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A triple deck model of ripple formation and evolution
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The two-dimensional laminar quasisteady asymptotically simplified flow with mass transport of
sediments is solved over an erodible bed in various laminar hydraulic regimes~infinite depth, finite
depth subcritical or supercritical, nondisturbed boundary layer!. Compared to the boundary layer
thickness, the bump is supposed longer and thinner and the triple deck theory is used. Furthermore,
the flow is linearized. Next, a simplified mass transport equation is obtained which includes the two
following phenomena: there is a flux of erosion when the skin friction goes over a threshold value,
and concentration of sediment in suspension is convected but falls at a constant settling velocity. It
is shown that two ingredients~convection of the longitudinal flux or particles and advanced response
of the skin friction to the bump changes! are necessary to produce~except in the supercritical regime
which, in this flux convected model, is always stable! a band of amplified spatial frequencies.
Furthermore, putting the effect of slope limitation makes long wave stable~in the infinite depth
case!. Examples of evolution in various regimes are presented, wave trains of ripples are created and
merge in a unique bump. A very long time is required for this process. This coarsening appends
except in the infinite depth case when the effect of slope limitation is turned on: in this case a train
of several bumps fills the computation domain. ©2003 American Institute of Physics.
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I. INTRODUCTION

Let us consider the deformation of a bump immersed
a flow. This bump is made of an erodible material which m
be convected and diffused in the flow. Practical cases wo
consist in dune of sand in water of various depth, or dune
sand in air. This kind of flow is of course very important f
environmental problems and a vast literature refers to th
problems since Exner in 1925~Yang,1 Bagnold, Fredsøe an
Deigaard,2 Nielsen,3 Sauerman and Herrmann,4 Sauerman,
Kroy, and Herrmann5!. This problem is very complex be
cause all mechanical effects are linked~the flow depends on
the shape of the bump which depends on the flow wh
erodes or deposits sediments on the soil modifying again
flow!.

These erosion/sedimentation problems have been so
by various techniques with various approaches. Even re
studies use simplified physical models to compute the fl
Andersen,6 Nishimori et al.;7 most of which use continuum
models of mechanics; the flow is now computed with dir
solution of Navier–Stokes equations with turbulent mod
Andersenet al.,8 Andersen and Fredsøe,9 Kroy, Sauerman,
and Herrmann,4 and Sauerman, Kroy, and Herrmann.5 But,
ultimately, all these studies have to look at the flow near
soil. This is the boundary layer itself~which is not so well
solved by NSk-e solvers!. That is why they finally turn to a
simplified law issued from asymptotic analysis by Jacks
and Hunt,10 where the final important ingredient is the velo
ity near the wall coming from the turbulent boundary lay
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theory: the logarithmic profile law. Previous studies oft
solved the problem by integral boundary layer theo
~Plapp,11 Akiyama and Stefan12 or Zeng and Lowe13!.

These boundary layer approaches are pertinent bec
all the phenomena take place near the wall, where the ve
ity changes abruptly on a small scale: the boundary la
thickness. Here we use the framework of the triple de
theory~Neiland,14 Smith,15 and for recent developments Sy
chevet al.,16 Smith,17 Bhattacharyyaet al.18! which allows a
strong coupling between the laminar boundary layer and
ideal fluid. The flow separation is not a problem: even mo
the triple deck was created to compute the separation of
boundary layer. As conditions for this description the flow
supposed to be two-dimensional~for sake of simplicity!,
quasisteady~erosion and sedimentation are a slow proce!
and it is assumed laminar. This last hypothesis is maybe
stronger one, but we will see that we recover some res
obtained by Charruet al.19 and Fowler.20 In the first one, a
laminar theory has been proposed in the case of a Cou
flow, and we will see that taking this theory in the long wa
case leads to a triple deck case; in the second one, Fow20

recovers the same equation too, but starting from other
pothesis~in fact the turbulent flow is modelled by a lamina
one of viscosity equal to a mean turbulent viscosity!. The
concentration of sediments in the flow is supposed sm
enough to unaffect viscosity and density of the flow: we
not use models of re suspension as in Schlafingeret al.21 The
concentration of sediment is a continuous function. A le
simplified model using interacting boundary layer theory
subcritical flow has been presented in Lagre´e.22 In fact, triple
deck is a true asymptotic limit of Navier–Stokes equations
5 © 2003 American Institute of Physics
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FIG. 1. A rough sketch of the flow: a boundary layer o
thicknessd encounters a very small hump so that on
the linear sheared part of the profile is perturbed. In fa
an interacting structure is created, this perturbation o
small longitudinal scale near the wall~lower deck! per-
turbs the boundary layer core~main deck! so much that
the ideal fluid layer~upper deck! is linearly perturbed as
well, retroacting onto the lower deck.
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Re number tends to infinity, and it leads to simple lineariz
results linking the skin friction distribution on the dune to
shape. That is why this simplified point of view will here b
employed~Neiland14 and Smith15!.

As our aim is to present a oversimplified model, we w
use the terms ‘‘dune’’ or ‘‘ripples’’ in an improper way be
cause we deal only with very simplified models far fro
reality. From our model equation a structure will emer
from variation of an initially flat wall, and this structure wi
be called train of ‘‘dunes’’ or ‘‘ripples.’’ We may say, in the
subcritical case, that this objects are dunes. When using
Hilbert integral, this structure may be called ripples if w
consider a flow of infinite depth of water, but ripples
dunes if we consider an air flow~there is no scale in ou
equations!. First we shall present the classical triple de
equations in the various regimes~Sec. II A!, and next a sim-
plified concentration evolution~Sec. II B!. Thus we link the
flow to the movement of the erodible bed. The numeri
method is shortly explained in Sec. III. The linear tempo
stability of the system is presented~Sec. IV A 1! validating
the numerical solution. Simulations of several initial bum
are presented~Secs. IV A 1–IV B 1!. Finally ~Sec. IV B 2! we
shall discuss the long time evolution resulting in a coars
ing in a unique dune~except in the slope effect case in a
infinite depth regime!.

II. THE COUPLED MODEL

A. Dynamical aspect: The triple deck

1. The triple deck

In Fig. 1 we present a rough sketch of the flow and
decks. There is a flow of incoming water over a flat botto
under a quiet atmosphere. In the limit of laminar tw
dimensional~2D! steady flow at high Reynolds number, th
water has an basic thicknessh0 . If this depth of liquid goes
to infinity the problem is independent of the existence of
free surface. The basic flow splits into two layers: the id
fluid layer of thicknessh0 where the velocity is of constan
valueU0 (U0 free stream velocity! and the boundary layer
the Froude number is Fr5U0

2/(gh0). Let us callL the de-
veloping length of the boundary layer,L Re21/2 is then the
thickness of the viscous layer~see Schlichting23!. Of course
h0@(L Re21/2), which means that the boundary layer has n
yet merged in a single layer of fluid@see Higuera24,25 for the
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study of the self-induced jump whenh05(L Re21/2) and
Lagrée26 for its thermal counterpart#, in fact the present
theory is included in Higuera’s one for small values ofx*
~variables with stars are with dimensions!.

Notice that the incoming velocity profile is here select
to be a Blasius one@defined by the functionUB , such as the
longitudinal velocity in the boundary layer isu* (x* ,y* )
5U0UB( ỹx̄21/2) wherex̄5x* /L is the longitudinal abscissa
and ỹ5y* /(L Re21/2) the boundary layer thickness#. In fact
any given boundary layer profile is relevant, scales have t
to be rewritten using its thickness. An extension of th
theory should be constructed so that is included a slip ef
which may arise when the bottom is porous.

We next introduce in the flow a small bump of relativ
thickness « ~compared to the boundary layer thickne
L Re21/2) at the positionx* 5L ~or x̄51). In this layer of
thickness«L Re21/2 the velocity is linear inỹ, so u* is
scaled by«U0 , pressure/convective balance suggests that
pressure is scaled by«2rU0

2. On purpose that the problem
presents the maximum number of terms~least possible de-
generacy, Van Dyke27!, including pressure, convective term
and a viscous term,x* is scaled byx* 5L1«3Lx. Time
should then be scaled by«3L/(«U0), but if we call T the
scale of the erosion/sedimentation@ t* 5Tt, cf. the equation
of evolution of the bottom in the next section, Eq.~21!#, we
will have «2L/U0 /T!1, andt is only a parameter associate
to the bump shape.

With these usual triple deck scales~Neiland,14 Stewart-
son and Williams,28 Smith,15 Sychev et al.,16 Gajjar and
Smith,29 Bowles and Smith30!, the problem in the ‘‘lower
deck’’ is simply

]

]x
u1

]

]y
v50, ~1!

u
]

]x
u1v

]

]y
u52

d

dx
p1

]2

]y2 u. ~2!

It means that near the wall there exist scales such that a
linear problem~with convection, diffusion and pressure gr
dient! has to be solved. Boundary conditions are no slip c
dition on the bottom

u~x,y5 f ~x!!50, v~x,y5 f ~x!!50, ~3!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2357Phys. Fluids, Vol. 15, No. 8, August 2003 A triple deck model of ripple formation
and the asymptotic matching between the ‘‘lower deck’’ a
the ‘‘main deck.’’ This latter is in fact the boundary laye
itself: ‘‘far’’ from the wall with the focused scales we ar
‘‘near’’ the wall in the boundary layer scales~the transverse
variable is hereỹ, with «y5 ỹ, and the longitudinal dimen
sionless velocity is hereũ of scaleU0). The perturbation of
the boundary layer at the scale«3L, at positionx̄51, gives
the function (2A) which represents the deflection of th
streamlines:

ũ5UB~ ỹ!1«AUB8 ~ ỹ!1¯ ,

ṽ52
A8~x!UB~ ỹ!

«2~Re1/2!
1¯ , 2

]

] ỹ
p̃501¯ .

The matching between the top of the lower deck (y→`) and
the bottom of the main deck (ỹ→0) yields

lim
y→`

~«u~x,y!!5 lim
ỹ→0

ũ~x,ỹ!,

i.e.,

lim
y→`

u~x,y!5UB8 ~0!~y1A!. ~4!

The latter means that the incoming velocity is linear, t
means that upstream we recover the boundary layer pro

u~x→2`,y!5UB8 ~0!y, v~x→2`,y!50. ~5!

Finally, the deflection of the stream lines induced in t
lower deck~function 2A) is transmitted by the main deck
perturbating the ‘‘upper deck’’~which is the third layer in-
volved!. This perturbation is a kind of suction velocit
2«22(Re21/2)(dA/dx), or a perturbation of the displace
ment thickness by an amount of«(L Re21/2)(2A). In the
layer of ideal fluid, the pressure responds to this bound
layer displacement by the pressure modification. This fi
the value of the scale:«5(L/h0)Re21/2. The final coupling
relation betweenp andA is

p5
2A

Fr21
. ~6!

In the subcritical regimep and 2A have the opposite sign
(Fr,1), and a decrease of the water level (2A,0) is pro-
duced at the perturbation~Baines31!; the opposite is true in
the supercritical regime@Fr.1, thenp and (2A) have the
same sign# ~see Gajjar and Smith29 or Kluwick et al.32 for
details on the upstream influence!.

If h0 is very high in comparison to the bump length a
L, the free surface is at infinity. The gauge is«5Re21/8 and
we may ultimately recover the Hilbert case

p52
1

p E 2A8

x2j
dj. ~7!

This is the classical incompressible result. Another resu
obtained when the perturbation of the bump on the bound
layer ~main deck! is so small that no displacement occu
which reads

A50. ~8!
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This case corresponds to several different configuration
corresponds to a bump of length equal or smaller to the
of the boundary layer itself«35Re21/2, but this result is the
one found by Plantier33 for a Couette flow. This is in fact the
configuration found in Charruet al.:19 they identify this re-
gime as the ‘‘deep viscous regime.’’ Finally, in the half Po
seuille case~corresponding to a fully developed lamina
flow!, this case is the Smith34 result, which is used by
Fowler.20

Interesting enough, the Hilbert case degenerates in
case (A50: no perturbation in the boundary layer! when the
bump becomes shorter and shorter~Smith et al.35!. So hav-
ing a given water depth, depending on the size of the per
bations one can meet either a subcritical case, either an
bert case or a nondisturbing case. In the numer
applications we will focus on these last two cases.

2. Dynamical system for the fluid

The final dependence inUB8 (0) and Fr21 can then be
removed by a straightforward rescaling@which is deduced
from the fact that Eqs.~1!, ~2!, and~5! are invariant for any
Y when x→Y3x, y→Yy, u→Yu, p→Y2p, and A→YA].
So the interacting problem is

]

]x
u1

]

]y
v50, ~9!

u
]

]x
u1v

]

]y
u52

d

dx
p1

]2

]y2 u, ~10!

u~x,y5 f ~x!!50, v~x,y5 f ~x!!50, ~11!

lim
y→`

u~x,y!5y1A. ~12!

With either

~i! the infinite depth case

p52
1

p E
2`

` 2A8

x2j
dj,

with

x5~x* /L21!UB8~0!5/4/~Re23/8!,

y5~y* /L !UB8 ~0!3/4/~Re25/8!,

p5~p* /~rU0
2!!UB8 ~0!21/2/~Re22/8), etc.

~ii ! The no displacement caseA50, which either is the
limit of the preceding one when the length of th
bump is the boundary layer thickness, either exists
half Poiseuille flow or either exists in Couette flow.

~iii ! The subcritical casep5A and the supercritica
p52A, both with

x5~x* /L21!UB8~0!5uFr21u3/~Re23/8!,

y5~y* /L!UB8~0!2uFr21u21/~Re25/8!,

p5~p* /~rU0
2!!UB8 ~0!2uFr21u22/~Re22/8!, etc.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. The linear solution~in the triple deck scales! for the perturbation of the wall shear function ofx, in the A50 case, and in the Hilbert cas

p52p21*(x2j)21(2A8)dj. The bump perturbation is heree2px2
. The caseA50 leads to no upstream influence, the Hilbert case leads to a s

upstream influence: the skin friction anticipates the bump. The skin friction is extreme before the maximum of the bump. Skin friction is larger inind
side than in the lee side.
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3. Final linearization: Law between the topography
and the skin friction

The unperturbed solution of~9! and ~10! is simply u
5y, v50, p50. It implies that, at the small longitudina
scale, the boundary layer thickness does not evolve and
velocity profile remains linear near the wall. The lineariz
solution of ~9! and ~10! around this shear profile in Fourie
space is straightforward and leads tob* FT@p#5FT@(A
1 f )# whereb* 5(3 Ai8(0))21(2 ik)1/3.

The linearized solution of the ideal fluid problem~‘‘up-
per deck’’! may be writtenbp fFT@p#5FT@(A)# with bp f

51/uku,0,1,21 @respectively,~6! for ~7! and ~8!, Fr,1 and
Fr.1], so

FT@p#5
FT@ f #

b* 2bp f
. ~13!

The linearized perturbation of the skin friction~t! is then~Ai
is the Airy function!

FT@t#5
~2 ik !2/3

Ai 8~0!
Ai ~0!FT@p#. ~14!

This well-known relations~13! and ~14! gives the final re-
sponse of the fluid: it links the topography change to
shear stress. It will be very useful in the sequel as the sh
stress is believed to control the flux of sediments.
Downloaded 28 Aug 2003 to 134.157.34.53. Redistribution subject to A
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In Fig. 13 in the Appendix we present a numerical so
tion of the problem@in a zero displacement case~8! of
Smith34# in order to discuss the influence of the nonlinear
of the solution and the boundary layer separation. We se
the Appendix, that even for bump leading to flow separati
the prediction of formula~14! is correct, the main advantag
of this triple deck model being that flow separation is effe
tively constructed without the approximations of Kro
Sauerman, and Herrmann4 or Andreottiet al.36

In Figs. 2 and 3 we draw the solution of the perturbati
of the skin friction for the various cases. When Fr,1 in ~6!
or in the infinite depth case~7! or in the ‘‘Couette’’~8! case,
we see that the skin friction is always extreme before
maximum of the bump~the wind side of the bump!. In the
subcritical case and in the ‘‘Couette case,’’ there is no infl
ence of the downstream part of the flow to the upstrea
Case~7! gives a small upstream influence; on the oppos
the supercritical case@~6! with Fr.1] leads to a strong up
stream influence: perturbation exists before the bump. In
sole case the wall shear stress is not extreme before
maximum of the bump; in the three other ones the skin fr
tion is ‘‘in advance’’ with the bump shape.

Knowing the response of the fluid to any perturbati
~in the selected framework! we now examine the transpo
equation.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. The linear solution~in the triple deck scales! for the perturbation of the wall shear function ofx, in the p52A case, and in thep5A. The bump

perturbation is heree2px2
. The casep5A ~subcritical! leads to no upstream influence, the casep52A ~supercritical! leads to a strong upstream influenc

the skin friction anticipates the bump. The skin friction is extreme before the maximum of the bump only in the fluvial case
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B. Transport equation

1. The equation

Together with the dynamical equations of the flow o
has to solve the quasistatic mass conservation of the part
in the laminar flow~Fig. 4!. We aim to derive a simple law
linking the flux of sediments to the skin friction. Of cours
real transport of sand takes place in the turbulent regime,
here to be coherent with our simplification we write sedim
transported in the laminar case. The concentration is s
posed small enough so that it does not interact with the fl
motion. We suppose a simple Fick law and we defineS the
Schmidt number~ratio of viscosity by diffusion!. We assume
that there is a settling constant velocity~written 2Vf* ,0).
This means that we suppose that the equation of momen
Downloaded 28 Aug 2003 to 134.157.34.53. Redistribution subject to A
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conservation for the sediments is solved so that the spee
the sediments isu, v2Vf* . With those restrictive hypothesi
the dimensionalized transport equation of suspended s
ments is

u*
]

]x*
c* 1~v* 2Vf* !

]

]y*
c* 5

n

SS ]2

]x* 2 c* 1
]2

]y* 2 c* D .

~15!

In the literature~Noh and Fernando,37 Fredsøe,2 Izumi and
Parker,39 Nielsen,3 Fredsøe and Deigaard,2 Seminara38! it is
written in the turbulent regime. The integral counterpart
this equation may be taken in integrating formy* 50 to h0 .
A characteristic thickness of suspended sediment under
settling and diffusive effects is (n/(SVf* )), see Fredsøe an
s
ty
n-
e

a

-

FIG. 4. The concentration of sedimentsc ~decreasing
with altitude! is passively transported in the flow, it i
submitted to diffusion and to a constant falling veloci
2Vf* ,0. The skin friction puts sediments in suspe
sion ~source termAr), those two contributions chang
the total flux of convected sedimentsq ~left figure!. A
simplified view is displayed on the right part where
simple mass balance is done~in a small control vol-
ume!: the sediment fluxq is changed by loss propor
tional to q ~due to sedimentation! and by gain propor-
tional to Ar the pick up function.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Deigaard,2 here we suppose thath0@n/(SVf* ). We suppose
as well that the settling velocity is of order (d/L)U0 , where
U0 is the characteristic longitudinal velocity andL the lon-
gitudinal scale. As a consequence, boundary layer argum
allow to neglect the longitudinal second order derivative
~15!. We define, as Anderen and Fredsøe,9 the flux with di-
mensions:q* 5*u* c* dy* , this is the flux of convected
sediments. So, transverse integration of~15! yields

]

]x*
q* 1~Vf* !cbottom* 52

n

SS ]

]y
c* D

bottom

. ~16!

In fact this equation is valid for a turbulent flow too, as far
the right-hand side~RHS! is the total flux at the wall. We
defineAr* the flux as

Ar* 52
n

S

]c*

]y* U
0

. ~17!

The boundary conditions of~15! are clear upstream and o
the top: here we suppose no incoming sediment flux on
incoming flow and no sediments are poured. The prob
stems from the bottom. We have to link the transverse fl
@Ar* , the RHS of~15!# to the skin friction. The boundary
condition for the suspended concentration is taken as
lows:

Ar* 5bS HS ]u*

]y* U
0

2ts* D D S ]u*

]y* U
0

2ts* D g

, ~18!

where H(x) is the Heaviside function@H(x,0)50, H(x
.0)51], b is of order one andg ~common values are 1, 3/
or 3, we will takeg51 in practice!. Formulas~17! and~18!
mean that there is a threshold value of the skin frict
(]u* /]y* ) u0 : if it is larger than this threshold valuets* ,
then the flow erodes the bump; otherwise erosion occ
((]c* /]y* ) u050).

The latter of~18! is common~written with the Shields
parameter! in the literature of erosion/sedimentation~Van
Rijn formula, or Pieter-Meyer formula cf. Nielsen3!, but
other formulas may be found~Yang1!. Notice that it is mostly
written in a turbulent regime so that the friction velocity
used instead of the skin friction.

An effect of slope may be introduced as well@leading to
a multiplicative coefficient like@12l (] f * /]x* )# ~Koma-
rova and Hulscher40! or changing the threshold,ts* in @ts*
1l (] f * /]x* )#]. The latter expression will be used in th
next paragraph, when we will discuss its influence on sta
ity. Notice that here we have changed a bit the classical l
in the literature, the bed load is taken to be equal to
proceeding formula,

q* 5B* Ar* , ~19!

whereB* is an ad hoccoefficient, see Yang,1 but here we
suppose that it is the transverse flux~17! that is equal to~18!.
Note that final laws linking the fluxq* and the excess o
skin friction are finally always like~19! ~even Charru
and Mouilleron-Arnould, who take a Schlafinger descriptio
reobtain this formula in the linearized case!. We will see
Downloaded 28 Aug 2003 to 134.157.34.53. Redistribution subject to A
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in the next paragraph that~16! may be rewritten~25!
as ]q* /]x* plus a term proportional toq* equals toAr*
of ~18!.

Finally, the net flux of particles at the wall has two co
tributions: erosion@(n/S)(]c* /]y* ) u0# and sedimentation
(Vf* c* u0); this total flux deforms the bed~of shapef * , n is
porosity! according to

~12n!
] f *

]t*
5Vf* c* u01

n

S

]c*

]y* U
0

. ~20!

According to ~16!, q* may be reintroduced, and this equ
tion is written as

~12n!
] f *

]t*
52

]q*

]x*
, ~21!

which is common in the literature~Exner law: Izumi and
Parker,39 Nielsen,3 Fredsøe and Deigaard2!.

It is of course at this point that the time scaleT associ-
ated with the preceding equation is chosen: the deforma
is done at a very long scale compared to the hydrodyna
scale~so the flow is quasisteady!.

2. The final simplification in a shear flow

We rewrite~15! with triple deck scale, in the linearize
case (u5y), the velocity profile is linear (Vf is suitably
rescaled!:

y
]

]x
c2Vf

]

]y
c5S21

]2

]y2 c ~22!

integrating~22! over the lower deck yields

]

]x E0

`

~yc!dy2~2Vfc0!52S21S ]c

]yD
0

. ~23!

The subscript 0 denotes the wall. From the conditions ay
5`, and if we define as in the preceding paragraph
dimensionless ‘‘bed load’’ asq5*0

`(yc)dy ~i.e., the flux of
sediment in a thin layer near the wall!, the first term is the
derivative ofq. The second one can be rewritten withq, if
we guess thatc0 is likely to be proportional toq. We may
justify roughly this strong hypothesis as follows: we obser
that as2Vfc0.(]c/]y)0 , the solution for the concentratio
behaves more or less asc0 exp(2kySVf), with k of order
one. In fact as we suppose that this parameter remains ne
constant, we are allowed to write that

q.c0~SVf !
22E ~h exp~2kh!dh! ~24!

which means thatq is proportional toc0 the value of the
concentration at the wall. Consequently~23! may be approxi-
mated by

]

]x
q1Vq5bS HS t2ts2l

] f

]xD S t2ts2l
] f

]xD D g

, ~25!

where V is a new constant linked toS, Vf and the other
physical parameters, and supposed to be here of o
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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one (H is the Heaviside function!, t being the perturbation
of the skin friction induced by the topographyf which
evolves as

] f

]t
52

]

]x
q. ~26!

As suggested before, this last equation, which is dim
sionless, gives the time scale of the phenomena: the flo
quasistatic compared to the slow topography evolution.
displayed in a simplified way in Fig. 4,~25! is a simple mass
balance: the sediment fluxq is changed by loss proportiona
to q ~due to sedimentation! and by gain proportional toAr

the pick up function.

3. Notes

Notice that Eq.~25! contains a derivative term that w
may reinterpret as an effect of inertia: for example, if t
skin friction goes under the threshold value, the fluxq is not
instantaneously put to zero but relaxes smoothly in
streamwise direction. Furthermore, we present here on
linear relation forq, the nonlinearity is in the threshold. W
may compare this to Sauermanet al.5 While they obtain a
saturated fluxqs function of an excess of skin friction, ou
notations would result in something like:qs5(b/V)(H(t
2ts)(t2ts)

g. They obtain with their model that the tota
flux relaxes onqs as l s (]/]x) q5q(12q/qs). Thus, linear-
izing as q5qs1q̄, the equation for the excess of flux
l s (]/]x)q̄1q̄50 ~they take the length scale as function
the excess of flux, this is the constant 1/V of our model!.
Re-adding the two contributions, we see that Eq.~25! is not
so far from their analysis, if linearized.

Theories linked to BCRE descriptions~Bouchaud
et al. 41! will add another term with which the left-hand sid
of ~25! will read

a
]

]t
q1

]

]x
q1Vq, ~27!

this unsteady term~as in Valance and Rioual42! is not rel-
evant in our analysis because of the quasisteady nature o
flow.

To be noticed here too, is the fact that the slope effec
very crude: it is a kind of ‘‘viscous’’ diffusive dissipation
(] t f }]x

2f ). Hence, it presents a very strong drawback a
makes flat any topography~by diffusion!. A better way
would be introducing a slope limitation mechanism for t
topography which would remove this drawback. For e
ample, Boutreuxet al.43 propose a simple model of ava
lanche without any diffusive term.

III. NUMERICAL SOLUTION OF THE FINAL PROBLEM

We have to solve at each time stept: first, a steady
linearized triple deck problem, which for the given du
shapef (x,t), gives the distribution oft @the perturbed skin
friction ~13! and ~14!#; second, the mass transport equati
~25! which givesq; third, the shape of the bump is modifie
according to~26! for the next time step.

The solution is achieved in Fourier space for~13!
and ~14!, but with a return in physical space for~25!. This
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-
is
s

e
a

the

is

it

-

return in the physical space deals with the unique ‘‘nonl
earity’’ of the problem which is the Heaviside function take
in ~25!, the ‘‘pick up’’ relation. The update of the bum
shape is done using an Adams Bashford two steps
time method.

At initial time t50, we impulsively introduce a bump o
given equationf (x,t50) ~which may be a random sum o
cos with a very small amplitude!. We choose a typical set o
order one parameters for the models:b5O(1), ts5O(1),
l5O(0.1), andV5O(1), thedomain is defined by its hal
lengthLx which we will vary: 2Lx,x,Lx .

The occurrence of the term]xq is very favourable for
the stability of the numerical scheme as it allows values
Dt to be of the same order thanDx52Lx /(N21) (N num-
ber of points for the Fourier transform!. If this term is not
present, then as~25! is explicit in ]xf , then Dt must be
smaller thatVDx2/(lb). The numberN has to be large
enough to obtain accurate results, a too crude computa
does not lead to the final coarsening, in practiceDt.0.05,
N>512, so thatDx<0.125.

IV. RESULTS

A. Initial time: Linear results and temporal stability of
an initial flat topography

1. Dispersion relation

If ts is negative, a steady uniform solution of syste
@~13! and ~14!–~25! and ~26!# is t50, f 50 andq5(b/V)
(2ts)

g. The linear stability analysis around this basic flow
then straightforward@and is fully valid as long asH(t2ts)
51]; looking for modes inest2 ikx and here takingg51 we
simply find that

s5S ikb

V2 ik D S ~2 ik !2/3

Ai 8~0!
Ai ~0!

1

b* 2bp f
1 ikl D , ~28!

with b* 5(3 Ai8(0))21(2 ik)1/3, bp f51/uku,0,1,21 @re-
spectively, for~7! and~8!, Fr,1 and Fr.1]. The parameter
b will often be taken equal toV thereafter.

2. Linear stability analysis

First we examine the most simple case with no slo
effect, l50, and with no effect of inertia onq ~with V5b
@1, i.e.,q5t), then all the spatial frequencies are unsta
for the subcritical, infinite depth, and theA50 called ‘‘deep
viscous regime’’ by Charruet al. The supercritical case is
stable fork,2.4.

Introducingl ~with V5b@1, i.e.,q5t2l]xf ! leads to
a cutoff frequencykm ~depending on the parameters!. The
high frequencies~which behave as2lk2) are stable for all
models; fork.km we have Re(s),0. For small frequencies
(0,k,km) the configuration remains unstable~except in the
Fr.1 case where values ofl larger than 0.0947 fully stabi-
lize the problem!.

Now, if we introduce the]xq term @V5b, l50, i.e.,
(1/V)]xq1q5t], it has a stabilizing effect~asl! for largek
and a band of amplified frequencies~the small frequencies
0,k,km) exists in all the cases except for the supercriti
one which is always stable.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. The topography at timet5100 for the three unstable regimes (b5V5g51, l50, Lx564 ts520.1). At time t50, a random noise of level 0.001
was introduced. The spatial frequencykM giving the larger Re(s) in the band 0,kM,km has been selected.
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To illustrate this instability, we start from a rando
small topography and wait for a sufficient long time~but
being here always in the linear regime!: we observe numeri-
cally that the value of the wave number which maximizess
of ~28! ~say kM) is effectively the value leading to a max
mum for the energy spectrum (kM50.59 if bp f51/uku, kM

50.49 if bp f51 andkM50.31 if bp f50). This is shown in
Fig. 5 where the wall shape is plotted at timet5100. The
case with no displacement is wider than the others~it has the
smaller kM), it is faster as well@it has the largest phas
velocity Im(s(kM))/kM] and it has the smallest height@it has
the smallest amplification factor Re(s(kM))].

3. Note on the lag

Notice here that the idea of Kennedy44 ~or Engelund and
Fredsøe45! is reobtained in a certain sense. They introduc
an advance between the velocity~here skin friction! and the
the topography~with the lawq5t) due to the fact that the
boundary layer was unknown. Suppose that the respons
the skin friction is a simple change of phase exp(2if), with
2p/2,f,p/2, the skin friction is in advance~the maxi-
mum is before the maximum of the bump!; if f.0, the skin
friction is ‘‘late’’ if f,0. The amplification rate~if q5t) is
s5 ik exp(2if), which gives temporal amplification for a
frequencies if the skin friction is in advance (f.0).

Now if we introduce]xq, the left-hand side (1/V)]xq
1q may be reinterpreted as the Taylor’s series ofq(x
Downloaded 28 Aug 2003 to 134.157.34.53. Redistribution subject to A
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11/V). Hence 1/V is a kind of lag:q and the velocity are no
in phase,q is late. The same has been obtained by Sauerm
et al.5 ~but with a nonlinear term added, and the possibil
of saturation ofq which is not put here!. This allows to write
~remember that hereV5b) the amplification rates
5@ ikV/(V2 ik)#exp(2if), which gives Re(s).0, temporal
amplification, for 0,k,V tan(f). The slope effect has the
same interpretation:2l]xf may be interpreted as a term of
Taylor’s series. Those two effects work in the same reve
direction: they are ‘‘late’’ compared to the topography.

The conclusion for our proposed models is first, that
skin friction must be in advance with the topography to ha
instabilities and second that if there is no introduction o
lag 1/V or l one cannot introduce a wavelength selection,
topography is temporally unstable for any spatial frequen

4. Focusing on slope effect in Hilbert case

The Hilbert,A50 and Fr,1 cases are unstable for sma
wave number@in the (]xq)/V1q5t case#. We nevertheless
focus here on the Hilbert case in which we introduce
slope effect (2l]xf ). As already mentioned, the first effec
of the slope stabilizes large wave numbers in any case.
the other limit of small wave numbers is changed for t
infinite depth case: as observed previously with no slo
effect, large wavelength (k→01) are always amplified.
Those wavelengths may be damped if the slope effec
introduced. Neark50, s of ~28! expands as
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Infinite depth case~Hilbert case!. The real part ofs for b5V5g51 as function of the wavelengthk. In the left figurel50, there is no slope effect
In the right figure, we focus on the smallk which are amplified whenl50, but are damped forl.0 ~following the arrow, from up to downl50, l
50.1, l50.2, l50.3, l50.316, andl50.4).
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V D2
~21!1/6b Ai ~0!k8/3

V Ai 8~0!
2

iblk3

V2 1O~k!10/3.

~29!

The k3 term disappears ifq5t2l]xf . The effect of the
slope~l! in the Hilbert case allows always the damping
the long wavelengths. There is then a band of amplifiek
which excludes the valuek50 ~see Fig. 6!.

The A50 and Fr,1 cases turn out to be different. I
those configuration, the small wave numbers are always
plified.
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We guess that ifs.01 for k.01, the large wavelength
will be amplified, and as occurs a bound due to the numer
solution~the size of the box!, a single bump may be presen
in the domain. This result will be seen numerically in th
paragraph dealing with long time behavior.

Here we have in fact observed that the smallk behavior
is dependent on the exact solution of the flow through
exact development at the origin. Only the infinite depth ca
allows a wave selection. For example, if, as in the preced
section, we put a simple change of phase between
FIG. 7. Influence of the initial widthLb of a bump exp(2p(x/Lb)
2), the maximum of the bump is plotted forLb51, 2, 3, 4, and 5 fort,100; f (x,t) is plotted

as well ~for t50,2,4,6,...,100 withLb53). The larger the bump, the smaller its velocity;b51, g51, V51, l50, andts50.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. Destruction of a bump
exp(2p(x/6)2) in the supercritical
régime, with b51, g51, V51,
l50, andts50; the maximum of the
bump is plotted fort,100, it is mov-
ing upstream;f (x,t) is plotted as well
~for t50,2,4,6,...,100).
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topography and the skin friction (exp(2if)) we do not reob-
tain this slope effect. This same phenomena of wave se
tion is observed in Blondeau analysis46 in an oscillating flow
and in Richard’s one47 in a turbulent case. This is name
‘‘ripple mode.’’ Our analysis is in fact too far from Richard
son’s one to use his definitions~roughly speeking roughnes
controls the ripples, and depth controls the dunes!. As the
turbulence plays as a complicating factor~introducing
the roughness scale!, the occurrence of the Hilbert solution
hidden.
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B. Time evolution of the system

1. Moderate time: Examples of qualitative influence of
the different parameters

Before looking at long time behavior, in this section w
allow some parameters to vary in order to observe qua
tively some various phenomena.

First we observe on one example~Hilbert case! the in-
fluence of the bump length on the movement of the bum
Starting from a bump of Gaussian shape, exp(2p(x/Lb)

2) we
r

s

t

f

FIG. 9. Bump shape at timet5500, at
an intermediate time at which fou
bumps coexist with b51, g51,
V51, ts520.05, Hilbert case. The
slope effect is observed on the curve
l50, l50.1, andl50.2 ~the curves
are shifted to place the maximum a
the origin!, notice the kink effect
which arises even atl50 @it corre-
sponds to the point where the RHS o
~25!, Ar , is zero#.
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FIG. 10. The wavelength 2p/k of the
maximum of the bump spectrum ver
sus time, corresponding mostly to th
number of bumps present in the do
main, is plotted as function of time
~log scale!, here in the caseA50. As
time increases, there is less and le
bumps present in the domain, finally
single bump fills it 2p/kfinal52Lx .
Here,Lx512.5, 25, and 50. The long
waves are unstable in such a way th
the final length of the bump is the siz
of the computational domain.
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changeLb and observe in Fig. 7 that~here withV5b51
g51, ts50) there is a critical size leading to the possibili
of an initial growth of the bump. We notice that unfortu
nately, the bump does not move, the wind side part is lon
and longer and the lee side has nearly a constant sl
Qualitatively same results are obtained for the subcritical
A50 cases. Nearly the same results are obtained by Lag´e22

with developing boundary layer so that the final position
the dune was fixed.

Second, for the sake of illustration of the ‘‘stability’’ o
the supercritical case~with V5b51, l50), an example of
the wash out of a bump is presented in Fig. 8. Erosion ta
Downloaded 28 Aug 2003 to 134.157.34.53. Redistribution subject to A
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place at the point wheret50, and the sediments are the
convected. The bump is destroyed by the shear which
extreme just after the crest.

Third, we look at the lee side of the bump. Starting fro
a random noise distribution, first the wavelength (2p/kM) of
maximal s is selected~as already mentioned!, after quite a
long time a coarsening is observed~see next section!. During
a long time a configuration with three or four bumps may
observed. Here we observe the obtained bump shape afte
crest in the lee side. Even ifl50 a change of slope happen
~see Figs. 7 and 9!. This kink develops after the crest,
corresponds to the point where the RHS of Eq.~25! is zero.
r

-

-

FIG. 11. The maximum of the final
bump heighthmax plotted as a function
of half the domain sizeLx in the case
A50. The casets520.1, V51, l
50 is the upper curve. The lowe
curves correspond tots520.05, V
51, the arrow is directed to the in
creasing values ofl (l50, 0.1, and
0.2!. The subcritical case gives quali
tatively the same results.
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FIG. 12. Examples of long time evo
lution of 2p/k the wavelength value
maximizing the bump spectrum~cor-
responding mostly to the number o
bumps present in the domain!. This is
an infinite depth case for a domain o
length 2Lx . If l50, there is finally
only one bump of size 2Lx ~the largest
possible!. If l,0.316, two bumps~of
size Lx) are present, the larger ar
damped. Ifl is increased, there is no
dune anymore as predicted by the lin
earized theory of~28!. Here V5b
51, Lx532, ts520.25. Notice that
several bumps may live during a ver
long time: here in the casel50.31,
during a very long time (10,t
,25 000) three bumps are present.
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2. Long time evolution

Waiting much more longer~than in Fig. 5!, we observe a
kind of long wave slow instability: there are less and le
bumps in the box~the small wave number gain an increasi
importance!. The mechanism is as follows: in the lee side
a bump, the skin friction is lesser than in the wind side~Fig.
2!, so second bump in the lee-side of the first one exp
ences a smaller erosion than the first one.

The cases (p5A) and (A50) evolve toward a one
mode bump filling the domain~see Fig. 10 theA50 case!,
the maximal height of the bump depends on the length of
computational domain. In Fig. 11 we plot the maximum
the bump as function of the size of the domain~in the case
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A50, b5g5V51). Unsurprisingly, the largerutsu, the
higher the bump; and the largerl, the smaller the bump.

The Hilbert case results essentially in the same wa
length coarsening but it needs a far longer time to be
served. Several bumps stay during long intervals of time
the domain. In Fig. 12 we plot an example of such coars
ing of the bump in the no slope effect case (l50). Notice
that for 1500,t,50 000 three bumps are present in the bo
The growth of the wavelength is more or less logarithmic
now we introduce the slope effect in the equations in
Hilbert case, the result is, as predicted by Eq.~28! a damping
of the unstable long waves~see Fig. 6!, so that in the condi-
tions chosen in Fig. 12 two bumps are ultimately pres
r

.
e
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FIG. 13. The reduced wall shea
@(]u/]y0)21#/a function of x, in
the A50 case, for the bump

ae2px2
with a50.10, a50.5,

a 51.0, a 52, a52.25, a5 2.50.
The plain curve~‘‘lin.’’ ! is the linear
prediction ~14!, other curves come
from the nonlinear numerical solution
The nonlinearity increases the relativ
maximum value of the shear stres
but weakly shifts it downstream. Ther
is also a decrease of the relative widt
of the curve. Notice the numerical os
cillations in the case of separated flow
~separation is fora.2.1)
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~casesl50.2 andl50.316). Enlarging gradually the do
main up to twice allows another bump to be present.
predicted again by~28! @and ~29!#, whenV51, b51, there
is a limiting valuel50.316, if l is greater, then the fla
bottom is stable~Fig. 12!.

V. CONCLUSION

We have presented here a simplified model of flow o
an erodible bed which is asymptotically coherent~in a 2D
laminar linearized description at large Reynolds numb!.
The advantage of this model is that a lot of hydrodynami
mechanisms have been put without usual integral simplifi
tions, or without a complete Navier–Stokes numerical sim
lation. Though we do not claim that we have a ‘‘real’’ mode
we have caught some features with a realistic asympt
solution of the Navier–Stokes equations. Furthermore,
selected method allows to obtain some analytical results s
as the growth rate~28!.

To sum up, the equation of transport of sediments c
tains the following terms: a convective effect betweenq the
flux of sediments andt the perturbation of skin friction, a
threshold effect fort and a limiting slope effect~through the
parameterl!. This effect of the convection of sediments h
been justified on view of the equation of transported se
ments, but may be seen as a simple balance law at the
The linear stability analysis gives good predictions for t
numerical solution because the nonlinearity lies only in
threshold pick up relation. Various hydraulic regimes ha
been introduced in the selected framework. The supercrit
case, in this description with convection, leads always to
destruction of the bump. Three other regimes~infinite depth,
subcritical case, shear flow! result in temporal instability for
any wave lengthk if no convective and slope effects a
present. Introducing convective effect damps the large w
numbers~it helps for the numerical simulations!; introducing
slope effect damps the large wave numbers as well~Charru
et al. results are recovered in their ‘‘deep viscous regime!.

Furthermore in the sole infinite depth case, this slo
effect damps small wave numbers as well: this promote
‘‘ripple mode.’’ Only a narrow band of frequencies is amp
fied, so that, instead of a continuous coarsing leading to
single bump in the domain, a final train of bump is obtain

Of course, the first hypothese to be introduced in
model to be more realistic would consit in a turbulent str
viscosity and diffusivity. Before this, other hypothesis m
be removed one after the other. For example, a slope lim
tion model could easily be introduced instead of the diffus
effect ofl . . . , afull nonlinear resolution for the fluid would
illuminate the real effect of flow separation. This will resu
in an increasing complexity of the final numerical solutio
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APPENDIX: NONLINEAR FLOW SEPARATION

In this appendix we compare, for a given bump, the l
earized solution of ~9!–~12! in the zero displacemen
case~8!:

FT@t#5
~2 ik !2/3

Ai 8~0!
Ai ~0!

FT@ f #

b* 2bp f
,

with b* 5(3 Ai8(0))21(2 ik)1/3 and ~8!: bp f50, and a
complete non linear solution of~9!–~12! with ~8!. We com-
pute the skin friction for various values of the higha of a
bumpyw5a exp(2px2). We observe that the separation f
this kind of bump occurs fora.2.1. The computations ar
possible when the skin friction is smaller than zero~the triple
deck is the asymptotic framework for separated flows, th
is no Goldstein singularity!, but if the size of the separatio
bubble is too big, numerical oscillations take placea
.2.5). In Fig. 13 we plot the reduced skin frictio
a21@(]u/]y) u021#, because the linear prediction of~14! is

]u

]y U
0

511aFT21@~3 Ai~0!!~2 ik !1/3FT@ f ##1O~a2!.

~A1!

We see that fora50.1 the agreement between the linear a
nonlinear solution is excellent. Larger values ofa induce the
discrepancy observed on the Fig. 13 which is an increas
the maximum of the skin friction value and a decrease of
relative width.
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