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Abstract. We propose a simple continuum model to interpret the shearing motion of dense, dry and
cohesion-less granular media. Compressibility, dilatancy and Coulomb-like friction are the three basic
ingredients. The granular stress is split into a rate-dependent part representing the rebound-less impacts
between grains and a rate-independent part associated with long-lived contacts. Because we consider
stationary flows only, the grain compaction and the grain velocity are the two main variables. The
predicted velocity and compaction profiles are in apparent qualitative agreement with most of the
experimental or numerical results concerning free-surface shear flows as well as confined shear flows.

PACS. 45.70.Ht Avalanches – 45.70.-n Granular systems – 83.80.Fg Granular solids

1 Introduction

The mechanical behaviour of a flowing granular mate-
rial depends strongly on the grain volume fraction. While
dense granular media usually exhibit relatively slow mo-
tions with predominance of friction, less dense ones are
usually found in vigorous motions with predominance of
two-particles collisions. The collision-dominated regime is
well described by kinetic theory, with the concepts of gran-
ular temperature and inelastic collisions. On the contrary,
the current description of dense granular flows is not so
fully satisfactory. It must be understood that we are not
questioning the description by soil mechanics of quasi-
static and highly stressed granular materials, but the de-
scription of flows with relatively low stress levels encoun-
tered, for example, in avalanches down an inclined plane.
Several recent works (see, e.g. [1–3]) presented mitigated
opinions about the possibility of describing dense granular
flows within the realm of continuum mechanics. In fact,
the experimental observation that many dense flows dis-
play a typical thickness of a few grain diameters must not
be a factor of pessimism. We know from several examples
in suspension mechanics that the continuum approach can
cope with high-velocity gradients in one direction, pro-
vided one has some statistical homogeneity in the other
two directions. This situation is exactly the one met in
sheared granular media, provided we discard transient ef-
fects and focus on the final stationary state.
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Once the principle of a continuum mechanical descrip-
tion is accepted, the number of relevant field variables
must be decided. There is no doubt that the grain veloc-
ity is relevant but it is not less clear that the grain volume
fraction is also a pertinent variable. In fact, the widely
used assumption of an incompressible medium is not ten-
able. It contradicts the dilatancy concept and, as will be
seen below, the transport coefficients of a dense granular
medium display enormous variations with only tiny mod-
ifications of the compaction. Our aim is thus to propose
a model for dense and stationary shear flows in which
the grain compaction and the grain velocity are the two
fundamental variables. One could also suggest the fluctu-
ational kinetic energy of the grains (the granular “temper-
ature”) as a third variable. The main issue concerning the
temperature of dense granular media is its dependence on
the mean angular velocity of the grains, besides the more
traditional fluctuations of their translational velocity. The
description of non-stationary flows of dense media requires
not only the resolution of the angular-momentum conser-
vation equation but also the resolution of an equation for
the fluctuations of angular velocity. To bypass these com-
plex issues, we focus henceforth on stationary flows and
assume the equality between the mean angular velocity of
the grains and the angular velocity of the granular medium
as a whole. As a consequence, the generalized granular
temperature is no longer an independent state variable,
but a function of the solid fraction and of the symmetric
velocity gradient only.
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The role of the embedding fluid will be neglected every-
where, and for these “dry” granular media, the main issue
is to propose a constitutive relation for the granular stress.
To compare with previous works on dense flows, we can
say we adopt a phenomenological description somewhat
similar to that proposed two decades ago by Savage [4] and
by Johnson and Jackson [5]. Like these authors, we intro-
duce a stress tensor split into a frictional and a collisional
contribution. However, the collisional contribution is con-
cerned with rebound-less impacts typical of high grain
concentration, and is free of any restitution coefficient [2].
Our constitutive relation for the particulate stress has a
form somewhat similar to that proposed by Ancey and
Evesque [6], the main differences concerning the explicit
role of the grain compaction and a more detailed expres-
sion of the granular pressure. Our model also shares some
common features with the model proposed by Bocquet
et al. [7], but instead of extending the kinetic theory ap-
proach to large compaction, we prefer here to develop a
model specifically devoted to dense media. In other words,
we share with Bocquet et al. the opinion that high-density
granular materials need a special expression for the viscos-
ity coefficient. But, we claim with Savage and Johnson and
Jackson that dense granular materials also need a special
expression for the grain pressure in order to mimic the role
of contact forces between grains. Moreover, the model we
propose is quite simple insofar as it denies any special role
to the compaction gradient [8] and avoids the non-locality
concept [9].

Discarding two-particles collisions and any restitution
coefficient means that our model is restricted to volume
fractions in the range between φm and φM. The maximum
grain compaction φM corresponds to the highest possi-
ble random packing (with φM � 0.80 for two-dimensional
flows and φM � 0.65 for three-dimensional ones) while φm

is the smallest compaction compatible with the existence
of a continuous network of contacts between grains. As
suggested by Azanza [1], one can define φm as the mini-
mum compaction for which the two-particle distribution
function exhibits some swelling at a distance of two diam-
eters. With this definition, φm � 0.70 for two-dimensional
flows, while φm � 0.50 for three-dimensional ones.

A phenomenological order parameter description of
granular media was recently proposed [10]. We acknowl-
edge this approach looks efficient and we agree with Volf-
son et al. that the fraction of solid contacts is a possible
order parameter, but we also claim that a much simpler
order parameter exists which is the reduced compaction
(φ−φm)/(φM−φm). And since the solid fraction φ obeys a
conservation equation, we do not have to worry about the
Ginzburg-Landau equation. Stated differently, we consider
the solid fraction as a pertinent variable (or the reduced
compaction as a pertinent order parameter) and we want
to present the potentialities of such an assumption.

The description of stationary free-surface shear flows
is given in Section 2 while that of confined shear flows
is presented in Section 3. Section 4 compares the model
predictions with experimental and (or) numerical data.
The final section insists on the limitations and necessary
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Fig. 1. Gravity-induced shear flow with free surface (over a
heap or an inclined plate with an angle θ relative to the hori-
zontal plane).

improvements of the proposed model, which must be con-
sidered as a minimal one.

2 Free-surface shear flows

As a prototype of shear flow with free surface, we con-
sider the gravity-induced chute (over a heap or an inclined
plate, see Fig. 1) with an angle θ relative to the horizontal
plane. The mean grain velocity is parallel to the x-axis,
V = V ex, while V and the solid fraction φ depend only
on z, the distance to the free surface. The granular stress
tensor is noted τ and the equations of motion are:

0 = −∂τxz

∂z
+ φρgsin(θ) , 0 = −∂τzz

∂z
+ φρgcos(θ) , (1)

where ρ is the constant mass per unit volume of the grain
material and g is the acceleration of gravity.

For dense granular media, the granular stress is a con-
sequence of long-lived contacts and bounce-less impacts
between grains. Long-lived contacts result from compres-
sive forces acting towards the boundaries of the granular
medium. In the geometry considered, they take part in
τzz since z is the direction of main compression. Whether
gravity is responsible for compressive forces or not, we
choose to scale the compressive stress with ρgD, where
D is the grain size. The compressive stresses are related
to the grain volume fraction as ρgDF (φ), where dF/dφ
is the non-dimensional rigidity of the granular medium.
In free-surface shear flows, gravity is the only source of
compaction and the magnitude of the compressive stress
will also depend on θ. It is clear that the compressive role
of gravity is maximum when the compression axis z is
vertical, while this role vanishes when gravity is orthog-
onal to it. Consequently, the general form of the gravity-
induced compressive stress is ρgDF (φ)f(θ) with f(0) = 1
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and f(π/2)= 0. The exact expression of f(θ) is not im-
portant because, as will soon be seen, the stationary flows
exist in a very limited range of θ only. One of the sim-
plest function of θ which meets the above requirement is
cos(θ), and we assume henceforth that the contribution
of long-lived contacts to τzz can be written in the form
ρgDF (φ) cos(θ). To this gravity-induced contact stress a
rate-dependent impact stress must be added. On purely
dimensional grounds, this second contribution cannot be
but Bagnold-like and the full normal stress finally appears
in the form

τzz = ρD2µN(φ)
(
dV
dz

)2

+ ρgDF (φ)cos(θ), (2)

where µN(φ) represents the compaction-dependent inten-
sity of the normal stress induced by the shear rate. Con-
cerning the shear stress of the flowing granular medium,
we assume it is made of a Coulomb-like contribution with
a friction coefficient µ(φ) completed by a Bagnold-like con-
tribution involving a coefficient µT(φ) representing the
compaction-dependent intensity of the shear stress in-
duced by the shear rate

τxz = ρD2µT(φ)
(
dV
dz

)2

+ µ(φ)τzz. (3)

The model expressions (2) and (3) contain four func-
tions of the grain compaction. Before giving them some
explicit (and tentative) expressions, let us comment on
their expected general behaviour. These four functions de-
scribe the dense regime and have a meaning in the range
φm ≤ φ ≤ φM only. We expect F , µT and µN to become
infinite when φ = φM, because no motion nor extra com-
paction is expected above the maximum random packing.
We also expect F and µN to vanish for φ = φm, because
the normal stresses must vanish for the most tenuous con-
tact network. Concerning the friction coefficient µ, it is
the only coefficient which remains finite when φ = φM

and it presumably increases [11] for smaller compactions.
In short, the three scalars F , µN and µT are strongly in-
creasing functions of the compaction, while µ has a much
smoother behaviour.

Since we neglect the role of the embedding fluid, the
granular stress must vanish at the free surface and con-
sequently τxz = tan(θ)τzz everywhere. In this case, when
solving the equations of motion (1) with the model ex-
pressions (2) and (3), one arrives at a compaction profile
and a velocity profile which are solution of

D
dφ
dz

=
φ

∂

∂φ

[
F

1− (µN/µT)(tan(θ)− µ)

] (4)

and(
D

g

)1/2 dV
dz

= −
(

F (sin(θ)− µcos(θ))
µT(1− (µN/µT)(tan(θ)− µ))

)1/2

.

(5)
At the free surface the solid fraction is φm (remember
we limit the description to the dense regime and discard

all phenomena acting for solid fractions less than φm).
According to (4) the solid fraction increases towards its
maximum value φM over a depth which scales with the
grain diameter but depends on θ if µN/µT is different from
zero. Hence, µN/µT represents the relative magnitude of
Reynold’s dilatancy. Concerning the velocity profile, its
characteristic value scales like (gD)1/2 and according to
(5) its solution exists for any angle θ verifying the inequal-
ity µ(φ) ≤ tan(θ) ≤ µ(φ) + µT(φ)/µN(φ). For certain val-
ues of θ this inequality is possibly satisfied in a part only
of the full range φm ≤ φ ≤ φM.

It is obviously not evident to deduce four functions
of the compaction from the rather scarce experimental
or numerical results on stationary shear flows. We as-
sume henceforth that µ and µT/µN are independent of
the grain compaction. Then, a stationary solution is pos-
sible in a well-defined angle range θmin ≤ θ ≤ θmax, with
tan(θmin) = µ and tan(θmax) = µ+µT/µN. To obtain more
quantitative results, we consider separately the chute over
a heap from that over an inclined plane.

2.1 Heap flows

In the heap case, provided µ and µN/µT are independent
of the solid fraction, one can deduce from (4) and (5) the
total granular flux flowing down the heap Qheap:

Qheap

D
√
gD

=
(sin(θ)− µcos(θ))1/2(
1− µN

µT
(tan(θ)−µ)

)5/2

∫ φM

φm

(
F 3

µT

)1/2
∂F

∂φ

dφ
φ

,

(6)
the grain velocity Vheap(0) at the free surface,

Vheap(0)√
gD

=
(sin(θ)− µcos(θ))1/2(
1− µN

µT
(tan(θ)−µ)

)3/2

∫ φM

φm

(
F

µT

)1/2
∂F

∂φ

dφ
φ

(7)
and the relative velocity profile

Vheap(z)
Vheap(0)

=

∫ φM

φheap(z)

(
F
µT

)1/2
∂F
∂φ

dφ
φ∫ φM

φm

(
F
µT

)1/2
∂F
∂φ

dφ
φ

. (8)

Since the free-surface velocity and the flux are expected
to have finite values for θmin < θ < θmax, the two func-
tions F (φ) and µT(φ) must be such as to guarantee the
convergence of the above integrals. In this case Vheap(0)
and Qheap are functions of θ with numerical prefactors de-
pending on one’s peculiar choice for F and µT. In what
follows, we adopt the simple expressions

F = F0Log
(
φM − φm

φM − φ

)
and µT = µT0

(
φM − φm

φM − φ

)2

.

(9)
The same expression for F was already proposed by Sav-
age [4,12] and we comment on it in Appendix A. A more
general expression for µT and its consequences are de-
scribed in Appendix B. The above expression for F leads
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Fig. 2. Reduced velocity profile Vheap/Vheap(0) versus the adi-
mensional distance z/L(θ) to the free surface. The dashed
curve represents the approximate expression (12). The reduced
compaction profile (φ − φm)/(φM − φm) is plotted as well.
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Fig. 3. Zoom of Figure 2 showing the Bagnold-like region for
z/L(θ) < 0.2. The dashed curve represents approximation (12).

to a solid fraction profile which increases exponentially
with depth:

φheap(z, θ) =
φM

1 + (φM
φm

− 1)e−z/L(θ)
, (10)

where

L(θ) =
F0D

φM(1− µN
µT

(tan(θ)− µ))
(11)

represents the typical thickness of the layer flowing down
the heap. The relative velocity profile deduced from the
above expressions for F and µT is exponential-like for

z
L(θ) � 2 (see Fig. 2) but displays a Bagnold-like region of
inverse concavity for z

L(θ) � 0.2 (see Fig. 3). In fact, our
numerical solution for the relative velocity profile is quite
well fitted by the analytical expression

1− Vheap(z)
Vheap(0)

=
(
φheap(z)− φm

φM − φm

) 3
2

=

(
1− e−z/L(θ)

1 + (φM
φm

− 1)e−z/L(θ)

) 3
2

. (12)

With φm = 0.5 and φM = 0.65 the total flux flowing down
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Fig. 4. θ-dependence of flux Qheap and adimensional thickness
l(θ) = φML(θ)/D.

the heap is

Qheap

D
√
gD

= 1.4
F

5/2
0

µ
1/2
T0

(sin(θ)− µcos(θ))1/2(
1− µN

µT
(tan(θ)− µ)

)5/2
.

The dependence on θ of L and Qheap are represented in
Figure 4, with µ = 0.36 and µN/µT = 4.7.

2.2 Chute on rough plates

The flows over inclined rough plates are more difficult to
handle because the constitutive equations (2) and (3) hold
in the bulk only of the dense granular medium and are
likely to be modified close to the rough plate. Since the role
of the plate rugosity is difficult to assess quantitatively,
we discard the description of the “basal layer” close to
the plate [6,13] and assume a slip velocity Vs at some
distance δ above the rough plate. Then, we apply (2) and
(3) to a layer of thickness h, so that the free surface is
located at a distance h+ δ above the rough incline. In the
layer of thickness h, the solid fraction increases from φm

at the free surface to the value φheap(h) at a distance δ
from the rough plate, where the velocity is Vs. The total
flux through the core region is now given by:

Qplate

D
√
gD

=
F (φheap(h))

1− µN
µT

(tan(θ)− µ)
Vs√
gD

+
(sin(θ)− µcos(θ))1/2(
1− µN

µT
(tan(θ)− µ)

)5/2

×
∫ φheap(h)

φm

(
F 3

µT

)1/2
∂F

∂φ

dφ
φ
. (13)

A rough plate is likely to slow down the core region
more efficiently than a heap would do and we expect
Vs ≤ Vheap(h). As a consequence, Qplate(h, θ) as given
in (13) is not expected to exceed Qheap(θ) given in (6).
When forcing a flux Qplate to flow down a rough plane in-
clined at angle θ, two different situations are encountered:
when Qplate is larger than Qheap(θ), the granular medium
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will re-arrange so as to flow down over a heap of angle
θ + α with Qplate = Qheap(θ + α). This gives a possible
explanation for the “immature sliding flows” that were
observed in some experiments [3,4]. Due to the very large
increase ofQheap with θ (see Fig. 4) and because the exper-
imental flux is limited to some maximal value, immature
sliding flows were observed for small angles close to θmin

only. Conversely, when Qplate is smaller than Qheap(θ), the
whole layer of thickness h is in motion with a velocity ev-
erywhere larger than Vs. Moreover, when h/L(θ) � 0.2,
the Bagnold-like velocity profile (which could hardly be
observed in heap flows, see Fig. 3) is now invading the
whole core region. In fact, when expressions (9) are taken
for granted and h/L(θ) � 0.2, the total flux (13) has the
special form

Qplate

D
√
gD

=
φmVsh

D
√
gD

+
2
5
φ3/2

m

(
(sin(θ)−µcos(θ))

µT0

)1/2(
h

D

)5/2

.

(14)
When the role of the velocity slip can be neglected, the
second contribution gives a h5/2 scaling law for the grain
flux down a rough incline. Note that this scaling stems
from our particular choice (9). The consequences of a dif-
ferent choice for µT are analyzed in Appendix B.

3 Confined shear flow

In the two-dimensional shear flows we will consider, the
pressure load exerted on the boundaries of the granular
medium is supposed to be applied along direction z, which
is thus the direction of main compression. Because gravity
plays a minor role concerning the compressive forces, the
constitutive relation for τzz is simply (compare with (2))

τzz = ρD2µN(φ)
(
dV
dz

)2

+ ρgDF (φ), (15)

whatever the angle θ between the z-axis and gravity. The
flow is along the x-axis and the constitutive relation for
the shear stress τxz is still given by (3), without any change
as compared to the free-surface case.

3.1 Plane shear flow

As a first type of confined shear flow, we consider the pla-
nar shear of an infinite horizontal granular layer bounded
by two plates separated by a fixed distance h. The pressure
load and the gravity are both oriented along the direction
z and the flow is along direction x (see Fig. 5). The equa-
tions of motion result in a constant shear stress S and a
variable normal stress

τxz = S and τzz(z) = P (0) + ρg

∫ z

0

φ(ξ)dξ ,

where P (0) is the pressure load exerted on the upper plate
z = 0 (z = h stands for the lower plate). We will dis-
tinguish the situation without and with gravity, the first
case corresponding to numerical simulations and the sec-
ond one to experiments.

g

x

z

P

S

h

Fig. 5. Planar confined shear flow of an infinite horizontal
granular layer bounded by two plates separated by a fixed dis-
tance h. The pressure load P and the gravity are both oriented
along the direction z, the shear stress S and the flow are along
direction x.

3.1.1 Without gravity

In this case the normal stress is also a constant P all
over the granular layer and the constitutive equations (15)
and (3) give

ρD2µT(φ)
(
∂V

∂z

)2

= S − µ(φ)P ,

ρD2µN(φ)
(
∂V

∂z

)2

= P − ρgDF (φ) . (16)

Depending on the sign of S−µ(φ)P , we will have a static
or a moving medium. In the static case the pressure load
is noted P0 and the shear is such that S ≤ µ(φ0)P0, where
φ0 is the constant compaction of the medium related to
the pressure load through P0 = ρgDF (φ0). In the dynamic
case the compaction is still a constant and because of mass
conservation this constant is nothing but the static value
φ0. The shear S is now larger than µ(φ0)P0. The velocity
gradient is constant:

ρD2

(
∂V

∂z

)2

=
S − µ(φ0)P0

µT(φ0) + µ(φ0)µN(φ0)
.

Due to dilatancy effects the pressure load exerted on the
plates is necessarily larger than in the static case, follow-
ing:

P (S) = P0 +
S − µ(φ0)P0

µ(φ0) + µT(φ0)/µN(φ0)
.

As a consequence, the effective friction coefficient is a func-
tion of φ0 and P :

S

P
= µ(φ0) +

µT(φ0)
µN(φ0)

(
1− ρgD

P
F (φ0)

)
.

3.1.2 With gravity

In this case the normal stress increases in the downward
direction so that the constitutive equation (3) results in
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ρD2µT(φ)
(
∂V

∂z

)2

= S−µ(φ)P (0)−µ(φ)ρg
∫ z

0

φ(ξ)dξ .

It is then clear that the gravity-induced extra compaction
possibly induces shear localization because the right-hand
side can have a different sign in different parts of the flow.
To simplify this issue, we will now introduce the same
assumptions we have previously used in the free-surface
shear flows, namely that µ and µT/µN do not depend on
φ, while F (φ) and µT(φ) are given by (9). We will first
describe the static case before considering grain motions.
Because the compaction on the upper plate is necessarily
different in the static and the dynamic cases, we define
P0(0) as the pressure load exerted on the upper plate when
the granular medium is motionless and φ0(z) as the static
compaction profile. As long as S ≤ µP0(0), the granular
slab is motionless, the compaction φ0(0) at the upper plate
satisfies P0(0) = ρgDF (φ0(0)) and the compaction profile
is

φ0(z) =
φM

1 +
(

φM
φ0(0)

− 1
)
e−z/L0

with L0 =
F0

φM
D.

When the granular medium is flowing, the compaction
profile φ(z) displays larger gradients and becomes

φ(z) =
φM

1 +
(

φM
φ(0) − 1

)
e−z/L

with L =
L0

1 + µµN
µT

,

where φ(0) is the new compaction at the upper plate. Since
mass conservation requires∫ h

0

[φ(z)− φ0(z)]dz = 0,

it is clear that the inequality L < L0 implies φ(0) < φ0(0)
and φ(h) > φ0(h). The compaction of the moving medium
is thus reduced at the upper plate as compared to its static
value while it is enhanced at the lower plate.

The velocity profile is then deduced from the com-
paction profile(

1 + µ
µN

µT

)
D

g

(
∂V

∂z

)2

=
S∗ − µF (φ)

µT(φ)
,

where S∗ is the dimensionless shear S
ρgD . Let us define

the volume fraction φ∗ such that S∗ = µF (φ∗). It is clear
that φ∗ > φ0(0), because S > µP0(0). The above equa-
tion implies that motion exists for compactions less than
φ∗ only. This condition leads to check the self-consistency
relation φ(z) < φ∗ for 0 < z < h. This condition is au-
tomatically satisfied in the upper part of the flow since
φ(0) < φ0(0) < φ∗. But it may be not in the lower part,
thus leading to a shear localization. This bulk localiza-
tion is here depending on S∗ and h/L. Figure 6 shows the
compaction and velocity profiles for two different values
of φ∗(S∗) representing the two different situations: shear
localization or flow over the whole layer.

0.1 0.2 0.3 0.4 0.5 0.6

 0.8

 0.6

 0.4

 0.2

0

0.1 0.2 0.3 0.4 0.5 0.6

 0.8

 0.6

 0.4

 0.2

0

V (z)V (z)

z/h z/h

φ(z) φ(z) φ0(z)φ0(z)

φ∗z∗/h

Fig. 6. Velocity profile V (z) and compaction profile φ(z); left:
large S; right: small S.
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Fig. 7. Vertical chute flow between two rough plates.

3.2 Vertical chute flows

A second type of confined shear flow is the chute between
two vertical plates (see Fig. 7). The compaction is due to a
pressure load P exerted on the two plates along direction
z. The flow and the gravity are oriented along direction x.
The equations of motion result in a constant normal stress
and a variable shear stress, by contrast to the preceding
case:

τzz = P and τxz = ρg

∫ z

0

φ(ξ)dξ,

where z = 0 corresponds to the symmetry plane located
between the two plates at which the shear stress vanishes.
The constitutive relation (3) implies

ρD2µT(φ)
(
∂V

∂z

)2

= ρg

∫ z

0

φ(ξ)dξ − µ(φ)P.

Either the right-hand side is everywhere negative (due to
a very high pressure load) and the medium is motionless
or there is a central region of the flow in which the shear
stress does not exceed µP and consequently where the
strain rate vanishes. In this plug flow regime the solid
fraction is a constant φ∗ related to the pressure load as
P = ρgDF (φ∗). The thickness z∗ of the plug flow depends
on φ∗ (hence on the pressure load):

z∗

D
=

µ(φ∗)
φ∗ F (φ∗).

Close to the vertical plates, there is a shear layer where the
velocity decrease to Vw dependent on the plate roughness.
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In this parietal shear layer, the constitutive equations (15)
and (3) imply

(
D

g

)1/2
∂V

∂z
= −

(
F (φ∗)− F (φ)

µN(φ)

)1/2

(17)

and
D
∂φ

∂z
=

φ

∂
∂φ

[
(µ+ µT

µN
)F (φ∗)− µT

µN
F (φ)

] . (18)

To obtain more definite results, we again consider the
assumptions already made for gravity-driven and plane
shear flows, namely that µ and µN/µT are independent
of the solid fraction, while F (φ) and µT(φ) are given
by (9). Then, the compaction profile in the shear layer
z∗ < z < zw is

φ(z) =
φM

1 +
(

φM
φ∗ − 1

)
e

z−z∗
L∗

, (19)

where L∗ is the typical shear layer thickness:

L∗

D
=

µTF0

µNφM
.

For the flow to be dense up to the vertical plates, the wall
compaction φw must be larger than φm and the shear layer
thickness is

zw − z∗

L∗ = Log

(
φM
φw

− 1
φM
φ∗ − 1

)
.

As a consequence, the distance 2zw between the two plates
is a function of φ∗ (hence of P ) and of φw (hence of
the plate roughness). Concerning the velocity, it increases
from a value Vw at the wall to a value Vplug in the central
part. The computed relative velocity field is represented
in Figure 8 together with the fit

V (z)− Vw

Vplug − Vw
= 1−

(
φ∗ − φ(z)
φ∗ − φw

)3/2

. (20)

4 Qualitative comparison with experimental
and (or) numerical data

Since many experimental and numerical data were re-
viewed in [14], we will often use this reference where the
original works are quoted therein. Moreover the compari-
son between the model predictions and the experimental
or numerical data will be qualitative only, our aim being
to test the potentialities of the model rather than to give
definite values to parameters such as F0 or µT0.

4.1 Plane shear flow

Neglecting the influence of gravity (as was done in most
numerical simulations) our model leads to a uniform solid
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Fig. 8. Reduced velocity profiles (V (z)−Vw)/(Vplug−Vw) ver-
sus the adimensional distance zµNφM

DµTF0
to the center. The arrows

are in the increasing values of P
ρgDF0

. The dashed curves repre-

sent the approximate expression (20). The reduced compaction
profiles φ/φM with φw/φM = 0.7 are plotted as well.

fraction and to a uniform velocity gradient, in conformity
with results presented in Figures 5b and c of [14] for the
dense-flow regime. When gravity is taken into account, a
shear localization is possible, depending on the magnitude
of the pressure load as well as on the thickness of the gran-
ular layer. Unfortunately, we are unaware of experimental
or numerical data with which the predictions of Figure 6
could be tested.

4.2 Vertical chute flow

The uniform solid fraction and the uniform velocity in the
core region are correctly reproduced by the model. Con-
cerning the sheared regions closed to the vertical bound-
aries, the relative velocity profile (20) and the compaction
profile (19) are quite similar to results gathered in Fig-
ures 7b and c of [14].

4.3 Heap flow

The solid fraction profile (10) and the velocity profile (12)
are quite close to those represented in Figures 9b and c
of [14] and in Figures 9a and b of [15]. In particular, the
velocity profile displays a Bagnold-like profile very close
to the free surface (z < 0.2L(θ)), a quasi-linear profile in
the central part of the flow (0.2 < z/L(θ) < 2) and finally
an exponential tail for the deepest parts of the flow, as ob-
served in [16]. At variance with confined flows for which
the shear was localized in boundary layers with thickness
of the order of a few grain diameters, heap flows are char-
acterized by a thickness L(θ) of a few grain diameters
when θ is slightly larger than θmin but which increases to
quite large values when θ is close to θmax. A similar unlim-
ited increase of the grain flux Qheap is observed for θ close
to θmax, as seen in Figure 4. Such a behaviour is difficult to
observe experimentally due to the limited values of Qheap

that can be achieved in usual laboratory devices. Accord-
ing to (6) and (11), our model predicts L ∼ (Qheap)2/5
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when θ is not too close to θmin, a result slightly different
from the scaling L ∼ (Qheap)1/2 suggested by Figure 9j
of [14].

4.4 Rough inclined planes

We explained the appearance of the so-called “immature
sliding flows”: they develop when the imposed flux Qplate

over a plate with inclination θ is larger than the flux
Qheap(θ) which would fall down a heap with the same
slope. Since Qplate is experimentally limited to some max-
imum value, immature flows are observed for θ close to
θmin only. When θ comes close to θmax, the thickness h of
the granular layer flowing over the rough incline becomes
much smaller than the thickness of the grain layer which
would flow down a heap with similar slope. And when
h is less than 0.2L(θ), the Bagnold-like velocity profile
is invading the whole flowing layer, with the h5/2 scaling
for the flux Qplate as a direct consequence (provided the
first contribution to (14) is negligible). A different scaling,
h(5−γ)/2, is obtained with a different expression for µT as
discussed in Appendix B. The main drawback of our model
is its inability to explain the quantity hstop(θ) introduced
by Pouliquen [17] and which was confirmed in numerical
simulations [18]. The first reason is that we assumed the
friction coefficient µ to be independent of the solid frac-
tion. As a consequence, θmin is a constant and hstop van-
ishes as soon as θ > θmin. A second reason is the possible
inadequacy of our model close to the rough incline. In this
basal or frictional layer [6,13], the particle rotation plays
an important role, the grain stress tensor is possibly non-
symmetric and the solid fraction has a perturbed profile.
All these phenomena would require a specific modelling.
In fact the explanation of hstop(θ) proposed by Mills et
al. [9] involves constitutive relations which are different
close to the boundaries from those holding in the bulk.
Concerning the solid fraction profile, the present model
predicts a profile given by (10), gradually increasing from
φm at the free surface to φheap(h/L(θ)) close to the rough
plate. This prediction is in rather good agreement with
the experimental profiles of Ancey [19] but is in contra-
diction with the simulations of Silbert et al. [18] who found
a completely flat profile depending on θ but independent
of z, hence of h.

4.5 Annular shear

This special kind of shear flow was not considered here
because to describe it, we would need a constitutive equa-
tion for the τxx component of the granular stress, besides
those for τxz and τzz. This will be done in future work.

5 Conclusion

We proposed a model for dense shear flows which considers
the solid fraction as the main microstructural parameter.

The granular stress is partitioned in a way similar to
that proposed by Savage [12,4]. One of the distinctive fea-
tures is a completely explicit expression for the contact
stress which involves a function F (φ) of the solid frac-
tion. The solid fraction profile mainly depends on the com-
pressibility dF/dφ while the velocity gradient is bound to
F (φ)/µT(φ), where µT(φ) is somehow analoguous to the
effective viscosity used by Bocquet et al. [7]. In principle
the complete model contains two more functions of the
solid fraction (µ(φ) and µN(φ)) but we strived to show
that not so bad predictions could be obtained after as-
suming the friction coefficient µ and the dilatancy ratio
µN/µT to be independent of the solid fraction. Obviously,
these are simplifying assumptions which can be released
and improved. We also checked that the tentative (and
simple) expressions (9) for F (φ) and µT(φ) led to sound
predictions for the velocity and solid fraction profiles with
one exception only, the compaction profile in flows down
rough inclines.

The main drawback of constitutive equations (2) (or
(15)) and (3) is their possible failure in a thin layer close to
rough boundaries, i.e. at places where a couple stress and
a relative angular velocity are likely to exist [20]. Their
main advantage is to contain all the ingredients necessary
to interpret the bulk shear-localization phenomenon, and
to be able to explain in a qualitative way the quite different
velocity profiles appearing in the stationary shear flows of
dense granular materials.

Appendix A. Granular pressure

Close to the maximum compaction φM, the compressibil-
ity of the granular medium stems from a purely geometric
effect, the number of different ways the grains can be dis-
tributed in space for a given volume fraction. This is remi-
niscent of the situation described by the cellular lattice-gas
model. Starting from its free-energy per unit volume

ψlg = νkBT [φ̃Logφ̃+ (1− φ̃)Log(1− φ̃)] ,

one deduces the lattice-gas configuration pressure

Plg =
∂ψlg

∂φ̃
= νkBTLog

(
φ̃

1− φ̃

)
,

where ν is the number of cells per unit volume and φ̃ is
the fraction of cells occupied by particles. For granular
materials, the thermal energy is replaced by the mechani-
cal energy F0ρpgD and φ̃ is replaced by φ/φM. The main
difference between the contact pressure and the lattice-
gas pressure is that the contact pressure vanishes for φ
smaller than φm, hence our expression (9) for F (φ). The
analogy with the lattice-gas model is far from perfect and
to improve the expression of F (φ) one can address to more
sophisticated approaches such as the one developped by
Blumenfeld and Edwards [21].
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Appendix B. Influence of µT(φ) on scaling
laws

The behaviour of µT(φ) close to the lowest compaction
φm has a large influence on the predicted velocity profiles
close to the free surface. Keeping the same expression (9)
for F (φ), let us use a more general expression for µT in
the form

µT = µT0(φM − φm)2−γ (φ− φm)γ

(φM − φ)2

with a positive exponent γ because µT is not expected to
diverge for φ = φm. The compaction profiles of heap flows
are unchanged but the velocity profiles close to the free
surface now depend on exponent γ. Our numerical results
for the velocity profiles can be fitted with a very good
accuracy by an expression which generalizes (12)

1− Vheap(z)
Vheap(0)

=
(
φheap(z)− φm

φM − φm

) 3−γ
2

=

(
1− e−z/L(θ)

1 + (φM
φm

− 1)e−z/L(θ)

) 3−γ
2

. (B.1)

A region of inverse concavity exists close to the free surface
when γ is less than one but it is only when γ is null that
this region of inverse concavity has a Bagnold-like profile.
When γ = 1 the velocity profile is quasi-linear up to the
free surface [15,2] and when 1 < γ < 3 there is no change
of concavity but a large increase of the velocity close to
the free surface [6]. A second consequence concerns flows
over rough plates. When h < 0.2L(θ), result (14) is trans-
formed into

Qplate

D
√
gD

=
φmVsh

D
√
gD

+
2

5− γ
φ3/2

m

(
(sin(θ)− µcos(θ))

µT0

)1/2

×
(
L(θ)φM

Dφm

) γ
5

(
h

D

) 5−γ
2

. (B.2)

Measurements of Qplate(h) by Ancey [19], Rajchenbach [2]
and Pouliquen [17], respectively, suggest that γ = 3, γ = 1
and γ = 0. The issue is far from being settled.
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