Displacement of a 2D/ 3D dune in a shear flow

1

Pierre-Yves Lagrée, & Kouamé Kan Jacques Kouakou Laboratoire de Modélisation en Mécanique UPMC-CNRS, Paris

Thanks: Sébastien Pearron

• fluid / soil interaction

- fluid / soil interaction
- complex problem

- fluid / soil interaction
- complex problem
- very strong simplifications:
 - basic shear flow
 - steady laminar 2D flow
 - simple linear flux/ shear stress relations
- But comparison between linear/ non linear computations in 2D 3D linear

Contents

- Flux/ Shear stress relations
- Double Deck equations: pure shear flow, (erodible / solid bed)
- 3D Double deck, (erodible bed)
- Conclusion,

- for a given soil f(x,t)
- ...

- for a given soil f(x,t)
- we have to compute the flow (u(x, y, t)).

- for a given soil f(x,t)
- we have to compute the flow (u(x, y, t)).

- the flow erodes the soil.

- for a given soil f(x,t)
- we have to compute the flow (u(x, y, t)).

- the flow erodes the soil.

- for a given soil f(x,t)
- we have to compute the flow (u(x, y, t)).

- the flow erodes the soil.
- which changes the soil.

7

- for a given soil f(x,t)
- we have to compute the flow (u(x, y, t)).

- the flow erodes the soil.
- which changes the soil.
- etc

- for a given soil f(x,t)
- we have to compute the flow (u(x, y, t)).

- the flow erodes the soil.
- which changes the soil.
- etc

- for a given soil f(x,t)
- we have to compute the flow (u(x, y, t)).

- the flow erodes the soil.
- which changes the soil.
- etc

we aim to present a simple description for the flow and use simple model equations to describe the interaction.

The erodable bed

1

Mass conservation for the sediments:

$$\frac{\partial f}{\partial t} = -\frac{\partial q}{\partial x}.$$

Problem :

What is the relationship between q and the flow? hint: the larger u the larger the erosion, the larger qq seems to be proportional to the skin friction

The erodable bed: relations between q and u

$$\frac{\partial f}{\partial t} + \frac{\partial q}{\partial x} = 0$$

In the literature one founds Charru /Izumi & Parker / Yang / Blondeau

$$q_s = E\varpi(\tau - \tau_s)^a$$

if $(\tau - \tau_s) > 0$ then $\varpi(\tau - \tau_s) = (\tau - \tau_s)$ else $\varpi((\tau - \tau_s)) = 0$.

or with a slope correction for the threshold value:

$$\tau_s + \Lambda \frac{\partial f}{\partial x},$$

a, E coefficients, a = 3

Other simplification of mass transport

1

Sauerman, Kroy, Hermann 01/ Andreotti Claudin Douady 02/ Lagrée 00/03

$$\frac{\partial}{\partial x}q + Vq = V(\varpi(\tau - \tau_s - \Lambda \frac{\partial f}{\partial x})^{\gamma}).$$

- total flux of convected sediments q (left figure).
- threshold effect au_s
- slope effect $\Lambda \frac{\partial f}{\partial x}$
- $\varpi(x) = x$ if x > 0 (else 0), γ , $V \dots$

The fluid

Numerical resolution of Navier Stokes equations. In real applications: viscosity changed... turbulence...

here we will present some severe simplifications:

- Steady flow
- Asymptotic solution of N.S.: laminar viscous theory at $Re = \infty$ Triple Deck Stewartson 69/ Neiland 69 (in fact Double Deck Smith 80) In fact Fowler 01
- Linearized solutions

h = 0.1, Re = 1000

1

h = 0.2, Re = 1000

h = 0.3, Re = 1000

1

1

double deck theory We guess that viscous effects are important near the wall Perturbation of a shear flow

SO $\varepsilon = \lambda^{1/3} R e^{-1/3}$, with $R e = U_0' \delta^2 / \nu$.

Carry 2004 / 10. Juni 2004 back to start

$$\frac{\partial}{\partial x}u + \frac{\partial}{\partial y}v = 0, \qquad u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial y}u = -\frac{d}{dx}p + \frac{\partial^2}{\partial y^2}u.$$

Boundary conditions: no slip condition: $u(x, y = f(x)) = 0, \qquad v(x, y = f(x)) = 0,$
matching with the shear flow $(y \to \infty)$

$$\lim_{y \to \infty} u(x, y) = U'_S(0)y.$$

upstream:

$$u(x \to -\infty, y) = U'_S(0)y, \qquad v(x \to -\infty, y) = 0.$$

2

Viscous effects are important near the wall Perturbation of a shear flow Non linear resolution (with flow separation) possible But first we linearise

Linearizing the equations: We look at a linearized solution: $u = y + \alpha u_1$, $v = \alpha v_1$, $p = \alpha p_1$ with $\alpha \ll 1$.

$$\frac{\partial}{\partial x}u_1 + \frac{\partial}{\partial y}v_1 = 0,$$

$$y\frac{\partial}{\partial x}u_1 + v_1 = -\frac{\partial}{\partial x}p_1 + \frac{\partial^2}{\partial y^2}u_1,$$

with boundary conditions:

$$u_1 = v_1 = 0$$
 in $y = f(x, z)$,
 $y \to \infty$, $u_1 = +f(x, z)$,
 $x \to -\infty$, $u_1 = 0$, $v_1 = 0$. Looking at solutions in Fourier space.

Linearizing the equations: We look at a linearized solution: $u = y + \alpha u_1$, $v = \alpha v_1$, $p = \alpha p_1$ with $\alpha \ll 1$.

2

$$\frac{\partial}{\partial x}u_1 + \frac{\partial}{\partial y}v_1 = 0,$$

$$y\frac{\partial}{\partial x}u_1 + v_1 = -\frac{\partial}{\partial x}p_1 + \frac{\partial^2}{\partial y^2}u_1,$$

with boundary conditions:

$$u_1 = v_1 = 0$$
 in $y = f(x, z)$,
 $y \to \infty$, $u_1 = +f(x, z)$,
 $x \to -\infty$, $u_1 = 0$, $v_1 = 0$. Looking at solutions in Fourier space.

After some algebra:

$$\frac{\partial u}{\partial y}|_0 = 1 + \alpha F T^{-1}[(3Ai(0))(-ik)^{1/3}FT[f]] + O(\alpha^2).$$

Asymptotic solution of the flow over a bump; Linear/ Non Linear double deck theory

for the bump $\alpha e^{-\pi x^2}$ with $\alpha = 0.10$, $\alpha = 0.5$, $\alpha = 1.0$, $\alpha = 2$, $\alpha = 2.25$, $\alpha = 2.50$. The plain curve (lin.") is the linear prediction , other curves come from the non linear numerical solution.

Notice the numerical oscillations in the case of

separated flow (separation is for $\alpha > 2.1$)

Comparison with Navier Stokes

good! Re increasing α fixed.

conclusion: Perturbation of shear flow is in advance compared to the bump crest.

Completely erodible soil

Solution of

$$\tau = TF^{-1}[(3Ai(0))(-ik)^{1/3}TF[f]]$$

$$\frac{\partial q}{\partial x} + Vq = V\varpi(\tau - \tau_s)$$

$$\frac{\partial f}{\partial t} = -\frac{\partial q}{\partial x}$$

Completely erodible soil

example of runs: animation 1, animation 2 (length *2). always coarsening, finally there is only one bump in the "box".

Displacement of a "dune" in a shear flow: rigid soil

Solution of

$$\tau = TF^{-1}[(3Ai(0))(-ik)^{1/3}TF[f]]$$
$$\frac{\partial q}{\partial x} + Vq = V\varpi(\tau - \tau_s)$$
$$\frac{\partial f}{\partial t} = -\frac{\partial q}{\partial x}$$

implementation of the fact that f cannot be negative.

Example of displacement of a "dune"

្

Example

Carry 2004

Carry 2004

Carry 2004

rescaling $x = Lx^*$, we have $f = L^{1/3}f^*$ so that τ is invariant

$$\tau = L^{-1/3} L^{1/3} T F^{-1}[(3Ai(0))(-ik^*)^{1/3} T F[f^*]] = \tau^*$$

rescaling $x = Lx^*$, we have $f = L^{1/3}f^*$ so that τ is invariant

$$\tau = L^{-1/3} L^{1/3} T F^{-1}[(3Ai(0))(-ik^*)^{1/3} T F[f^*]] = \tau^*$$

$$q = q^*$$

rescaling $x = Lx^*$, we have $f = L^{1/3}f^*$ so that τ is invariant

$$\tau = L^{-1/3} L^{1/3} T F^{-1}[(3Ai(0))(-ik^*)^{1/3} T F[f^*]] = \tau^*$$

$$\label{eq:gamma} q = q^*$$
 $\int f dx = m \text{ so } L^{4/3} = m \text{ with } \int f^* dx^* = 1$

$$\left(\frac{1}{VL}\right)\frac{\partial q^*}{\partial x^*} + q^* = \varpi(\tau^* - \tau_s)$$

rescaling $x = Lx^*$, we have $f = L^{1/3}f^*$ so that τ is invariant

$$\tau = L^{-1/3} L^{1/3} T F^{-1}[(3Ai(0))(-ik^*)^{1/3} T F[f^*]] = \tau^*$$

$$\label{eq:gamma} q = q^*$$
 $\int f dx = m \text{ so } L^{4/3} = m \text{ with } \int f^* dx^* = 1$

$$\begin{aligned} (\frac{1}{VL})\frac{\partial q^*}{\partial x^*} + q^* &= \varpi(\tau^* - \tau_s) \\ \frac{\partial f^*}{\partial t^*} &= -\frac{\partial q^*}{\partial x^*} \end{aligned}$$

 $t = L^{4/3}t^*$ and $c = L^{-1/3}c^*$ so $c = m^{-1/4}c^*$

rescaling $x = Lx^*$, we have $f = L^{1/3}f^*$ so that τ is invariant

$$\tau = L^{-1/3} L^{1/3} T F^{-1}[(3Ai(0))(-ik^*)^{1/3} T F[f^*]] = \tau^*$$

$$\label{eq:gamma} q = q^*$$
 $\int f dx = m \text{ so } L^{4/3} = m \text{ with } \int f^* dx^* = 1$

$$(\frac{1}{VL})\frac{\partial q^*}{\partial x^*} + q^* = \varpi(\tau^* - \tau_s)$$
$$\frac{\partial f^*}{\partial t^*} = -\frac{\partial q^*}{\partial x^*}$$

 $t = L^{4/3}t^*$ and $c = L^{-1/3}c^*$ so $c = m^{-1/4}c^*$ 1/c proportional to $m^{1/4}$ and function $Vm^{3/4}$
Self Similarity

Carry 2004 / 10. Juni 2004 back to start

6

6

two different initial bumps of same m lead to the same final state

two cases of same $Vm^{3/4}$.

comparing the 2D non erodible code to the 3D code (in 2D!)

Self Similarity

selfsimilarity, unit mass m = 1, different $Vm^{3/4}$.

output flux versus $Vm^{3/4}$

Self Similarity 1.8 ++ + + + 1.6 1.4 1.2 vitesse 1 0.8 0.6 0.4 0.2 10 15 20 25 0 5 30 V*m**(3/4)

 $c m^{1/4}$ as function of $V m^{3/4}$.

1/c is function of $m^{1/4}$

Linear / Non linear comparison

Abbildung 1: Comparing the skin fricition perturbation $(\tau - 1)$ and the "dunes" in the linear and non linear cases, here with separation

Abbildung 2: Comparing the skin fricition perturbation $(\tau - 1)$ and the "dunes" in the linear and non linear cases

animation

7

Influence of Λ linear case $x=m^{3/4}x^*$ and $f=m^{1/4}f^*$

seems to be no $q = \tau - \tau_s$ solution.

Movement of a 3D Bump in a shear flow

Carry 2004 / 10. Juni 2004

back to start Abbildung 3: A bump in a shear flow

We look at a linearized solution:

 $u = y + au_1$, $v = av_1$, $w = aw_1$, $p = ap_1$ with $a \ll 1$. The system becomes:

$$\begin{aligned} \frac{\partial}{\partial x}u_1 + \frac{\partial}{\partial y}v_1 + \frac{\partial}{\partial z}w_1 &= 0, \\ y\frac{\partial}{\partial x}u_1 + v_1 &= -\frac{\partial}{\partial x}p_1 + \frac{\partial^2}{\partial y^2}u_1, \\ y\frac{\partial}{\partial x}w_1 &= -\frac{\partial}{\partial z}p_1 + \frac{\partial^2}{\partial y^2}w_1, \end{aligned}$$

with boundary conditions:

 $u_1 = v_1 = w_1 = 0$ in y = f(x, z), $y \to \infty$, $u_1 = +f(x, z)$, $w_1 = 0$ $x \to -\infty$, $u_1 = 0$, $v_1 = 0$, $w_1 = 0$. Looking at solutions in Fourier space...

Example over an erodible bed

Solution of

$$\hat{\tau}_x = 3((-ik_x)^{1/3}Ai(0))k_x(1 - \frac{(-3Ai'(0))k_z^2}{9Ai(0)^2(k_x^2 + k_z^2))}\hat{f}$$
$$\hat{\tau}_y = 3((-ik_x)^{1/3}Ai(0))\frac{k_x(-3Ai'(0))k_z^2}{9Ai(0)^2k_z(k_x^2 + k_z^2)}$$

$$q_x = \tau_x - \Lambda \frac{\partial f}{\partial x}$$

$$qy = \tau_y - \Lambda \frac{\partial f}{\partial y}$$

$$\frac{\partial f}{\partial t} = -\frac{\partial q_x}{\partial x} - \frac{\partial q_y}{\partial y}$$

example of resolution

Abbildung 6: initial time

Abbildung 7: t = 2.5

Transport flux

We propose a 3D extension as:

$$\frac{\partial \mathbf{q}}{\partial \mathbf{s}} + V \mathbf{q} = V \boldsymbol{\varpi} (\tau - \tau_s \mathbf{e})$$

with $e = \frac{\tau}{\tau}$ where s is counted in the direction of the streamlines near the soil: $\frac{\partial}{\partial s} = e \cdot \nabla$

Small deflection of the bump: flow remains in x direction s = (x, 0): the saturated flux $q_{sat} = \varpi(\tau - \tau_s e)$ is in the direction of the skin friction.

$$\frac{\partial q_x}{\partial x} + Vq_x = V\varpi(\tau_x - \tau_s)$$
$$\frac{\partial q_z}{\partial x} + Vq_z = V\tau_z(\varpi(\tau_x - \tau_s))$$

note here we take $q_{sat} = 0$ when $f \le 0$ we add an *ad hoc* extra diffusion term:

$$\frac{\partial f}{\partial t} = -\frac{\partial q_x}{\partial x} - \frac{\partial q_z}{\partial z} + D(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial z^2})$$

Carry 2004 / 10. Juni 2004 back to start

animation

Abbildung 8: A "dune" in a shear flow,

Influence of the ideal fluid

$$FT[\tau] = \frac{(-ik)^{2/3}}{Ai'(0)} Ai(0) \frac{FT[f]}{\beta^* - 1/|k|}, \text{ with } \beta^* = (3Ai'(0))^{-1} (-ik)^{1/3}$$

Influence of the ideal fluid

$$FT[\tau] = \frac{(-ik)^{2/3}}{Ai'(0)} Ai(0) \frac{FT[f]}{\beta^* - 1/|k|},$$

with $\beta^* = (3Ai'(0))^{-1} (-ik)^{1/3}$

with $\beta^* = (3Ai'(0))^{-1}(-ik)^{1/3}$ remember Hermann, Kroy, & Sauermann and Andreotti, Claudin & Doaudy:

$$\tau = \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f'}{x - \xi} d\xi\right) + Bf'$$

$$FT[\tau] = \frac{FT[f]}{|k|} + (-ik)BFT[f]$$

Stability analysis

- Infinite depth case (Hilbert case). The real part of σ for $\beta = V = \gamma = 1$ as function of the wave length k:
 - on the left figure $\Lambda = 0$: there is no slope effect

- on the right figure, we focus on the small k which are amplified when $\Lambda = 0$, but are damped for $\Lambda > 0$ (following the arrow, from up to down $\Lambda = 0$, $\Lambda = 0.1$, $\Lambda = 0.2$, $\Lambda = 0.3$, $\Lambda = 0.316$ and $\Lambda = 0.4$).

Slope effect: influence of Λ

Bump shape t = 500, (4 bumps coexist with $\beta = 1$, $\gamma = 1$, V = 1, $\tau_s = -0.05$), $\Lambda = 0$, $\Lambda = 0.1$ and $\Lambda = 0.2$ (the curves are shifted to place the maximum at the origin)
Coarsening process, Hilbert case

animation

Examples of long time evolution of $2\pi/k$ the wave length value maximizing the bump spectrum (corresponding mostly to the number of bumps present in the domain). This is an infinite depth case for a domain of length $2L_x$. If $\Lambda = 0$, there is finally only one bump of size $2L_x$ (the largest possible). If $\Lambda < 0.316$, two bumps (of size L_x) are present, the larger are damped. If Λ is increased, there is no dune anymore as predicted by the linearized theory. Here $V = \beta = 1, L_x = 32, \tau_s = -0.25$. Notice that several bumps may live during a very long time: here in the case $\lambda = 0.31$, during a very long time (10 < t < 25000) three bumps are present.

Comming back to ideal fluid: $Re = \infty$

Uniform flow over a topography at large Reynolds number

Starting from an initial shape, the ideal fluid flow is computed (in the Small Perturbation Theory):

$$f(x,t)$$
 gives $u = (1 + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f'}{x-\xi} d\xi)$ in FT, it is: $FT[\tau] = \frac{FT[f]}{|k|}$

This is known as a very good approximation But problems arise in the decelerated region (we saw).

Second example: Basic case, at Re = 0

Shear flow over a topography f(x,t) at small Reynolds number

Starting from an initial shape, the creeping flow is computed (in the Small Perturbation Theory), we obtain after some algebra:

$$f(x,t)$$
 gives $\tau = 1 + \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{f'}{x-\xi} d\xi$

perturbation of a shear flow Re = 0

L: flow over a gaussian bump, comparisons linear theory/ computations perturbation of skin friction computed with CASTEM $\frac{1}{h_0}\frac{\partial \overline{u}}{\partial \overline{y}}$ for $0.05 < h_0 < 0.4$ (bump size) and Re = 1

R: perturbation of skin friction computed with FreeFem.

Linking q and u

assuming that q is proportional to u - 1 or q proportional to $\tau - 1$ without threshold this gives the same relation in the two cases (2!):

$$\frac{\partial f}{\partial t} = -\frac{1}{\pi} \frac{\partial}{\partial x} \int \frac{f'}{x-\xi} d\xi.$$

we recognize the linear Benjamin -Ono equation.

Supposed Evolution

The ideal fluid theory has been introduced by Exner.

Issued from Yang (1995) reproduced from Exner (1925?). "wave" inspiration in the dune evolution

Computed Evolution

Numerical resolution: finite differences, explicit Tested on complete Benjamin - Ono: RHS+ $4f\partial f/\partial x$ gives the soliton $1/(1 + x^2)$

But here we observe the dispersion of the bump...

animation another animation

Remark: linear KDV equation

1

The linear KDV equation reads $\frac{\partial f}{\partial t} = \frac{\partial^3 f}{\partial x^3}$, with selfsimilar solutions, $\eta = xt^{-1/3}$:

"Mascaret" solution: $f(x,t) = \int_{3^{-1/3}\eta}^{\infty} Ai(\xi) d\xi$; Airy solution: $f(x,t) = t^{-1/3} Ai(\frac{\eta}{3^{1/3}})$. animation

asymptotic solution of L.B.O.

L.B.O.
$$\frac{\partial f}{\partial t} = -\frac{1}{\pi} \frac{\partial}{\partial x} \int \frac{f'}{x-\xi} d\xi.$$

Selfsimilar variable $\eta = xt^{-1/2}$, self similar solution $f(x,t) = t^{-1/2}\phi(xt^{-1/2})$.

In the Fourier space exp(-ikx) gives, in the RHS, -i|k|kexp(-ikx), so:

$$-\frac{1}{\pi}\frac{\partial}{\partial x}\int \frac{f'}{x-\xi}d\xi \simeq i\frac{\partial^2 f}{\partial x^2}$$

The self similar problem is approximated by:

$$\frac{-1}{2}(\phi(\eta) + \eta\phi'(\eta)) \simeq i\phi''(\eta).$$

whose exact solution is $\phi(\eta) = exp(i(\eta/2)^2)$

asymptotic solution of L.B.O.

Plot of the numerical solution $t^{1/2}f(x,t)$ function of $xt^{-1/2}$ the exact solution of the approximated problem $cos(1 + (\eta/2)^2)$.

• not very realistical flow

- not very realistical flow
- but accurate evaluation of skin friction (compared to NS), which allows a small flow separation

- not very realistical flow
- but accurate evaluation of skin friction (compared to NS), which allows a small flow separation
- prediction of a special dependance of the dune velocity $m^{-1/4}$

- not very realistical flow
- but accurate evaluation of skin friction (compared to NS), which allows a small flow separation
- prediction of a special dependance of the dune velocity $m^{-1/4}$
- 3D evaluation of skin friction

- not very realistical flow
- but accurate evaluation of skin friction (compared to NS), which allows a small flow separation
- prediction of a special dependance of the dune velocity $m^{-1/4}$
- 3D evaluation of skin friction
- comprehension of the influence of the viscous boundary layer (destabilisation) versus the ideal fluid effect (dispersive).

Perspectives

- Application for a special case: Hele Shaw
- Turbulent integral Interacting Boundary Layer theory

springen,

Zuruck zur vorher angezeigten Seite.

1