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Abidjan, Côte d’Ivoire
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Abstract

The 2D laminar quasi-steady asymptotically simplified and linearized
flow with mass transport of sediments is solved over an erodible bed in
various laminar basic shear flow (steady, oscillating or decelerating). The
simplified mass transport equation includes the two following phenomena:
flux of erosion when the skin friction goes over a threshold value, and a non
local effect coming either from an inertial effect or from a slope effect. It is
shown that the bed is always unstable for small wave numbers. Examples
of long time evolution in various shear régimes are presented, wave trains
of ripples are created and merge into a unique bump. This coarsening
process is such that the maximum wave length obeys a power law with
time. 45.70.-n Granular systems 47.15.Cb Laminar boundary layers
45.70.Qj Pattern formation

1 Introduction

Understanding how water or air creates ripples on sand or sediments is
a very important environmental problem. Widely different wave lengths
are involved from small ripples on the beach (either in the wet or dry
sand) to dune formation or mega ripples in sea. A large literature refers
to this problem since Exner in 1925 and Bagnold in the 40’s up to now,
as ripples on Mars may be an evidence of water on this planet [6]. Yang
[28], Fredsøe and R. Deigaard [7], and Nielsen [15] give the state of the art
for this very complex problem linking various physical aspects at different
scales (from the grain diameter to the sea depth!).

Experimental setup have been constructed to study how ripples appear
and grow. Typical experimental setups are oscillating annular cells (Sherer
et al. [20], Rousseaux et al. [17]), uniformly rotating cell (Charru et al.
[5]) or stopping a uniformly rotating cell (Caps [4]). It is observed that as
time increases the wave length of the ripple increases (coarsening of the
ripples).

We simulate this phenomena with a simple model for both the flow
and the soil. Instead of using an amplitude model equation we want to

1



use model equations coming from mechanics. The first difficulty consists
in computing the flow which is unsteady and turbulent in the nature, but
which may be considered as laminar in most experiments. Our model will
consider quasi steady laminar perturbations of a slowly varying basic flow.
An asymptotical approach allows to obtain a linearised solution for the
flow over the ripples. The second difficulty consists in computing the flow
of sand. The sand may ”creep” (bed load transport), or ”fly”, or may
be suspended in the fluid. This modifies the viscosity and density of the
flow. Our model will consider different simple relations between the flux
of sand and the shear stress from the flow.

We present a stability theory for different cases of flow. The basic
state is a flat erodible bed with a shear flow. Either a steady established
flow, an oscillating one, or a decelerated one will be considered. The
questions are about the stability of the configuration, and about the long
time evolution of the bed form.

We first remind the equations of the full coupled problem (Sec. 2) and
the first simplifications for the flow and for the granular material. We
present the simple basic régimes, they reduce near the soil to a shear flow
(Sec. 3). We focus on the small perturbations of this flow in section 4.
The linear stability is then discussed (Sec. 5). Finally we present a long
time evolution (Sec. 6) of the erodible bed leading to the coarsening of
wave length.

2 The coupled problem

2.1 The flow

We consider a steady or unsteady laminar incompressible Newtonian flow.
We suppose that the viscosity and density remain constant in the flow. An
initial boundary layer is developing, δ is its thickness, U0 is the velocity
far from the soil. The Reynolds number Reδ = U0δ

ν
is supposed large

enough to use an asymptotical approach. In fact the slope of the velocity
at the surface U0/δ will be the pertinent parameter. We will specialise
the boundary layer in section (3). Knowing the instantaneous soil shape
the problem is to find the velocity near the soil, more exactly the skin
friction τ = µ∂yu from the Navier Stokes equations. Using δ as length
scale, y = δȳ, x = δx̄, u = U0ū, and t = (δ2/ν)t̄. The Navier Stokes
equations are (Rousseaux et al. [18]):

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0, (1)

1

Reδ

∂(ū, v̄)

∂t̄
+ (ū, v̄) · ∇̄(ū, v̄) = −∇̄p̄ +

1

Reδ
∇̄2(ū, v̄). (2)

Here we will concentrate to the case of small perturbations of the soil’s
surface, and we will see that asymptotic analysis allows an analytical
resolution. The boundary conditions are the no slip flow at the upper
surface of the soil described by ȳ = f̄ .

2.2 The erodible bed

Due to the movement of sand or sediment, the upper surface of the soil
(y = f(x, t)) changes according to the mass conservation. To solve the
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mass conservation of sediments

∂f

∂t
= − ∂q

∂x
, (3)

one has to know the relation between the flux q and the fluid flow. This
depends on a lot of factors. In the literature (Yang [28], Nielsen [15],
Fredsøe and Deigaard [7], ...) the final relation is mostly that q is function
of the skin friction τ . The adimensionalised skin friction is denoted as
the Shield number θ = τ

(ρs−ρ)gd
; ρ and ρs are fluid and particle density,

respectively, d is average particle diameter, and g is gravity. There is
a threshold value τs (or θs) above which the sediments are entrained, a
power law (with often β = 3/2) is often used:

qs ∝ (θ − θs)
β, with θ > θs.

In fact, we use a linearized version just above the threshold: qs ∝ τ − τs.
Furthermore, there is a gravity effect which induces a correction in the
threshold value depending on the slope of the soil. If τ > τs + Λ ∂f

∂x
we

define a saturated flux:

qs = Q0$(τ − τs − Λ
∂f

∂x
), (4)

where $(x) = x if x > 0, else $(x) = 0. In an eolian context, Kroy et al.
[11], Sauermann et al. [19] introduced an effect of inertia adding a term
proportional to ∂xq (with Λ = 0), we may simplify their expression as:

lK
∂q

∂x
+ q = qs (5)

with lK proportional to 1
U′

S

i.e. the inverse of the shear. With again

Λ = 0, Andreotti et al. [1] simplified this expression as:

ls
∂q

∂x
+ q = qs, (6)

with a constant coefficient in front of ∂xq. Finally the slope of the ripple
may be limited by an ”avalanche” effect (at least a ”slope effect”). It
means that at each time step:

if |∂f

∂x
| > 1

µ
, then |∂f

∂x
| = 1

µ
and

∫

fdx = cste. (7)

Mass is conserved during this process, and slope is limited. The problem
is now to find τ and to test either Eq. 4, 5, or 6, and 7.

3 Basic flow

The basic configuration is a bidimensional flow over a flat soil. Curvature
and gap effects in circular cells are neglected. The flow is laminar. Near
the wall, any velocity profile reduces to a pure shear flow (Figure 1). The
basic adimensionalised velocity is:

ū = Ū ′S ȳ. (8)

Typical examples are an oscillating flow, or a moving tank with an im-
pulsively stopped bottom or a Blasius boundary layer. In the next sub-
sections we will show that the steady case corresponds to Ū ′S = 1, the
oscillating case corresponds to Ū ′S = cos(2πt̄), and the decelerated case to
Ū ′S = t̄−1/2.
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3.1 Steady basic flow

If we consider a Blasius boundary layer, near the wall, the profile is linear
(Schlichting [24]):

u ' 0.33U0
y

δ
(9)

with δ = (LR
−1/2
L ) so that we obtain (8) with Ū ′S = 0.33. We may as

well imagine a flow in a channel with a developed half Poiseuille profile,
the parabolic velocity profile being linear near the wall. The analysis of
Fowler [8] of a turbulent flow with a mean equivalent viscosity leads in
fact to this analysis.

3.2 Oscillating basic flow

In the frame of the wall, the basic flow is solution of:

∂

∂t
u = − d

ρdx
p + ν

∂2

∂y2
u. (10)

The oscillating velocity U0<[exp(−iΩt)] is imposed at ”infinity”, far from
the bottom where u(y = 0, t) = 0. The solution is classical (Schlichting
[24]) and after a change of phase in the time, near the wall:

u ' U0
y

δ
e−iΩt + ... (11)

so that we obtain (8) with Ū ′S = cos(2πt̄), with time scaled with f−1 =
2πΩ−1. The scale of the boundary layer δ = (ν/Ω)1/2.

3.3 Decelerated Basic flow

In the frame of the wall, the basic flow is again the solution of Eq. (10)
(Rayleigh problem) with U0 the constant velocity at ”infinity”, far from
the bottom and u(y = 0, t) = 0:

u ' U0
y√
πνt

+ ... (12)

so that we obtain (8) with Ū ′S = 1/
√

t̄, δ = (πνT ∗)1/2 were T ∗ = h2
0/ν

is the chosen time scale (h0 is the water depth, which is supposed larger
than δ).

4 Perturbation of the basic flow

In a layer of relative thickness ε (compared to the uniform boundary layer
thickness δ), and longitudinaly streched of a factor λ/δ we may develop (1-
2) using ỹ = ε−1ȳ = y

εδ
and x̃ = δ

λ
x̄ = x

λ
. Perturbations of velocity must

be of order ε, in order to reobtain far upstream of a bump: ũ = Ū ′S ỹ.
To have a problem with the maximum number of terms (least possible
degeneracy, Van Dyke [26]), including pressure, convective terms and a
viscous term, we obtain a relation between λ and δ:

λ = ε3δRδ. (13)
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So with x̄ = x̃, ȳ = εỹ, ū = εũ, v̄ = εṽ, and p̄ = ε2p̃, and if we take the
time scale to be the time scale of the oscillating flow t̄ = t̃. This means
that we have:

ε2 ∂

∂t̃
ũ + ũ

∂

∂x̃
ũ + ṽ

∂

∂ỹ
ũ = − ∂

∂x̃
p̃ +

∂2

∂ỹ2
ũ + ε2 ∂2

∂x̃2
ũ.

and − ∂
∂ỹ

p̃ = O(ε2). So that, as ε → 0, the problem is quasisteady, and
we obtain a ”boundary layer” equation for ũ (Eq. 15).

4.1 Notes on the scalings

We note (as ε → 0) that the second order partial longitudinal derivative is
not present. It is because the transverse scale is smaller than the longitu-
dinal one. Using the same scale in both directions x = λvx̂ and y = λv ŷ,
we have λv =

√

ν/(U0/δ) and Eq 2, for û is:

ε2 ∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
= − ∂

∂x̂
p̂ +

∂2

∂ŷ2
û +

∂2

∂x̂2
û.

This scale is called the ”viscous scale” (Charru et al. [5]), it is supposed
very small. In fact we are in the Triple Deck theory (Neiland [14], Stew-
artson & Williams [23], Smith [21], Sychev et al [25]), and Gajjar & Smith
[9], Bowles & Smith [2]). More precisely, we are in the framework of Dou-
ble Deck Smith (1982) [21]. We focus on the case with no perturbations
of the Upper Deck (no retroaction of the ideal fluid). This means that
perturbations of pressure induced by the deflection of the streamlines in
the Upper Deck (of order εδ

λε3δ
) are smaller than the perturbation of pres-

sure in the Lower Deck (of order ε2) (Smith et al. [22]). In the Blasius

case, this means that ε << R
−1/8
L .

In complete Triple Deck, time should then be scaled by ε2 compared
to the time scale of the basic flow in this lower layer. But this is not
relevant here because this introduces a smaller time scale than the one
coming from the flow (i.e. 1/Ω in the oscillating case). Furthermore, the
time of variation of the soil is itself very long compared to the oscillation
period.

4.2 Equations

Steady and unsteady cases follow the same equations, the problem in the
”Lower Deck” is simply:

∂

∂x̃
ũ +

∂

∂ỹ
ṽ = 0, (14)

ũ
∂

∂x̃
ũ + ṽ

∂

∂ỹ
ũ = − d

dx̃
p̃ +

∂2

∂ỹ2
ũ (15)

It means that near the wall there exist scales such that a non linear prob-
lem (with convection, diffusion and pressure gradient) has to be solved.
Boundary conditions are no slip condition on the bottom:

ũ(x̃, ỹ = f̃ (x̃)) = 0, ṽ(x̃, ỹ = f̃(x̃)) = 0. (16)

The matching between the top of the Lower Deck (ỹ →∞) and the bottom
of the boundary layer (ȳ → 0) gives:

lim
ỹ→∞

(εũ(x̃, ỹ)) = Ū ′S ȳ i.e. ũ(x̃, ỹ →∞) = Ū ′S ỹ (17)
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The latter means that the incoming velocity is linear, this means that
upstream we recover the boundary layer profile:

ũ(x̃→ −∞, ỹ) = Ū ′S ỹ, ṽ(x̃ → −∞, ỹ) = 0. (18)

4.3 Linearisation: law between the topography

and the skin friction.

The unperturbed solution of (14-15) is simply:

ũ = Ū ′S ỹ, ṽ = 0, p̃ = 0.

This means that at the small longitudinal scale, the boundary layer thick-
ness does not evolve and the velocity profile remains linear near the wall.
The linearised solution of (14-15) around this shear profile in Fourier space
is straightforward and leads to (Ai is the Airy function):

τ̃ = Ū ′S + Ū ′SFT−1[FT [f̃ ](3Ai(0))(−(ik̃)Ū ′S)1/3] + ... (19)

This relation (19) gives the final response of the fluid: it links the pertur-
bation of the shear stress to the topography change. This final relation
will be used for the linear stability analysis as well as for the numerical
simulations.

5 Linear stability of the bed

5.1 steady case

The shear stress function of the topography change is now coupled to the
adimensional version of (4),

q̃s = $(τ̃ − τ̃s − Λ̃
∂f̃

∂x̃
). (20)

Either the flux is always saturated and

q̃ = q̃s, (21)

or the inertial effect is taken into account with a variable coefficient (5)

l̃K

Ū ′S

∂q̃

∂x̃
+ q̃ = q̃s, (22)

or the inertial effect is taken into account with a constant coefficient (6)

l̃s
∂q̃

∂x̃
+ q̃ = q̃s, (23)

where τ̃s, Λ̃, l̃K , and l̃s are constants. In practice, in the sequel, we do

not mix the effect of inertia ∂q̃
∂x̃

and the avalanche (or slope) effect ∂f̃
∂x̃

, so
in (22 and 23) Λ is zero in q̃s. The bed form evolution (3) with a suitable
adimensionalisation is:

∂f̃

∂t̄
= −η

∂q̃

∂x̃
, (24)

where η represents the ratio of the hydrodynamic scale versus the bed
evolution one. In pratice this arises only when Ū ′S is not constant. When
Ū ′S is constant, the time scale is such that η = 1. We introduce a long
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time t̄1 = ηt̄. This allows to compute the temporal stability of an erodible
bed with Ū ′S given. Looking for normal modes f̃ = e(σ+iω)t̄1e−ikx̃, we
obtain the perturbation of the skin friction (Eq. 19) and with the suitably
adimensionalised version of flux relation (Eq. 21 or 23 or 22), we obtain
σ as a function of the mode k. We note that there exist a uniform flux:

q̃0 = Ū ′S − τ̃s.

With q̃0 > 0, the linear stability analysis is valid as long τ̃ − τ̃s > 0. The
amplification factor σ is positive for small k (with Eq. 4):

σ + iω =
3

1

3

Γ( 2
3
)
(
1

2
+

i
√

3

2
)k4/3 − Λ̃k2. (25)

Unstability occurs only for long waves (figure 2). If the slope effect is
removed (Λ̃ = 0 in Eq. 4), all waves are amplified (σ = 0.53k4/3 and
ω = 0.92k4/3). The same arises for the case with saturation effect (Eq. 6
or 5 here identical), there is unstability only for long waves (figure 3).

Figure 4 gives an interpretation of the unstability, a wavy profile has
an excess of skin friction τ̃ − Ū ′S that is maximal just before the crest.
The flux is decomposed in a uniform flux q̃0 plus a perturbation which is
τ̃ − Ū ′S . This latter contribution erodes the crest and displaces the matter
down stream.

5.2 Oscillating case

5.2.1 Averaging the flux relation

The oscillating time scale is supposed smaller than the time of growth of
the structures. We have again (24) with η ratio of the oscillating time

by the bed evolution one. We define a mean value < · >=
∫ 1

0
·dt̄ during

an oscillating cycle. Introducing a multiscale analysis: t̄0 = t̄ is the short
time, and t̄1 = ηt̄ is the long time. Let split f̃ = f̃0(t̄0, t̄1)+ηf̃1(t̄0, t̄1)+ ...
and write q̃ = Q̃ + q̃′. Q̃ is defined as the mean value during the current
cycle Q̃ =< q̃ > and < q̃′ >= 0. So, as the time derivative is: ∂

∂t̄
=

∂
∂t̄0

+ η ∂
∂t̄1

, the mass conservation equation degenerates:

∂f̃0

∂t̄0
= 0,

i.e. the topology is quasisteady at the short time scale. We define F̃0(t̄1) =
f̃0(t̄0, t̄1). At the long time scale:

∂F̃0

∂t̄1
+

∂f̃1

∂t̄0
= − ∂q̃

∂x̃
.

With the decomposition of q:

∂f̃1

∂t̄0
= (−∂q̃′

∂x̃
) + (−∂Q̃

∂x̃
− ∂F̃0

∂t̄1
).

In order to solve the problem at order one, the secular term: (− ∂Q̃
∂x̃
− ∂F̃0

∂t̄1
)

must be 0:
∂F̃0

∂t̄1
= −∂ < q̃ >

∂x̃
.

This means that we can take the mean value of q to deal with the long
time evolution of the bed.
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5.2.2 stability

During a cycle the ripples do not change at first order, the time of evo-
lution of the topography is very slow compared to the oscillating time.
The small short time pertubation perturbation of the soil is given by
∂t̄0 f̃1 = −∂x̃q̃′, where q̃′ must be borned. So we estimate the mean value
of the skin friction with a ”frozen” soil from Eq. 19 during a cycle (note
< Ū ′S >= 0, and we use f̃ which is in fact F̃0):

< FT [τ̃ ] >= −3Ai(0)
iΓ( 1

6
)

8
√

πΓ( 2
3
)
(k)1/3FT [f̃ ],

< τ̃ > and f̃ are out of phase, the skin friction will induce the sand to
move to the crests and out of the hollow (figure 7) without displacing the
ripples. The mean value of the skin friction is real:

∫ 1

0

−(−ik)FT [τ ]dt̄ =
3

1

3 Γ( 1
6
)k4/3TF [f̃ ]

8
√

π Γ( 2
3
)
2

, (26)

the numerical value is 0.3087TF [f̃ ].
Putting the slope effect (21), the stability analysis gives:

σ = 0.3087k4/3 − Λk2, ω = 0. (27)

There is a cut off frequency kc. Stability for large k: k > kc and instability
for k < kc. See fig 5 . Taking a relation with an inertial effect depending
on the actual value of the shear stress (22) with q̃s = τ gives:

σ + iω =< −(−ik)
Ũ ′S3Ai(0)(−(ik)Ū ′S)1/3

1 + l̃K(ik(Ū ′S)−1))
>, (28)

which is real (ω = 0), and plotted on fig. 6. As for the steady case, long
waves are unstable, in this oscillating case there is no phase velocity. The
ripples do not move.

5.3 Decelerated case

In the previous section, the hydrodynamic time was smaller than the bed
time evolution. If we look at a decelerated flow, generally no ripples are
created. The time during which the flow exists is too short for ripples to
grow. In some cases, this arises (Caps [4]). In order to describe this case,
the time scale of the flow must be the same than the time scale of the bed.
Taking the same scale for the flow and the topology variation we have (in
the case (21)):

∂f̃k

∂t̄
= (−3Ai(0)(−ik)(−ik)1/3t̄−2/3 − Λk2)f̃k. (29)

Which may be solved for each Fourier mode k:

log(f̃k) = −9Ai(0)(−ik)(−ik)1/3 t̄−1/3 − Λk2 t̄. (30)

Stability analysis now deals with log(f̃k). On figure 8 is displayed log(f̃k)
as function of k for various time. As time increases, the cut off frequency
kc decreases. Short waves are more and more stabilised.
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5.4 Conclusion for stability analysis

As a conclusion for this section devoted to linear stability analysis, we
observe that the qualitative behaviour is the same in every case: the long
wave are unstable, the short wave are stabilised by the gravity or the
inertia effect. In the oscillating case, there is no downstream propagation
of the ripples.

6 Examples of large time evolution

6.1 numerical method

The system is solved numerically using a fast Fourier transform ([16]).
The non linearity of the problem is taken in real space and consists in the
fonction $ that is zero under the threshold. The initial profile is a random
small noise. We observe (see following figures) that the time for ripples
to grow and to interact is very long. Therefore we solved the oscillating
case with η = 1 (taking at each time step t̄ the exact value of τ̃ ). This is
a simple way to tackle with the problem of the non linearity induced by
$. We obtain a coarsening in all the configurations.

6.2 Steady case

Starting from a random noise, the structures predicted by the linear theory
appear. As time increases, the non linear stage is induced by the threshold
function $. The sinusoidal shape is transformed in a non symmetrical
shape (see fig. 9 a spatio temporal diagram). The ripples move from left to
right. The ripple downstream of a larger one is eaten by it. This is due to
the fact that the lee bumps experiment a smaller skin friction than the one
upstsream. As a result, there is less and less bumps in the computational
domain: this is ”coarsening”. Finally there is only one bump in the
”box”. On figure 10 is plotted the number of bumps which diminishes
whith time, whereas the bump height increases with time. The eight
of the final bump saturates. The wave length λmax (which corresponds
to the distance between the bumps, and is inversely proportional to the
number of bumps) increases. On fig. 11 is plotted this wave length for
several simulation with various values of domain size, values of threshold
τs and models (either 21 or 22). The large time behaviour is the same,
this is due to the fact that at small wave length k the bump is large so
the exact value of threshod does not matter anymore. Furthermore, as
the wave length is small, Eq. 21 or Eq. 22 are identical and reduce to

q̃ = τ̃ + ...

The wave length λmax is plotted as function of t in fig 11. A log-log plot
suggest that λmax is more or less proportional to time, it seems that:
λmax ∝ t̄.

6.3 Oscillating case

Starting again from a random noise, the structures predicted by the lin-
ear theory appear. As time increases, the non linear stage is induced by
the threshold function $. The sinusoidal shape is transformed in a sym-
metrical shape (right/ left, see fig. 13) due to the symmetry of the flow.
The ripples are steady and only move from one to the other during the
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pairing process. Again, there is ”coarsening”: less and less bumps are in
the computational domain. Finally there is only one bump in the ”box”.
On figure 12 the same is observed in the case of slope limitation (7). On
figure 14 is plotted the number of bumps which diminishes, whereas the
bump height increases. The wave length λmax increases. On fig. 15 is
plotted this wave length for several simulations with various values of do-
main size, values of threshold τs and models (either 21 or 22). The large
time behaviour is again the same. The wave length λmax is plotted as
function of t in fig 15. A log-log plot suggest that is near a 2/3 power:
λmax ∝ t0.6 which is different from the steady case (fig 11). Experimen-
taly Rousseaux et al. [17] studied ripples from the rolling ripple stage
to the vortex ripple one. The amplitude of the movement is A (typically
1cm) and the frequency is f (typically 1Hz)), so that U0 = 2Aπf and

δ =
√

(ν/(πf). Then our theory apply for any ε such that Eq. 13 gives:
λ = ε3(2A). Our theory is then valid as long as the wave length are
smaller than the amplitude of the movement. It seems to be nearly the
case in this experimental setup where 0.01m < A < 0.05m and where the
first measured wave length is λinitial ' 0.005m. Furthermore, even if our
theory does not strictly compute the separation, the prediction of formula
19 is a good one even when there is flow separation (Lagrée [13]). Our
theory is a good approximation of the flow with small separation bubbles.
So we model the rolling ripples and the vortex ripple when they are small.
The Cahn-Hillard models (Villain-Guillot, and Josserand [27], Bray [3])
predict that λmax ∝ Log(t). Rousseaux et al. [17] suggest (but maybe on
a too small range of time) this fit for their data. With our model, on a
larger range, we instead have a power law.

6.4 Decelerated case

As already mentioned, the time to obtain the growth of ripples is long,
here the time is borned (there exist a time at which Ū ′S = τ̃s). So τ̃s must
be enough small. The final time of growth is a bit larger than the time at
which Ū ′S = τ̃s. On figure 16 is a spatio-temporal diagram. As the effect
of a bump is to increase the skin friction, there is an excess of τ̃ − τ̃s that
is only due to the crest of the ripple.

7 Conclusion

A model for the growth of ripples in a laminar 2D shear flow has been
presented. A condition for application is that the height of the formed
ripples must be smaller than the boundary layer thickness of the basic
flow in order to obtain a basic shear flow.

This shear flow may be steady or slowly varying in time (oscillating
or decelerating). A linear solution linking the bed shape and the skin
friction is obtained in Fourier space. Depending on the chosen relation
linking the transport of sediments and the shear (or skin friction) we
obtain a coupled problem. We present a stability analysis of the erodible
bed. In the chosen framework, in every case, the bed is unstable for
long waves. The instability is due to the fact that the skin friction is in
advance of phase with the soil. The short wave length are stabilised by
either an ”inertial” effect, either an ”avalanche” effect. In the oscillating
case, during a period, the bed does not change that allows a multiscale
analysis of the instability. The stabilising effect for the short waves is the

10



same. In the decelerated case, the classical temporal stability analysis has
to be changed because the time of the deceleration and the time of growth
of the structures must be the same.

Large time simulation of the model equations shows that the ripples
merge and we obtain only one bump in the domain (except in the deceler-
ated case because shear is decreasing finally under the threshold). During
the coarsening process, the history is independent of the exact value of the
parameters. The maximal wave length λmax is proportional to a power
of time.
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Figure 1: Any velocity profile is linear near the wall. λ is a typical length.
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Figure 2: Constant shear, Ū ′

S = 1, amplification factor σ as function of number
k, case (4 or 21, and 25) with Λ̃ = 1, decreasing Λ̃ increases the cut off value of
k.
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Figure 3: Constant shear, Ū ′

S = 1, amplification factor σ as function of number

k, case (6 or 22 or 23) with l̃K = 1, decreasing l̃K increases the cut off value of
k.

fluid

erodible bed

PSfrag replacements

τ̃ − Ū ′
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Figure 4: A wavy profile (bold line, f̃) has a perturbation of skin friction (dashed
line, τ̃ − Ū ′

S) in advance of phase. When it is positive, the matter is moved
down stream (small arrows on the profile), when is is negative, it is in opposite
direction. The result is an increase of the wave and a displacement in the stream
direction (large inclined arrows).
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Figure 5: Amplification factor function of wave number. Averaged oscillating
case, Λ = 1 case (4 and 27).
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Figure 6: Amplification factor function of wave number. Averaged oscillating
case, l̃K = 1 case (6and 28).
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Figure 7: A wavy profile (bold line, f̃) has a mean perturbation of skin friction
(dashed line, < τ̃ >) out of phase. When < τ̃ > is positive, the matter is moved
from left to right (small arrows on the profile), when it is negative, it is in
opposite direction. The result is an increase of the wave without displacement
(large vertical arrows).
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Figure 8: Decelerated case Λ = 1 (21 and 30), plot of log(f̃k(t̄)) as function of k

for various increasing times. As time increases, short waves are more and more
stabilised.
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Figure 9: Steady case, with (22) with Ū ′

S = 1, l̃s = 1. Spatio-temporal diagram
(t = 0, 20, 40, ... from bottom to top). The flow is from left to right. Starting
from a random small noise, structures emerge and merge.
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Figure 10: Steady case Ū ′

S = 1, l̃s = 1, evolution of the maximum value and of
the number of bumps in the domain versus time.
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Figure 11: Constant shear, the wave length of the structure scales with a power
between t̄0.9 and t̄.
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Figure 12: Oscillating régime with (22) and slope limitation V = 1, 1

µ = 0.05,
spatio-temporal diagram, time increases from bottom to top
.
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Figure 13: Oscillating régime with (22), spatio temporal diagram, time increases
from bottom to top. Ripples growth from a random noise and merge two by
two.
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Figure 14: oscillating case Ū ′

S = cos(t̄), l̃K = 1, evolution of the maximum
height of the bumps, and number of bumps in the domain versus time.
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Figure 15: Oscillating shear, the wave length of the structure scales with a
power law between t̄0.6 and t̄2/3.
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Figure 16: Decelerated case with (23) ls = 1. Spatio- temporal diagram, time
increases from bottom to top. There is a final steady bed because the shear
stress is under the threshold.

18



References

[1] B. Andreotti, P. Claudin P. and S. Douady, ”Selection of dune shapes
and velocities. Part 2 : A two-dimensional modelling”, Eur. Phys. J.,
B 28 , pp 341-352, (2002).

[2] R. I. Bowles & F. T. Smith, ”The standing jump: theory, compu-
tations and comparisons with experiments”, J. F. M., vol. 242, pp.
145-168, (1992).

[3] A. J. Bray, Domain growth and coarsening, in Phase Transitions and
Relaxation in Systems with Competing Energy Scales, edited by T.
Riste and D. Sherrington, NATO ASI Series C, Vol.415, pp.405-436,
Kluwer Academic, (1993).

[4] H. Caps, ”Instabilités des interfaces fluide/ granulaire, études
expérimentales”, PhD thesis University of Liège.
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