the two locations
makes us confident in the agreement between experiments and
numerical simulations.
4. Discussion

We evaluated the stiffness and friction within a nonlinear 1D
fluid dynamical model with a viscoelastic law for the wall
mechanics against experimental data.
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The value of vessel stiffness estimated by the 1D model was
compared to values measured using a tensile test. We note that a
small variance in stiffness can significantly the change the mean
pressure, pulse pressure and wave velocity. Under the operating
pressure within our experiment, the nonlinearity seems not large
as shown in Fig. 2. However, we note that the nonlinearity may be
more significant under physiological conditions. More studies have
to be done to evaluate the nonlinear elasticity of the arteries under
real conditions.

The fluid friction and the wall viscosity were fitted from
experimental data using the 1D model. We obtained good agree-
ment between the 1D model results and experiments. If experi-
mental uncertainties are considered, it can be estimated that Cf ¼
2274πν and ϕ¼ 1:070:3 kPa s (determined by the runs wave
3 and wave 5 in Table 2). Our results confirm that in cases of blood
flow with a similar characteristic Womersley number, the Poi-
seuille model underestimates the fluid friction (see e.g. Saito et al.,
2011). The widely used value Cf ¼ 22πν in large arteries is then
acceptable. However, in smaller arteries, the Womersley number
can be less than one, so a parabolic velocity profile is more likely to
appear, which implies that Cf decreases to 8πν. Thus the friction
term should vary through the whole cardiovascular system and a
smaller value of Cf should be considered if the Womersley number
is smaller.

In our experimental study, the frequency of the main harmonic
is 2.4 Hz (see Fig. 4(b)) and thus the Womersley number is about
15.5. This value is only slightly bigger than the Womersley number
at the ascending aorta which is 13.2 (Fung, 1997). Under in vivo
conditions, the wall viscosity is much larger as measured by
Armentano et al. (1995). However the surrounding tissues of the
vessel such as fat may also damp the waves attributed wall visc-
osity. The viscoelasticity of the arteries is mostly attributed to the
collagen and elastin fibers in the wall, which is different from the
polymer tube.

The viscoelasticity of the wall dampens the high frequency
components of the wave, thus the waveform is not very front-
steepened, which has been pointed out by many previous studies
(see e.g. Alastruey et al., 2011; Holenstein et al., 1980). A pertur-
bation of 20% on wall viscosity introduces moderate variances on
the pressure waveform, which is similar to the fluid friction (see
Fig. 6(a) and (b)). The output of the 1D model is not very sensitive
to uncertainties of the two damping factors. Thus it is possible to
use general values of those two parameters even in patient-
specific simulations with the 1D model.

We solved the nonlinear 1D viscoelastic model with MacCor-
mack and MUSCL schemes. The elastic model predicts shocks,
which are captured by the MUSCL method without non-physical
oscillations.

Some limitations of our approach are: while the flow rate may
be similar, material properties are likely different and the in vivo
(invasive) pressure measurements could hardly include a clinical
protocol. One could advance that in real arteries under normal
physiological conditions, discontinuities or shocks are not present
but in pathological situations (anasthomoses and artheromes) or
after surgeries (i.e. stent) the discontinuities on Young's modulus
of the arterial wall can lead to flow discontinuities. Concerning the
boundary conditions, arteries never display this type of vessel
ending but it is not unreasonable to image a clinical protocol with
a short stopping blood flow to observe localized backward waves.
5. Conclusion

We studied and evaluated the parameters of the nonlinear 1D
viscoelastic model using data from an experimental setup. The 1D
model was solved by two schemes, one of which is shock-
capturing.

The value of vessel stiffness, estimated by the 1D model was
consistent with values obtained by an integrated method using
experimental data (pressure–radius time series) and tensile tests.
The fluid friction and the wall viscosity were fitted from data
measured at two different locations. The estimated viscoelasticity
parameters were consistent with values obtained with other
methods. The good agreement between the predictions and the
experiments indicate that the nonlinear 1D viscoelastic model can
simulate the pulsatile blood flow very well. We showed that the
effect of wall viscosity on the pulse wave is as important as that of
fluid viscosity.
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