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every profile is linear near the wall
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Boundary layer solutions of the basic flows

• Steady basic flow

u∗ = U0
y∗

δ
+ · · ·

• Decelerated basic flow

u∗ = U0Erf(
y∗
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√
ν t∗
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U0 y
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π ν t∗

+ · · ·

t =
π ν

δ2
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√
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Perturbation of the basic flow

with the scaling:

(x∗, y∗) = δ (x, y)

(u∗, v∗) = U0 (u, v) p∗ = ρ (U2
0 p− g y δ)

Navier Stokes equations:

∂u

∂x
+
∂v

∂y
= 0

∂(u, v)

∂t
+Reδ ([(u, v) · ∇](u, v) +∇p) = ∇2(u, v)
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Perturbation of the basic flow

• Rescaling

x = λx and y = εb y

Restricting the field of study to dimensions of a bump of the
disturbance of the bottom, one has:

u = U ′
s(0) y +O(y2) = εbU

′
s(0) y +O(y2)

where
U ′

s(0) = 1 for the steady case:
U ′

s(0) = 1√
t

for the decelerated flow and

U ′
s(0) = cos(t) for the oscillating case

is a function of the alone variable t, hydrodynamic time.

workshop on sand transport and dune formation, 9th - 11th June 2004 Carry Le Rouet – p.6



Perturbation of the basic flow

workshop on sand transport and dune formation, 9th - 11th June 2004 Carry Le Rouet – p.7



Perturbation of the basic flow

workshop on sand transport and dune formation, 9th - 11th June 2004 Carry Le Rouet – p.7



Perturbation of the basic flow

workshop on sand transport and dune formation, 9th - 11th June 2004 Carry Le Rouet – p.7



Perturbation of the basic flow

εb

δ
� 1 and

λ

δ
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y
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Equations near the wall

• As εb = O(λ)

∂u

∂x
+
∂v

∂y
= 0

ε2b Reδ {[(u, v) · ∇](u, v) +∇p} = ∆(u, v)

• As εb � λ
∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

λ

ε3b Reδ

∂2u

∂y2
.
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Equations near the wall

• Finally

x∗ = δ ε3b Reδ x, y∗ = δ εb y and εb � 1

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2

0 =
∂p

∂y
.
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Equations near the wall

The fact of having

λ ∼ ε3b Reδ =
2Aε3b
δ

gives r =
2A

λ
' δ

ε3b

r is the aspect ratio between the characteristic scales uses in former
studies. However

δ

εb
� 1 and

1

ε2b
� 1

one thus has well

r =
2A

λ
' δ

εb
(

1

ε2b
)� 1
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Equations near the wall

Rousseaux et al. (2003) workshop on sand transport and dune formation, 9th - 11th June 2004 Carry Le Rouet – p.10



Linearised equations

f = af1

u = U ′
s(0) y +O(y2)

that gives us the variables of the problem in the form

u = U ′
s(0) [y + au1(x, y, t) + · · ·]

v = U ′
s(0) av1(x, y, t) + · · ·

p = U ′
s(0) ap1(x, y, t) + · · ·
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Linearised equations

we keep the equations with the 1st order in a

∂u1

∂x
+
∂v1
∂y

= 0

U ′
s(0) y

∂u1

∂x
+ U ′

s(0) v1 = −∂p1

∂x
+
∂2u1

∂y2

0 =
∂p1

∂y
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Linearised equations

Decomposing in modes of Fourier, taking into account the continuity
equation

f1 = fk e
−i k x+σ tL

u1 = φ′(y) e−i k x+σ tL

v1 = (i k)φ(y) e−i k x+σ tL

p1 = ψ(y) e−i k x+σ tL

, ψ,y = 0
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Perturbated solutions in Fourier space

• Pression

p1 = 3 aAi′(0) (U ′
s(0))

5/3 (−i k)−1/3 f1

• friction

τ1 =
∂u1

∂y
= 3 aAi(0)U ′

s(0) (−i k U ′
s(0))

1/3 f1
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validation of linear friction
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validation of linear friction

here, taking simply U ′
s(0) = 1 (steady shear), the friction (τ − 1)

calculated by CASTEM 2000 (Navier-Stokes)

Handing the scale of the theory
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validation of linear friction

here, taking simply U ′
s(0) = 1 (steady shear), the friction (τ − 1)

calculated by CASTEM 2000 (Navier-Stokes) and rescaled is

compared to the linearised solution
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Decelerated basic flow

U ′
s(0) =

1√
t
,

the bottom friction is

τTotal =
1√
t

+ TF−1{3Ai(0) (−i k)1/3 [t]−2/3 e−i k x+σ tL}(x, t)
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Oscillating basic flow

For one period of oscillation
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Oscillating basic flow

during one cycle the topography does not change
we take the mean value of all the quantities

Multiscale analysis...

U ′
s(0) = cos(t),

τ
(+)
Total = cos(t) + TF−1{3Ai(0) (−i k)1/3 [cos(t)]4/3 e−i k x+σ tL}(x, t)

τ
(−)
Total = −cos(t)− TF−1{3Ai(0) (−i k)1/3 [cos(t)]4/3 e−i k x+σ tL}(x, t)
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Oscillating basic flow

< τ >Total=
1

T
[

∫ tp

0

τ
(+)
Total dt+

∫ T

tp

τ
(−)
Total dt ]

< τ >Total=
9Ai[0] [(−i k)1/3 − (i k)1/3] Γ( 7

6 )

4
√
π Γ( 2

3 )
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Fluid

Up to now, we have for any initial profile, the skin
friction,

need for a law of matter flux.
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Laws of matter flux

In the majority of their work, B. Sumer (1984), P. Blondeaux (1990), G.

Parker (1995), K. Richards (1999), F. Charru (2002), K. Kroy, Hermann

Sauermann (2002) , established that

q ∝ τ 3

2 .

As
u = U ′

s(0) [y + u1(x, y, t) + · · ·],
τ = U ′

s(0) [1 + τ1(x, y, t) + · · ·] with |τ1| � 1

so

q ∝ (1 + τ1)
3

2 ≈ 1 +
3

2
τ1
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Laws of matter flux







if τ > τth q = τ − τth
else q = 0

PSfrag replacements

qs

ττth
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Laws of matter flux

• Linear form (Yang (1995), Fredsøe and Deigaard (1992))

q = τ − τth − Λ
∂f

∂x

• An another form (Andreotti and al. (2002) simplified Kroy and al

(2002) Sauermann and al (2001))

lK
∂q

∂x
+ q = τ − τth

with lK proportional to 1
U ′

s(0) .
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Fluid/ bed coupling

Up to now, we have for any initial profile, the skin
friction, and then the flux of matter

q ← τ ↔ f

∂f

∂t
= −∂q

∂x
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Linear stability analysis

• steady shear case

FT [τ ] = FT [f ](3Ai(0))(−(ik))1/3 ∂f

∂t
= − ∂q

∂x

So, for a mode k, looking to f = eσt+iωte−ikx,

σ + iω =
3

1

3

Γ( 2
3)

(1/2 + i
√

3/2)(k)4/3 − Λ k2

With Λ = 0 all waves are always instable

slope effect Λ 6= 0 give an amplification for long waves; short waves

always instable.

Or length of saturation effect give an amplification for long waves which

are always stable; short waves always instable.
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Linear stability analysis

• steady shear case
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PSfrag replacements

k

σ

Constant shear, U ′
s(0) = 1, amplification factor σ as function of number

k (here q = τ − τth − Λ∂f
∂x with Λ = 1), decreasing Λ increases the cut

off value of k.
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Examples of long time evolution : steady shear flow

coarsening

lK
∂q
∂x + q = τ − τth with lK = 1

U ′

s(0) = 1

animation
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Examples of long time evolution : steady shear flow

Number of dunes and maximal height versus time,

lK
∂q
∂x + q = τ − τth with lK = 1

U ′

s(0)
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Linear stability analysis

• Decelerated shear case

∂f

∂tL
= − ∂q

∂x

while
tL ' O(t)

f = fk(t) e−i k x, u1 = uk(t) e−i k x · · ·

∂fk(t)

∂t
= − 3Ai(0) (−i k) (−i k)1/3 t−2/3 − Λ k2 fk(t).

The logarithm of each mode of Fourier of f

log(fk(t)) = − 9Ai(0) (−i k ) (−i k )1/3 t−1/3 − Λ k2 t
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Linear stability analysis

• Decelerated shear case

With Λ = 0 all waves are always instable

slope effect Λ 6= 0 give an amplification for long waves; short waves

always instable.

Or length of saturation effect give an amplification for long waves which

are always stable; short waves always instable.
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Linear stability analysis

• decelerated shear case, law of q with saturation effect

0.5 1 1.5 2 2.5 3
k

0.25

0.5

0.75

1

1.25

1.5

1.75

2

t

PSfrag replacements
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No saturation effect (q = τ − Λ ∂f
∂x ) with Λ = 0.4
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Linear stability analysis

• decelerated shear case, law of q with saturation effect
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Examples of long time evolution : decelerated shear case, with saturation effect

Saturation effect with lK
∂q
∂x + q = τ − τth with lK = 1

animation
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Linear stability analysis: Oscillating Flow

• Multiscale analysis for the flux relation

∂f

∂t
= −θ ∂q

∂x

with θ << 1, t0 = t, and t1 = θt the long time.
∂

∂t
=

∂

∂t0
+ θ

∂

∂t1

Let f = f0(t0, t1) + θf1(t0, t1)

and q = q0(t0, t1) + θq1(t0, t1)
∂f0
∂t0

= 0

ie the topology is quasisteady
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Linear stability analysis: Oscillating Flow

• Multiscale analysis for the flux relation

∂f0
∂t1

+
∂f1
∂t0

= − ∂q
∂x

so f0(t0, t1) = F0(t1), decomposition: q is Q+ q′ where Q =< q > and
< q′ >= 0 so

∂f1
∂t0

= (−∂q
′

∂x
) + (−∂Q

∂x
− ∂F0

∂t1
)

secular term: (−∂Q
∂x −

∂F0

∂t1
) must be 0, q′ must be borned.
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Linear stability analysis: Oscillating Flow
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Linear stability analysis: Oscillating Flow
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Examples of long time evolution : Oscillating Flow

lK
∂q
∂x + q = τ − τth with lK = 1/U ′

s(0)

animation
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Examples of long time evolution : Oscillating Flow

lK = 1/U ′
s(0) number of ripples and maximum height
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Examples of long time evolution : Oscillating Flow

lK = 1/U ′
s(0) and slope limitation (very simple avalanche)

animation
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conclusion

• Analytical solution of skin friction in an asymptotical framework

• Stability analysis of different flows with various linear matter flux

• Long time numerical evolution leading to coarsening
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perspectives

• An full avalanche model upstream and downstream from each

bump
y

PSfrag replacements

·

x

U0
Avalanche

• comparison with experiments (G. Rousseaux and H. Caps)
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