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Stability of laboratory scale rivers
O. Devauchelle, C. Josserand, P.-Y. Lagrée and S. Zaleski

Fluid Dynamics provides a sound insight to the geomorphologist interested in the 
ubiquitous formation of regular sedimentary patterns by rivers (like bars, braids and 
meanders). Many theoretical advances as well as laboratory experiments tend to prove 
that those patterns do not simply reflect a general turbulence pattern. Instead, their 
formation results from the interaction between a surface flow and an erodible substrate.
The interface separating the sediment layer from water is found to be unstable in many 
cases. In particular, small laboratory flumes are able to generate regular sediment 
patterns, at Reynolds number of the order of, or below 100.
This suggests that turbulence is not essential to bars, braids and maybe meanders 
formation. Laminar flumes then become simple models of their natural turbulent 
counterparts.
This poster presents the linear stability analysis of a laminar flow confined in a slowly 
erodible channel. The basic state is an infinite straight river, which profile is to be 
determined.
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Sediment mass conservation and 
erosion law. The sediment flux is 
deviated downward by the bottom 
slope.

The influence of the erosion law on straight river cross-
section is illustrated on the right.

In one dimension, the evolution equation is

Where q takes both erosion and avalanches into account :

H is the Heavyside function and α is the critical angle 
above which avalanches occur. ε is a small parameter.

When qA = 0 and β = 1, a parabolic self-similar solution 
exists (above), which aspect ratio is proportional to t2/3.

The general profile (below) is the basic state of the 
stability analysis.
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Linear stability results

Most rivers cross-section are 
unstable in two dimensions, 
provided β > 1.
As the aspect ratio increases, the 
most instable mode switches from n
to n+1.
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Rivers never go straight in 
Nature.
May this behavior be 
interpreted in terms of simple 
linear stability ?
Are two-dimensionnal effects 
sufficient to describe the 
initiation of main erosion 
patterns ? 

Above: “mode 1” instability.

Below: “mode n” instability.

Experiment performed at the 
Laboratoire de Dynamique des 
Systèmes Géologiques, IPGP, 
University of Paris 7.

Width : ~ 5 cm

Water height : ~ 0.5 cm

Reynolds number : ~ 500
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Boundary conditions in the 
approximation of infinitely quick 
avalanches.
a and b are respectively the inner 
and outer boundary of the river 
bank.
The velocity da/dt does not 
appear explicitly.
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Evolution of the cross-section of a 
laminar laboratory flume for two 
sets of parameters.
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Assuming a Poiseuille velocity profile, and an erosion time much larger 
than the flow inertial time : 
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