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The Couette flow of dense and fluid-saturated granular media
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Abstract

A continuum-mechanical description is proposed for dense granular media submitted to steady shears. By dense granular media
we mean high solid fractions in the range between the random loose and the random close packings. The description is based on
a modeling of the stresses resulting from free-volume entropic effects, contacts and impacts between particles, and viscosity of
the interstitial fluid. The non-homogeneity of the material is taken into account via several transport coefficients depending on the
solid fraction. When applied to the tangential annular flow in a Couette cell, the model predicts velocity and solid fraction profiles
which agree qualitatively with those found experimentally but which also present some conflicting features, possibly due to the
difficulties to achieve a true steady profile for the solid fraction. More precisely, we obtain the following predictions: (a) a minimum
shear is required for motion, (b) above this minimum the motion is localized and the solid fraction decreases when approaching
the inner moving cylinder, (c) the width of the shear band increases with the applied shear stress up to a maximum value above
which our description fails because the solid fraction at the inner moving cylinder becomes smaller than the random loose packing,
(d) the maximum width of the shear band is proportional to the radius of the inner cylinder, with a proportionality coefficient
which increases with the fluid viscosity and decreases with the confining pressure and the grain size, (e) for dry granular media the
maximum width of the shear band is approximately half the radius of the inner cylinder so that localization is observed in almost
all Couette cells, (f) when a very viscous fluid surrounds the grains the width of the shear band often exceeds the gap of the Couette
cell, giving the (wrong) impression that shear localization has disappeared.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

A Couette cell is certainly amongst the most convenient devices for determining the steady flow behavior of com-
plex materials. The main specificity of dense granular media is their localized motion, the so-called shear localization.
And the main difficulty with granular media is their opacity which explains why the first experiments were mostly
two-dimensional [1] or limited to the observation of the upper or bottom surfaces [2]. Then, magnetic resonance imag-
ing and X-ray tomography allowed true three-dimensional measurements [3,4]. The main conclusions of these 2D or
3D experiments were the exponential-like (or Gaussian-like) velocity profile in the shear band, and the decrease of
the compaction close to the moving inner cylinder. Shear flow in a Couette cell has recently been studied with liquid-
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saturated granular media [5,6]. The interstitial fluid was found to increase the width of the shear band and, seemingly
to suppress any localization of the motion. These surprising results, together with the finding of a universal velocity
profile for wet and dry materials, prompted us to extend a model initially proposed for dry materials [7] to include
the role of an interstitial fluid. The model we have developed is based on a suggestion made long ago by Savage [8]
and Johnson and Jackson [9], who split the stress tensor into a rate-independent part related to free-volume phenom-
ena and a rate-dependent part due to the contact forces between particles (see also the related model of Ancey and
Evesque [10]). The resulting stress involves several transport coefficients depending on the grain volume fraction. We
have renewed that approach by refining the expressions of these transport coefficients. We already tested the model in
flows over heaps or rough inclines [7]. Here we want to detail the predictions for the Couette flow.

The general features of the motion in a Couette cell are briefly reviewed in Section 2, while the model for dense
granular media is presented in Section 3. The generic velocity and solid fraction profiles are obtained in Section 4.
The predictions of the model are presented in Section 5 for two important limit-cases (constant confining pressure and
constant mean volume fraction), and they are compared with the experimental results of [5,6].

2. Pressure and shear stresses in a Couette cell

A widely used apparatus to study the rheology of continuous media is the Couette cell, made of two co-axial ver-
tical cylinders with radii rint and rext. The inner cylinder rotates and imparts momentum to the medium bounded by
the two cylinders. Once in a steady state, the medium moves with an angular velocity ω(r, z), a shear rate r∂ω/∂r

and an azimuthal velocity rω(r, z). Mass conservation is automatically satisfied. Momentum conservation simplifies
considerably when assuming that the stress tensor τ is symmetric and has vanishing components τzr and τzθ . These
assumptions are far from trivial in case of granular media: a rough boundary prevents the grains to rotate freely (mean-
ing that their mean angular velocity is possibly different from ω) and the stress tensor is presumably not symmetric
at distances less than a few diameters from it. Moreover the assumption of a vanishing τzr means the neglect of any
Janssen-like effect in the Couette cell (i.e. no vertical friction forces on the cylinders). When these assumptions are
taken for granted, momentum conservation reduces to

r∂τrr/∂r + τrr − τθθ = ρr2ω2,

∂
(
r2τrθ

)
/∂r = 0,

∂τzz/∂z = ρg,

in the radial, azimuthal and axial direction respectively. For fluid-saturated granular media the mass per unit volume
is ρ = φρp + (1 − φ)ρf where φ is the volume fraction of the grains while ρp and ρf are the mass per unit volume
of the grains and the interstitial fluid respectively. The momentum conservation in the radial direction implies

τrr (rext, z) = τrr (rint, z) +
rext∫

rint

(
τθθ − τrr + ρr2ω2)dr

r
. (1)

Because of the very slow motion we will assume that the normal stress difference τrr − τθθ and the centrifugal
pressure have a negligible role. These assumptions are supported by the direct observation of the free-surface which
appears to stay horizontal without any deformation, at the least for ω < 1 rad/sec. As a consequence, the momentum
conservation of slowly moving and dense granular media simply expresses as

τrr ≈ N(z), (2)

τrθ ≈ S(z)

(
rint

r

)2

, (3)

where N(z) and S(z) are the pressure and shear stress on the inner cylinder.
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3. Constitutive relations

3.1. Dry granular media

A dense granular medium is one in which contacts between grains are long-lived and lead to a contact network
spanning all over the sample. This requires a minimum volume fraction φm which is likely to be the random loose
packing (of order 0.55 for spherical grains). When its volume fraction is larger than φm, the medium displays a
compressibility which is not linked to the elasticity of the grains, but stems from the free volume available and the
exploration of many microstates with different configurations of the grains. This irrelevance of the elastic properties
of the grains is an approximation which holds up to a volume fraction φM which is equal or slightly smaller than the
random close packing (of order 0.65 for spherical grains). The constitutive relations to be presented below are those
prevailing in the dense solid fraction range φm � φ � φM . A second and important restriction is their limitation to
steady shear flows. As a consequence, velocity fluctuations and the fluctuational kinetic energy will not be considered
as independent variables, and will be supposed to depend on the local shear rate and the local volume fraction only.

The main pressure load is exerted along the radial direction of the Couette device and one can refer to τrr as the
granular pressure. This granular pressure is the result of two distinct physical phenomena, multiplicity of the possible
spatial configurations and impacts between grains. The many possible configurations of the grains, stemming from
free-volume effects, are represented by the “disorder” pressure at the continuum level [11]. That disorder pressure
depends on the solid fraction only and we write it as P ∗F(φ). The derivative ∂F (φ)/∂φ represents the rigidity of
the granular medium in steady shear motion while (P ∗/ρp)∂F (φ)/∂φ can be considered as the velocity of sound
(squared). Because neither the grain elastic modulus nor any thermal energy can be involved in the disorder pressure,
it is not evident to give an order of magnitude for P ∗. There is some evidence that P ∗ is of order 1 to 100 Pa (i.e.
comparable to the self-weight pressure under a few granular layers) but we consider hereafter that P ∗ is a constant
to be determined by experiments. Besides the disorder pressure, the normal stress also includes the effects of the
impacts between grains. We used the name “impact” to insist on the difference between many-body and rebound-less
collisions met in dense media [12], contrasting with the more traditional two-body collisions of dilute media with
φ < φm. At variance with the disorder pressure, the impact pressure is rate-dependent and on dimensional grounds
must be written in the Bagnold-like form [13] so that the total granular pressure appears as

τrr = P ∗F(φ) + ρpD2μN(φ)(r∂ω/∂r)2. (4)

In this constitutive relation D is the grain size and μN(φ) represents Reynold’s dilatancy: shearing the medium at
constant volume fraction creates a larger pressure and conversely, shearing the medium at constant pressure induces
a decrease of the volume fraction (hence μN(φ) is expected to be positive and to increase with the volume fraction).
Besides the pressure, one must give model expressions for the shear. We assume the shear stress to be the sum of a
Coulomb-like solid friction and a second dissipative contribution due to the impacts between grains

τrθ = −μ(φ)τrr

∂ω/∂r

|∂ω/∂r| − ρpD2μT (φ)r2|∂ω/∂r|∂ω/∂r.

Because the local rotation rate is expected to decrease when one moves away from the inner cylinder, the above
expression simplifies into

τrθ = μ(φ)τrr + ρpD2μT (φ)(r∂ω/∂r)2. (5)

In this expression μ(φ) is a compaction-dependent friction coefficient and μT (φ) depicts the extra dissipation due to
the friction developed by sliding contacts. Because the normal stress difference τrr − τθθ appears to have a negligible
role, the modeling of the two components τrr and τrθ is enough for the description of the tangential annular flow.
Expressions (4) and (5) contain four positive scalar functions of the compaction. If we admit an infinite rigidity and
the impossibility of any motion for φ > φM , then F , μN and μT are expected to diverge for φ = φM . If we take for
granted the absence of disorder pressure and dilatancy phenomena for φ < φm, then F , μN and μT are expected to be
very small and perhaps to vanish for φ = φm (in any case they all vanish when φ < φm). The friction coefficient has a
much smoother behavior since it is expected neither to vanish nor to become infinite in the whole range φm � φ � φM .
In fact F , μN , μT and μ are functions of the reduced solid fraction ϕ

ϕ = φ − φm
, (6)
φM − φm
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which can be considered as some order parameter with ϕ = 0 in the fluidized state and ϕ = 1 in the poro-elastic state.
For flows over heaps as well as over rough inclines, a satisfactory fit with experimental results could be obtained
with [7]

F(φ) = Log
1

1 − ϕ
, (7)

μN(φ) = μN0

(1 − ϕ)2
, (8)

μT (φ) = μT 0

(1 − ϕ)2
, (9)

μ(φ) = μ0. (10)

The expression for F(φ) is reminiscent of the configuration pressure in the lattice–gas model and it was already
proposed by Savage [14]. This logarithmic expression is the only one compatible with the exponential decrease of the
velocity in the deep parts of the flow over a heap [15]. The expressions of the three other functions are more debatable
and the above proposals must be considered as the simplest ones.

3.2. Fluid-saturated granular media

When taking the role of the interstitial fluid into account, the fluid pressure pf is supposed to be the only new
source of normal stress and the fluid viscosity ηf is responsible for a new contribution to the shear stress. We will
neglect any difference between the mean fluid velocity and the mean granular velocity in a Couette flow. The fluid
strain rate is then equal to the granular strain rate r∂ω/∂r and the constitutive relations (4) and (5) are modified into

τrr = P ∗F(φ) + ρpD2μN(φ)(r∂ω/∂r)2 + pf , (11)

τrθ = μ(φ)(τrr − pf ) + ρpD2μT (φ)(r∂ω/∂r)2 − ηf η(φ)r∂ω/∂r. (12)

The transport coefficient η(φ) witnesses to the influence of the solid fraction on the effective viscosity of the mixture.
As shown by Bedeaux [16], the relative viscosity of a suspension of spheres can be written in the general form

η(φ) = 1 + 5Σ(φ)

2(1 − Σ(φ))

with Σ(φ) = φ + (1 − φM)(φ/φM)2. This expression holds in the whole range 0 � φ < φM , but we are interested in
the dense range φm � φ < φM only. For volume fractions close to φM , the above expression has the asymptotic form

η(φ) = η0

1 − ϕ
, (13)

where η0 = 5φM/2(2 − φM)(φM − φm), hence η0 ≈ 10–30 for spherical grains. Since φm is rather close to φM , we
will adopt (13) as the relative viscosity of dense granular media with η0 now representing the relative viscosity at the
random loose packing.

4. Volume fraction and velocity profiles

Let us consider some horizontal plane (z fixed) somewhere between the upper and bottom surface of the granular
medium. We note N and S the normal and shear stresses at the inner cylinder for that selected horizontal plane.
Combining Eqs. (2) and (3) with the constitutive relations (11) and (12) results in

P ∗F(φ) + ρpD2μN(φ)(r∂ω/∂r)2 = P,

μ0P + ρpD2μT (φ)(r∂ω/∂r)2 − ηf η(φ)r∂ω/∂r = S(rint/r)2,

where P = N − pf is the effective confining pressure. We now take into account the above expressions for the
concentration-dependent transport coefficients and deduce the two profiles of volume fraction and angular velocity
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φ(ρ) = φM − (φM − φm) e−P/P ∗
eg2(ρ), (14)√

μN0ρpD2

P ∗ ω(ρ) = e−P/P ∗
ρext∫
ρ

g(x) eg2(x) dx

x
. (15)

In these two results appear ρ = r/rint and ρext = rext/rint where rext is the radius of the external cylinder of the Couette
setup. The external cylinder was supposed to be so rough that ω(ρext) = 0 in all cases. The function g(ρ) is defined as

g(ρ) =

⎧⎪⎨
⎪⎩

√
μN0σ ∗
μT 0P ∗

(√
1 + S/ρ2 − μ0P

σ ∗ − 1

)
if 1 < ρ <

√
S/μ0P ,

0 otherwise.

Besides the constant disorder pressure P ∗ appears a second characteristic stress, σ ∗, defined from the physical prop-
erties of the grains and the interstitial fluid as

σ ∗ = (η0ηf )2

4μT 0ρpD2
. (16)

When σ ∗ � P ∗ the role of the interstitial fluid is negligible and the medium can be referred to as a “dry” granular
medium. On the contrary, when σ ∗ � P ∗ one has a viscous-like granular medium. It is worthy to note that√

μT 0P ∗
μN0σ ∗ = St = TV

TD

, (17)

where St is the Stokes number (see [17] for its counterpart in avalanches), this number being in our model the
ratio of the viscous regime characteristic time TV = 2μT 0ρpD2/(η0ηf ) and the dry regime characteristic time

TD =
√

(μN0ρpD2)/P ∗. Note also that our non-dimensional angular velocity in (15) bears some resemblance with

I =
√

(ρpD2/P )ω proposed by the GDR MiDi [18]. The main difference is our use of the (constant) disorder pressure

P ∗ instead of the full normal stress P . Let us define

rout = rint

√
S

μ0P
. (18)

Since g(ρ) vanishes when r > rout, this means that the shear band has a width rout − rint and that outside this shear
band the medium is motionless with a constant volume fraction depending on P/P ∗. It is quite possible that rout > rext.
In this case the grains move all over the gap. Everything happens as if the shear localization had disappeared while,
in fact, it could still be observed using a Couette cell with a larger gap between the two cylinders. Note that the width
of the shear band is proportional to rint and is independent of the grain size. This should not be a surprise because
when rint increases to infinity the Couette cell is transformed into a plane shear cell (with vertical planes) for which
the symmetry precludes any shear localization.

To induce a motion in the dense granular medium requires that S > μ0P at the inner cylinder. The larger the
difference S − μ0P , the larger will be ω(rint) but the smaller will be the volume fraction at the inner cylinder. Our
model however is specially devoted to dense granular materials with φ > φm everywhere. For the medium to be dense
all over the Couette cell the shear stress at the inner cylinder must not exceed some maximum value and we will limit
our analysis of the Couette flow to applied shear stresses in the range

μ0P < S <

(
μ0 + μT 0

μN0

)
P + 2

√
σ ∗

√
μT 0

μN0
P , (19)

which amounts to 0 < g2(1) < P/P ∗. As a consequence, the width of the shear band has some maximum value and
for a dry granular material

rout < rint

√
1 + μT 0

. (20)

μ0μN0
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The maximum value is independent of the particle size and since the ratio μT 0/μN0 is very close to μ0 [7], the
maximum width is about half the radius of the inner cylinder. For liquid-saturated granular media the maximum width
also depends on σ ∗/P and is always larger than for dry granular media.

5. Model predictions

We now consider two mutually exclusive situations that are typical of most experiments with a Couette cell. In the
first one, the confining pressure of any horizontal layer is kept constant. In the second one, the mean volume fraction
of any horizontal layer is kept constant.

5.1. Experiments with a constant confining pressure

Operating at a constant confining pressure P0 while changing the driving shear requires that no part of the apparatus
prevents the grains from moving in the vertical direction and that the fluid is allowed to drain out of the granular
material. Motion begins when the shear stress at the inner cylinder is just above the minimum value Smin = μ0P0.
When P is replaced by P0 in (14) and (15) one solves them to get the volume fraction profile and the velocity profile.
Figs. 1 and 2 represent these profiles for different values of the shear stress at inner cylinder. Note that the radius rext
of the external cylinder has no influence on the volume fraction profile. It has also no influence on the velocity profile

Fig. 1. Reduced solid fraction profiles of wet granular materials for increasing shears (in the direction of the arrow) and a fixed pressure P0.

Fig. 2. Velocity profiles for increasing shear stresses (in the direction of the arrow) at internal cylinder and a fixed pressure. For the two largest
shear stresses the motion extends over the whole gap.
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Fig. 3. Velocity profile of a dry material (dashed line), and of a liquid-saturated material (plain line). Left, for a given applied shear stress, the
velocity at the inner cylinder is smaller for the wet material. Right, for a given velocity at the inner cylinder, the shear band of the wet material is
larger.

Fig. 4. Driving shear versus angular velocity at inner cylinder for liquid-saturated (plain line) and dry (dashed line) materials and a constant
confining pressure P0.

for low shears, when the width of the shear band is smaller than the gap between the two cylinders. But as soon as the
shear exceeds the value

Sgap = μ0P0

(
rext

rint

)2

(21)

then the flow invades the whole gap between the two cylinders and the boundary condition ω(rout) = 0 is replaced by
ω(rext) = 0, as is expected when the external cylinder is rough enough to prevent any slip on it. Fig. 3(left) compares
the velocity profile of the dry medium with that of a liquid-saturated medium for equal shear stresses at the inner
cylinder while Fig. 3(right) compares the two media for equal velocities at the inner cylinder. In Fig. 4 is plotted the
velocity at the inner cylinder as a function of the driving shear, for a liquid-saturated and for a dry material. The dotted
parts of the curves correspond to driving shears so large that the compaction at the inner cylinder is smaller than φm,
outside the concentrations described by our model. Hence, working with dense granular media limits the driving shears
to the range given by (19) with P = P0. The maximum shear stress increases with σ ∗ as can also be seen in Fig. 4.
In most Couette cells shear localization has always been observed for dry materials which means that most devices
are such that Sgap is larger than the maximum possible S (when σ ∗ = 0) implying that (rext/rint)

2 > 1 +μT 0/μ0μN0.
However, because the maximum possible shear increases with σ ∗ it is quite possible that for the same granular material
filled with a liquid of large viscosity the rotation of the inner cylinder is able to induce a motion all over the gap (as
was in fact supposed for the two largest shears of Fig. 2).
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Fig. 5. When the total volume (or mean volume fraction) is kept constant, the pressure increase is larger for dry materials (dashed line) than for
liquid-saturated ones (plain line); P0 is the initial confining pressure.

5.2. Experiments with constant mean volume fraction

In these experiments a top plate prevents the grains to move in the vertical direction and the gap between the two
cylinders is kept fixed. Conservation of the mass (volume) of the grains in a horizontal layer expresses as

2π

rext∫
rint

rφ(r)dr = π
(
r2

ext − r2
int

)
φ0, (22)

where φ0 is the initial (and assumed uniform) volume fraction of the granular medium, associated with the initial
confining pressure P0. When the applied shear is larger than the minimum value Smin = μ0P0, the medium is put into
motion, its volume fraction close to the inner cylinder decreases. Since the total volume of grains in a horizontal layer
is assumed to be conserved, the solid fraction must increase above φ0 in the outer part of the cell and this requires an
increase of the confining pressure above its initial value P0. In fact, the confining pressure increases with the driving
shear and the relationship P(S) is deduced from the above mass (or volume) conservation equation as the solution of

2

ρext∫
1

ρ eg2(ρ) dρ = (
ρ2

ext − 1
)

e(P−P0)/P
∗
. (23)

Since the integral is finite , when ρext = rext/rint is very large the pressure is almost constant and equal to P0. To obtain
results markedly different from those found in the constant pressure case, we must consider small ratios rext/rint, of
order 1.5 to 2 which are values typical of most Couette devices. The confining pressure is presented in Fig. 5 for dry
and liquid-saturated materials. The maximum possible shear is larger than its value at constant pressure. In Fig. 6 is
represented the velocity at the inner cylinder as a function of the driving shear. It is worthy to note that above some
minimal shear, a (quasi-)linear relationship exists between the velocity at the inner cylinder and the driving shear, in
contrast with what happens in the constant pressure case represented in Fig. 4.

5.3. Comparison with experimental results

The predictions of the model are now compared to the experimental results presented in Huang et al. [5] and
Ovarlez et al. [6]. The size of the Couette cell is such that rext/rint = 1.45. The grains are spherical polystyrene beads
with diameter D = 0.29 × 10−3 m and a mass density ρp = 1.04 × 103 kg m−3. The shear stress for incipient motion
is between 1 Pa and 3 Pa. Since the macroscopic friction coefficient is μ0 ≈ 0.40, the initial confining pressure is
between 2.5 Pa and 7.5 Pa. Hence, P0 has the same order of magnitude as P ∗ which is expected to be in the range
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Fig. 6. Driving shear versus angular velocity at inner cylinder for liquid-saturated (plain line) and dry (dashed line) materials at constant confining
volume. P0 is the initial confining pressure. For comparison with the constant pressure case, the two lower curves reproduce those of Fig. 4.

Fig. 7. Relation between the angular velocity and the shear at the inner cylinder. Dots are experimental results from [5], plain line is the prediction
for constant volume and dashed line is the prediction for constant pressure.

1–100 Pa. Most of the experiments used a fluid with a viscosity ηf = 20×10−3 Pa s for which σ ∗ ≈ 100 Pa if η0 ≈ 10
and μT 0 ≈ 1. We deduce that the experiments were performed under the condition σ ∗ � P ∗, i.e. with a viscous-like
granular medium. Figs. 7 and 8 compare the experimental results for the “flow curve” (i.e. shear stress S as a function
of the angular velocity ω(rint) of the rotating cylinder) with the model predictions for the two operating conditions,
constant pressure on the one hand and constant volume on the other hand. The experimental results appear to be better
fitted by the constant volume curve. The best fit was obtained with μN0 = 2, μT 0 = 1, P ∗ = 3 Pa, σ ∗ = 120 Pa and
P0 = 7.8 Pa. However, with the above best-fit values for the model parameters we have found a width of the shear band
which seems too large when ω(rint) > 1 rad/sec. For these relatively high rotating velocities the centrifugal forces
possibly play a role and the granular pressure, as suggested by (1), is likely to increase when moving away from the
rotating cylinder. As a consequence, the excess shear stress S/ρ2 − μ0P(ρ) will vanish at a position rout closer to the
rotating cylinder than the position predicted in (18) for a spatially uniform P . There is in fact a second discrepancy
with the experimental results which concerns the solid fraction profile. We predicted that φ(r) depends on ω(rint)

while the experiments conclude to a quasi-independence of the two quantities. This is an intriguing experimental
result because it means that the same profile will also be observed for the quasi static granular medium and it suggests
some long-lasting influence of the state in which the medium was initially prepared. It is quite possible that the solid
fraction needs a very long equilibration time (a few hours and perhaps a few days) before it takes its true steady
profile. A third discrepancy concerns the dry media. We predicted that the band width rout − rint increases with ω(rint)
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Fig. 8. Same results as in Fig. 7 but with two logarithmic scales to insist on the slight discrepancy that exists at intermediate angular velocities.

while most of the experiments [1,3] concluded that the width is of the order of a few diameters and independent of the
velocity of the rotating cylinder. Here again, we can refer to the difficulty of obtaining a true steady state for the solid
fraction profile, but this is not the only explanation: we neglected the extra friction provided by the top and the bottom
plates which results in a shear stress decreasing faster than S/ρ2, and is likely to flatten the dependence on ω(rint) of
the band width. The results the above analysis are thus restricted to very high Couette setups operating at relatively
small angular velocities.

6. Conclusions

We have proposed a rheological model for the steady flow of dense and fluid-saturated granular media, in which
the two main parameters are two characteristic stresses. The first one, P ∗, witnesses to the disorder (or free-volume)
entropy that exists in media with solid fractions between the random loose and the random close packings. Previous
estimates [11] suggested that P ∗ is of order 1–100 Pa which happens to be the order of magnitude of ρpgD. Note
however that P ∗ is a constant while ρpgD is not. Hence we were not justified in writing P ∗ ∝ ρpgD like we did in
previous publications [7]. The second characteristic stress, σ ∗ defined in (16), is built from the physical parameters
of both the grains and the interstitial fluid. Dry granular media correspond to σ ∗ � P ∗ while σ ∗ � P ∗ holds for
viscous-like granular media. For the disorder pressure to be a pertinent quantity, the granular medium must be able
to explore all the microstates involved in the disorder entropy. As a consequence the disorder pressure is certainly
relevant to steady flows and we considered here the steady Couette flow between two rotating cylinders. In this
particular geometry, flow localization is the consequence of the sign-reversal of the excess shear S/ρ2 − μ0P(ρ) at
some position rout in the gap between the two cylinders. When P is uniform over any horizontal plane, rout is given
in (18). The two main model predictions concern the solid fraction and the velocity profiles as given in (14) and (15).
The predictions for the velocity profiles are in rather good agreement with experimental profiles obtained with either
dry or wet granular media. The solid fraction profile is predicted to decrease close to the rotating cylinder and the
magnitude of the depletion (as well as the width of the shear band) is predicted to increase with the velocity of the
rotating cylinder, while experiments concluded to a quasi-independence. We suggested these discrepancies could be
traced to the very long time needed for the solid fraction to come to its final steady state. When these very long
transients are not properly taken into account, the solid fraction remembers the way the medium was prepared and can
be markedly different from its true steady value. It is also possible that the present rheological model is wrong because
nothing like the disorder pressure exists in the real life of granular materials. This would imply to very disappointing
conclusions (a) Bagnold’s rheology holds for all solid fractions, from zero up to the random close packing and (b) the
recent statistical approach of granular matter [19] has absolutely no incidence on the rheology. We preferred here to
bet on the existence of P ∗!
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