
à parâıtre dans Physics of Fluids, 2003

PF # 2551

A Triple Deck model of ripple formation and evolution.

P.-Y. LAGRÉE∗
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The 2D laminar quasi-steady asymptotically simplified flow with mass transport of sediments
is solved over an erodible bed in various laminar hydraulic régimes (infinite depth, finite depth
subcritical or supercritical, non disturbed boundary layer). Compared to the boundary layer thick-
ness, the bump is supposed longer and thinner and the Triple Deck theory is used. Furthermore,
the flow is linearized. Next, a simplified mass transport equation is obtained which includes the
two following phenomena: there is a flux of erosion when the skin friction goes over a threshold
value, and concentration of sediment in suspension is convected but falls at a constant settling
velocity. It is shown that two ingredients (convection of the longitudinal flux or particles and
advanced response of the skin friction to the bump changes) are necessary to produce (except in
the supercritical régime which, in this flux convected model, is always stable) a band of amplified
spatial frequencies. Furthermore, putting the effect of slope limitation makes long wave stable (in
the infinite depth case). Examples of evolution in various régimes are presented, wave trains of
ripples are created and merge in a unique bump. A very long time is required for this process. This
coarsening appends except in the infinite depth case when the effect of slope limitation is turned
on: in this case a train of several bumps fills the computation domain.
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I. INTRODUCTION

Let us consider the deformation of a bump immersed
in a flow. This bump is made of an erodible material
which may be convected and diffused in the flow.
Practical cases would consist in dune of sand in water of
various depth, or dune of sand in air. This kind of flow
is of course very important for environmental problems
and a vast literature refers to these problems since Exner
in 1925 (Yang (1995) [1], Bagnold (1941), Fredsøe &
Deigaard (1992) [2], Nielsen (1992) [3], Sauerman &
Herrmann [4], Sauerman, Kroy & Herrmann [5]). This
problem is very complex because all mechanical effects
are linked (the flow depends on the shape of the bump
which depends on the flow which erodes or deposits
sediments on the soil modifying again the flow).

These erosion/ sedimentation problems have been
solved by various techniques with various approaches.
Even recent studies use simplified physical models to
compute the flow Andersen (2001) [6], Nishimori et al.
(1998) [7]; most of which use continuum models of me-
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chanics; the flow is now computed with direct solution of
Navier Stokes equations with turbulent models Andersen
et al. (2001) [8], Andersen & J. Fredsøe (1999) [9],
Kroy, Sauerman & Herrmann [4] and Sauerman, Kroy &
Herrmann [5]. But, ultimately, all these studies have to
look at the flow near the soil. This is the boundary layer
itself (which is not so well solved by NS k-ε solvers).
That is why they finally turn to a simplified law issued
from asymptotic analysis by Jackson & Hunt (1975)
[10], where the final important ingredient is the velocity
near the wall coming from the turbulent boundary layer
theory: the logarithmic profile law. Previous studies
often solved the problem by integral boundary layer
theory (Plapp (1960) [11], Akiyama & Stefan (1985) [12]
or Zeng & Lowe (1997) [13]).

These boundary layer approaches are pertinent be-
cause all the phenomena take place near the wall, where
the velocity changes abruptly on a small scale: the
boundary layer thickness. Here we use the framework
of the Triple Deck theory (Neiland (1969) [14], Smith
(1982) [15] and for recent developments Sychev et al.
(1998) [16], Smith (2000) [17], Bhattacharyya et al.
(2001) [18]) which allows a strong coupling between the
laminar boundary layer and the ideal fluid. The flow
separation is not a problem: even more, the Triple Deck
was created to compute the separation of the boundary
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layer. As conditions for this description the flow is
supposed to be two-dimensional (for sake of simplicity),
quasi-steady (erosion and sedimentation are a slow
process) and it is assumed laminar. This last hypothesis
is maybe the stronger one, but we will see that we
recover some results obtained by Charru et al. (2002)
[19] and Fowler (2001) [20]. In the first one, a laminar
theory has been proposed in the case of a Couette flow,
and we will see that taking this theory in the long wave
case leads to a Triple Deck case; in the second one,
Fowler (2001) [20] recovers the same equation too, but
starting from other hypothesis (in fact the turbulent flow
is modelled by a laminar one of viscosity equal to a mean
turbulent viscosity). The concentration of sediments in
the flow is supposed small enough to unaffect viscosity
and density of the flow: we do not use models of re
suspension as in Schlafinger et al (1990) [21]. The
concentration of sediment is a continuous function. A
less simplified model using Interacting Boundary Layer
theory in subcritical flow has been presented in Lagrée
(2000) [22]. In fact, Triple Deck is a true asymptotic
limit of Navier Stokes equations as Re number tends to
infinity, and it leads to simple linearized results linking
the skin friction distribution on the dune to its shape.
That is why this simplified point of view will here be
employed (Neiland (1969) [14], Smith (1982) [15]).

As our aim is to present a oversimplified model, we
will use the terms ”dune” or ”ripples” in an improper
way because we deal only with very simplified models far
from reality. From our model equation a structure will
emerge from variation of an initially flat wall, and this
structure will be called train of ”dunes” or ”ripples”. We
may say, in the subcritical case, that this objects are
dunes. When using the Hilbert integral, this structure
may be called ripples if we consider a flow of infinite
depth of water, but ripples or dunes if we consider an air
flow (there is no scale in our equations). First we shall
present the classical Triple Deck equations in the vari-
ous régimes (II A), and next a simplified concentration
evolution (II B). Thus we link the flow to the movement
of the erodible bed. The numerical method is shortly
explained in (III). The linear temporal stability of the
system is presented (IV A 1) validating the numerical so-
lution. Simulations of several initial bumps are presented
((IV A 1)- (IV B1)). Finally (IV B 2) we shall discuss the
long time evolution resulting in a coarsening in a unique
dune (except in the slope effect case in an infinite depth
régime).

II. THE COUPLED MODEL

A. Dynamical Aspect: the Triple Deck

1. The Triple Deck

In figure (1) we present a rough sketch of the flow
and the decks. There is a flow of incoming water over
a flat bottom under a quiet atmosphere. In the limit
of laminar 2D steady flow at high Reynolds number,
the water has an basic thickness h0. If this depth of
liquid goes to infinity the problem is independent of the
existence of the free surface. The basic flow splits into
two layers: the ideal fluid layer of thickness h0 where
the velocity is of constant value U0 (U0 free stream
velocity) and the boundary layer, the Froude number
is Fr = U2

0 /(gh0). Let us call L the developing length
of the boundary layer, LRe−1/2 is then the thickness of
the viscous layer (see Schlichting (1987) [23]). Of course
h0 >> (LRe−1/2), which means that the boundary layer
has not yet merged in a single layer of fluid (see Higuera
(1994) [24] and (1997) [25] for the study of the self
induced jump when h0 = (LRe−1/2) and Lagrée (2001)
[26] for its thermal counterpart), in fact the present
theory is included in Higuera’s one for small values of x∗

(variables with stars are with dimensions).

Notice that the incoming velocity profile is here
selected to be a Blasius one (defined by the function
UB , such as the longitudinal velocity in the boundary
layer is: u∗(x∗, y∗) = U0UB(ỹx̄−1/2) where x̄ = x∗/L
is the longitudinal abscissa and ỹ = y∗/(LRe−1/2) the
boundary layer thickness). In fact any given boundary
layer profile is relevant, scales have then to be rewritten
using its thickness. An extension of this theory should
be constructed so that is included a slip effect which
may arise when the bottom is porous.

We next introduce in the flow a small bump of relative
thickness ε (compared to the boundary layer thickness
LRe−1/2) at the position x∗ = L (or x̄ = 1). In this layer
of thickness εLRe−1/2 the velocity is linear in ỹ: so u∗

is scaled by εU0, pressure/ convective balance suggests
that the pressure is scaled by ε2ρU2

0 . On purpose
that the problem presents the maximum number of
terms (least possible degeneracy, Van Dyke (1975) [27]),
including pressure, convective terms and a viscous term,
x∗ is scaled by x∗ = L + ε3Lx. Time should then be
scaled by ε3L/(εU0), but if we call T the scale of the
erosion/ sedimentation (t∗ = T t, c.f. the equation of
evolution of the bottom in the next section (equation
(24)), we will have: ε2L/U0/T << 1, and t is only a
parameter associated to the bump shape.

With these usual Triple Deck scales (Neiland (1969)
[14], Stewartson & Williams (1969) [28], Smith (1982)
[15], Sychev et al (1998) [16] and Gajjar & Smith (1983)
[29], Bowles & Smith (1992) [30]): the problem in the
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”lower deck” is simply:

∂

∂x
u +

∂

∂y
v = 0, (1)

u
∂

∂x
u + v

∂

∂y
u = −

d

dx
p +

∂2

∂y2
u. (2)

It means that near the wall there exist scales such that a
non linear problem (with convection, diffusion and pres-
sure gradient) has to be solved. Boundary conditions are
no slip condition on the bottom:

u(x, y = f(x)) = 0, v(x, y = f(x)) = 0, (3)

and the asymptotic matching between the”l ower deck”
and the ”main deck”. This latter is in fact the boundary
layer itself: ”far” from the wall with the focused scales
we are ”near” the wall in the boundary layer scales (the
transverse variable is here ỹ, with εy = ỹ, and the longi-
tudinal dimensionless velocity is here ũ of scale U0). The
perturbation of the boundary layer at the scale ε3L, at
position x̄ = 1, gives the function (−A) which represents
the deflection of the streamlines):

ũ = UB(ỹ) + εAU ′

B(ỹ) + . . . (4)

ṽ = −
A′(x)UB(ỹ)

ε2(Re1/2)
+ . . .−

∂

∂ỹ
p̃ = 0 + . . . (5)

The matching between the top of the lower deck (y →∞)
and the bottom of the main deck (ỹ → 0) yields:

lim
y→∞

(εu(x, y)) = lim
ỹ→0

ũ(x, ỹ) i.e. (6)

lim
y→∞

u(x, y) = U ′

B(0)(y + A). (7)

The latter means that the incoming velocity is linear,
this means that upstream we recover the boundary layer
profile:

u(x → −∞, y) = U ′

B(0)y, v(x → −∞, y) = 0. (8)

Finally, the deflection of the stream lines induced in
the lower deck (function −A) is transmitted by the
main deck, perturbating the ”upper deck” (which is
the third layer involved). This perturbation is a kind
of suction velocity −ε−2(Re−1/2)(dA/dx), or a pertur-
bation of the displacement thickness by an amount of
ε(LRe−1/2)(−A). In the layer of ideal fluid, the pres-
sure responds to this boundary layer displacement by the
pressure modification. This fixes the value of the scale:
ε = (L/h0)Re−1/2. The final coupling relation between
p and A is

p =
−A

Fr − 1
. (9)

In the subcritical régime p and −A have the opposite sign
(Fr < 1), and a decrease of the water level (−A < 0) is
produced at the perturbation (Baines [31]); the opposite
is true in the supercritical régime (Fr > 1, then p and

(−A) have the same sign) (see Gajjar & Smith (1983)
[29] or Kluwick et al. (2000) [32] for details on the
upstream influence).

If h0 is very high in comparison to the bump length and
L, the free surface is at infinity. The gauge is ε = Re−1/8

and we may ultimately recover the Hilbert case:

p = −
1

π

∫

−A′

x− ξ
dξ. (10)

This is the classical incompressible result. Another re-
sult is obtained when the perturbation of the bump on
the boundary layer (main deck) is so small that no dis-
placement occurs, which reads:

A = 0. (11)

This case corresponds to several different configurations:
it corresponds to a bump of length equal or smaller to
the size of the boundary layer itself ε3 = Re−1/2, but
this result is the one found by Plantier (1997) [33] for a
Couette flow. This is in fact the configuration found in
Charru et al. (2002) [19]: they identify this régime as
the ”deep viscous régime”. Finally, in the half Poiseuille
case (corresponding to a fully developed laminar flow),
this case is the Smith (1976) [34] result, which is used by
Fowler (2001) [20].

Interesting enough, the Hilbert case degenerates in the
case (A = 0: no perturbation in the boundary layer)
when the bump becomes shorter and shorter (Smith et al
(1981) [35]). So having a given water depth, depending
on the size of the perturbations one can meet either a
subcritical case, either an Hilbert case or a nondisturbing
case. In the numerical applications we will focus on these
last two cases.

2. Dynamical system for the fluid

The final dependence in U ′

B(0) and Fr−1 can then be
removed by a straightforward rescaling (which is deduced
from the fact hat the equations (1, 2, 8) are invariant for
any Y when x → Y 3x, y → Y y, u → Y u, p → Y 2p and
A → Y A. So the interacting problem is:

∂

∂x
u +

∂

∂y
v = 0, (12)

u
∂

∂x
u + v

∂

∂y
u = −

d

dx
p +

∂2

∂y2
u. (13)

u(x, y = f(x)) = 0, v(x, y = f(x)) = 0(14)

& lim
y→∞

u(x, y) = y + A. (15)

With either:
• the infinite depth case: p = − 1

π

∫

∞

−∞

−A′

x−ξ dξ,

with x = (x∗/L − 1)U ′

B(0)5/4/(Re−3/8),



4

y = (y∗/L)U ′

B(0)3/4/(Re−5/8), p =

(p∗/(ρU2
0 ))U ′B(0)−1/2/(Re−2/8), etc.

• the no displacement case A = 0,
which either is the limit of the preceding one when the
length of the bump is the boundary layer thickness,
either exists in half Poiseuille flow or either exists in
Couette flow.
• the subcritical case p = A and the supercritical
p = −A,
both with: x = (x∗/L − 1)U ′

B(0)5 |Fr − 1|
3
/(Re−3/8),

y = (y∗/L)U ′

B(0)2 |Fr − 1|
−1

/(Re−5/8),

p = (p∗/(ρU2
0 ))U ′B(0)2 |Fr − 1|−2 /(Re−2/8), etc.

3. Final linearization: law between the topography and the
skin friction.

The unperturbed solution of (12-13) is simply: u =
y, v = 0, p = 0. It implies that, at the small
longitudinal scale, the boundary layer thickness does not
evolve and the velocity profile remains linear near the
wall. The linearized solution of (12-13) around this shear
profile in Fourier space is straightforward and leads to:
β∗FT [p] = FT [(A+f)] where β∗ = (3Ai′(0))−1(−ik)1/3.

The linearized solution of the ideal fluid problem (”up-
per deck”) may be written βpfFT [p] = FT [(A)] with
βpf = 1/ |k| , 0, 1,−1 (resp. (9) for (10), (11), Fr < 1
and Fr > 1), so:

FT [p] =
FT [f ]

β∗ − βpf
(16)

The linearized perturbation of the skin friction (τ) is then
(Ai is the Airy function):

FT [τ ] =
(−ik)2/3

Ai′(0)
Ai(0)FT [p]. (17)

This well known relation (16) and (17) gives the final
response of the fluid: it links the topography change to
the shear stress. It will be very useful in the sequel as the
shear stress is believed to control the flux of sediments.

On figure (13) in the Appendix we present a numerical
solution of the problem (in a zero displacement case (11)
of Smith (1976) [34]) in order to discuss the influence of
the nonlinearity of the solution and the boundary layer
separation. We see in this appendix, that even for bump
leading to flow separation, the prediction of formula (17)
is correct, the main advantage of this Triple Deck model
being that flow separation is effectively constructed with-
out the approximations of Kroy, Sauerman & Herrmann
[4] or Andreotti et al. (2002) [36].

On figure (2) and (3) we draw the solution of the per-
turbation of the skin friction for the various cases. When
Fr < 1 in (9) or in the infinite depth case (10) or in
the ”Couette” (11) case, we see that the skin friction
is always extreme before the maximum of the bump (the

wind side of the bump). In the subcritical case and in the
”Couette case”, there is no influence of the downstream
part of the flow to the upstream. Case (10) gives a small
upstream influence; on the opposite the supercritical case
((9) with Fr > 1) leads to a strong upstream influence:
perturbation exists before the bump. In this sole case
the wall shear stress is not extreme before the maximum
of the bump; in the three other ones the skin friction is
”in advance” with the bump shape.

Knowing the response of the fluid to any perturbation
(in the selected framework) we now examine the trans-
port equation.

B. Transport equation

1. The equation

Together with the dynamical equations of the flow one
has to solve the quasistatic mass conservation of the par-
ticles in the laminar flow (figure (4) left). We aim to
derive a simple law linking the flux of sediments to the
skin friction. Of course real transport of sand takes place
in the turbulent régime, but here to be coherent with our
simplification we write sediment transported in the lam-
inar case. The concentration is supposed small enough
so that it does not interact with the fluid motion. We
suppose a simple Fick law and we define S the Schmidt
number (ratio of viscosity by diffusion). We assume that
there is a settling constant velocity (written −V ∗

f < 0).
This means that we suppose that the equation of momen-
tum conservation for the sediments is solved so that the
speed of the sediments is u, v − V ∗

f . With those restric-
tive hypothesis the dimensionalised transport equation of
suspended sediments is:

u∗
∂

∂x∗
c∗+(v∗−V ∗

f )
∂

∂y∗
c∗ =

ν

S
(

∂2

∂x∗2
c∗+

∂2

∂y∗2
c∗). (18)

In the literature (Noh and Fernando ([37] (1991), Fredsøe
[2], Izumi & Parker (1995) [39], Nielsen (1992) [3],
Fredsøe & Deigaard (1992) [2], Seminara (2001) [38])
it is written in the turbulent régime. The integral
counter part of this equation may be taken in integrating
from y∗ = 0 to h0. A characteristic thickness of sus-
pended sediment under the settling and diffusive effects
is (ν/(SV ∗

f )), see Fredsøe & Deigaard (1992) [2], here we

suppose that h0 >> ν/(SV ∗

f ). We suppose as well that

the settling velocity is of order (δ/L)U0, where U0 is the
characteristic longitudinal velocity and L the longitudi-
nal scale. As a consequence, boundary layer arguments
allow to neglect the longitudinal second order derivative
in (18). We define, as Anderen & Fredsøe (1999) [9], the
flux with dimensions: q∗ =

∫

u∗c∗dy∗, this is the flux of
convected sediments. So, transverse integration of (18)
yields:

∂

∂x∗
q∗ + (V ∗

f )c∗bottom = −
ν

S
(

∂

∂y
c∗)bottom. (19)
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In fact this equation is valid for a turbulent flow too, as
far as the RHS is the total flux at the wall. We define
A∗r the flux as:

A∗r = −
ν

S

∂c∗

∂y∗
|0 (20)

The boundary conditions of (18) are clear upstream and
on the top: here we suppose no incoming sediment flux
on the incoming flow and no sediments are poured. The
problem stems from the bottom. We have to link the
transverse flux (A∗r , the RHS of (18)) to the skin friction.
The boundary condition for the suspended concentration
is taken as follows:

A∗r = β(H(
∂u∗

∂y∗
|0 − τ∗s ))(

∂u∗

∂y∗
|0 − τ∗s )γ , (21)

where H(x) is the Heaviside function (H(x < 0) = 0,
H(x > 0) = 1), β is of order one and γ (common values
are 1, 3/2 or 3, we will take γ = 1 in practice). Formula
(20) and (21) mean that there is a threshold value of the

skin friction ∂u∗

∂y∗
|0: if it is larger than this threshold value

τ∗s , then the flow erodes the bump; otherwise erosion

occurs ( ∂c∗

∂y∗
|0 = 0).

The latter of (21) is common (written with the Shields
parameter) in the literature of erosion/ sedimentation
(Van Rijn formula, or Pieter-Meyer formula c.f. Nielsen
(1992) [3]), but other formulas may be found (Yang
(1995) [1]). Notice that it is mostly written in a tur-
bulent régime so that the friction velocity is used instead
of the skin friction.

An effect of slope may be introduced as well (leading

to a multiplicative coefficient like (1− λ ∂f∗

∂x∗
) (Komarova

& Hulscher (2000) [40]) or changing the threshold, τ ∗s in

(τ∗s +λ∂f∗

∂x∗
). The latter expression will be used in the next

paragraph, when we will discuss its influence on stability.
Notice that here we have changed a bit the classical law:
in the literature, the bed load is taken to be equal to the
preceding formula,

q∗ = B∗A∗r (22)

where B∗ is an ad hoc coefficient, see Yang [1] (1995),
but here we suppose that it is the transverse flux (20)
that is equal to (21). Note that final laws linking the
flux q∗ and the excess of skin friction are finally always
like (22) (even Charru & Mouilleron-Arnould, who take
a Schlafinger description, re-obtain this formula in the
linearized case). We will see in the next paragraph that
(19) may be rewritten (28) as ∂q∗/∂x∗ plus a term pro-
portional to q∗ equals to A∗r of (21).

Finally, the net flux of particles at the wall has two con-
tributions: erosion ( ν

S
∂c∗

∂y∗
|0) and sedimentation (V ∗

f c∗|0);

this total flux deforms the bed (of shape f∗, n is porosity)
according to

(1− n)
∂f∗

∂t∗
= V ∗

f c∗|0 +
∂c∗

∂y∗
|0. (23)

According to (19), q∗ may be reintroduced, and this equa-
tion is written as:

(1− n)
∂f∗

∂t∗
= −

∂q∗

∂x∗
, (24)

which is common in the literature (Exner law: Izumi &
Parker (1995) [39], Nielsen (1992) [3], Fredsøe & Deigaard
(1992) [2]).

It is of course at this point that the time scale T as-
sociated with the preceding equation is chosen: the de-
formation is done at a very long scale compared to the
hydrodynamic scale (so the flow is quasisteady).

2. The final simplification in a shear flow

We rewrite (18) with Triple Deck scale, in the lin-
earized case (u = y), the velocity profile is linear (Vf

is suitably rescaled):

y
∂

∂x
c− Vf

∂

∂y
c = S−1 ∂2

∂y2
c. (25)

integrating (25) over the lower deck yields:

∂

∂x

∫

∞

0

(yc)dy +−(−Vf c0) = −(
∂c

∂y
)0. (26)

The subscript 0 denotes the wall. From the conditions at
y =∞, and if we define as in the preceding paragraph the
dimensionless ”bed load” as q =

∫

∞

0
(yc)dy (i.e. the flux

of sediment in a thin layer near the wall), the first term
is the derivative of q. The second one can be rewritten
with q, if we guess that c0 is likely to be proportional to q.
We may justify roughly this strong hypothesis as follows:
we observe that as −Vf c0 ' ( ∂c

∂y )0, the solution for the

concentration behaves more or less as c0exp(−κySVf ),
with κ of order one. In fact as we suppose that this
parameter remains nearly constant, we are allowed to
write that

q ' c0(SVf )−2

∫

(ηexp(−κη)dη) (27)

which means that q is proportional to c0 the value of
the concentration at the wall. Consequently (26) may be
approximated by:

∂

∂x
q + V q = β(H(τ − τs − λ

∂f

∂x
)(τ − τs − λ

∂f

∂x
))γ . (28)

where V is a new constant linked to S, Vf and the other
physical parameters,and supposed to be here of order one
(H is the Heaviside function), τ being the perturbation
of the skin friction induced by the topography f which
evolves as:

∂f

∂t
= −

∂

∂x
q. (29)

As suggested before, this last equation, which is dimen-
sionless, gives the time scale of the phenomena: the flow
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is quasistatic compared to the slow topography evolution.
As displayed in a simplified way on figure (4) right, (28)
is a simple mass balance: the sediment flux q is changed
by loss proportional to q (due to sedimentation) and by
gain proportional to Ar the pick up function.

3. Notes

Notice that the equation (28) contains a derivative
term that we may reinterpret as an effect of inertia:
for example, if the skin friction goes under the thresh-
old value, the flux q is not instantaneously put to zero
but relaxes smoothly in the streamwise direction. Fur-
ther more, we present here only a linear relation for q,
the non linearity is in the threshold. We may compare
this to Sauerman et al. [5] (2001). While they obtain
a saturated flux qs function of an excess of skin fric-
tion, our notations would result in something like: qs =
(β/V )(H(τ − τs)(τ − τs)

γ . They obtain with their model
that the total flux relaxes on qs as ls

∂
∂xq = q(1 − q/qs).

Thus, linearizing as q = qs + q̄, the equation for the ex-
cess of flux is ls

∂
∂x q̄ + q̄ = 0 (they take the length scale

as function of the excess of flux, this is the constant 1/V
of our model). Re adding the two contributions, we see
that equation (28) is not so far from their analysis, if
linearized.

Theories linked to BCRE descriptions (Bouchaud et
al. (1994) [41]) will add another term with which the left
hand side of (28) will read:

α
∂

∂t
q +

∂

∂x
q + V q, (30)

this unsteady term (as in Valance & Rioual (1999) [42])
is not relevant in our analysis because of the quasi steady
nature of the flow.

To be noticed here too, is the fact that the slope effect
is very crude: it is a kind of ”viscous” diffusive dissipation
(∂tf ∝ ∂2

xf). Hence, it presents a very strong drawback
as it makes flat any topography (by diffusion!). A better
way would be introducing a slope limitation mechanism
for the topography which would remove this drawback.
For example Boutreux et al. (1998) [43] propose a simple
model of avalanche without any diffusive term.

III. NUMERICAL SOLUTION OF THE FINAL

PROBLEM

We have to solve at each time step t: first, a steady
linearized Triple Deck problem, which for the given dune
shape f(x, t), gives the distribution of τ (the perturbed
skin friction (16-17)); second, the mass transport equa-
tion (28) which gives q; third, the shape of the bump is
modified according to (29) for the next time step.

The solution is achieved in Fourier space for (16-17),
but with a return in physical space for (28). This return

in the physical space deals with the unique ”non linear-
ity” of the problem which is the Heaviside function taken
in (28), the ”pick up” relation. The update of the bump
shape is done using an Adams Bashford two steps in time
method.

At initial time t = 0, we impulsively introduce a bump
of given equation f(x, t = 0) (which may be a random
sum of cos with a very small amplitude). We choose a
typical set of order one parameters for the models: β =
O(1), τs = O(1), λ = O(0.1) and V = O(1), the domain
is defined by its half length Lx which we will vary: −Lx <
x < Lx.

The occurrence of the term ∂xq is very favourable for
the stability of the numerical scheme as it allows values
of ∆t to be of the same order than ∆x = 2Lx/(N − 1)
(N number of points for the Fourier transform). If this
term is not present, then as (28) is explicit in ∂xf , then
∆t must be smaller that V ∆x2/(λβ). The number N
has to be large enough to obtain accurate results, a too
crude computation does not lead to the final coarsening,
in practice ∆t ' 0.05, N ≥ 512, so that ∆x ≤ 0.125.

IV. RESULTS

A. Initial time: linear results and temporal

stability of an initial flat topography

1. Dispersion relation

If τs is negative, a steady uniform solution of system
((16-17)-(28-29)) is τ = 0, f = 0 and q = (β/V )(−τs)

γ .
The linear stability analysis around this basic flow is then
straightforward (and is fully valid as long as H(τ − τs) =
1); looking for modes in eσt−ikx and here taking γ = 1
we simply find that:

σ = (
ikβ

V − ik
)(

(−ik)2/3

Ai′(0)
Ai(0)

1

β∗ − βpf
+ ikλ), (31)

with β∗ = (3Ai′(0))−1(−ik)1/3, βpf = 1/|k|, 0, 1,−1
(resp. for (10), (11), Fr < 1 and Fr > 1). The pa-
rameter β will often be taken equal to V thereafter.

2. Linear stability analysis

First we examine the most simple case with no slope
effect, λ = 0, and with no effect of inertia on q (with
V = β >> 1, i.e. q = τ), then all the spatial frequencies
are unstable for the subcritical, infinite depth, and the
A = 0 called ”deep viscous régime” by Charru et al.).
The supercritical case is stable for k < 2.4.

Introducing λ (with V = β >> 1, i.e. q = τ − λ∂xf)
leads to a cut-off frequency km (depending on the pa-
rameters). The high frequencies (which behave as −λk2)
are stable for all models; for k > km we have Re(σ) < 0.
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For small frequencies (0 < k < km) the configuration re-
mains unstable (except in the Fr > 1 case where values
of λ larger than 0.0947 fully stabilise the problem).

Now, if we introduce the ∂xq term (V = β, λ = 0, i.e.

(1/V )∂xq + q = τ), it has a stabilising effect (as λ) for
large k and a band of amplified frequencies (the small
frequencies, 0 < k < km) exists in all the cases except for
the supercritical one which is always stable.

To illustrate this instability, we start from a random
small topography and wait for a sufficient long time (but
being here always in the linear régime): we observe nu-
merically that the value of the wave number which max-
imises σ of (31) (say kM ) is effectively the value leading
to a maximum for the energy spectrum (kM = 0.59 if
βpf = 1/|k|, kM = 0.49 if βpf = 1 and kM = 0.31 if
βpf = 0). This is shown on figure (5) where the wall
shape is plotted at time t = 100. The case with no dis-
placement is wider than the others (it has the smaller
kM ), it is faster as well (it has the largest phase velocity
Im(σ(kM ))/kM ) and it has the smallest height (it has
the smallest amplification factor Re(σ(kM ))).

3. Note on the lag

Notice here that the idea of Kennedy (1963) [44] (or
Engelund & Fredsøe [45]) is reobtained in a certain sense.
They introduced an advance between the velocity (here
skin friction) and the the topography (with the law q = τ)
due to the fact that the boundary layer was unknown.
Suppose that the response of the skin friction is a simple
change of phase exp(−iφ), with −π/2 < φ < π/2, the
skin friction is in advance (the maximum is before the
maximum of the bump); if φ > 0, the skin friction is
”late” if φ < 0. The amplification rate (if q = τ) is
σ = ikexp(−iφ), which gives temporal amplification for
all frequencies if the skin friction is in advance (φ > 0).

Now if we introduce ∂xq, the left hand side (1/V )∂xq+
q may be re interpreted as the Taylor’s series of q(x +
1/V ). Hence 1/V is a kind of lag: q and the velocity
are not in phase, q is late. The same has been obtained
by Sauerman et al [5] (2001) (but with a non linear term
added, and the possibility of saturation of q which is not
put here). This allows to write (remember that here V =
β) the amplification rate σ = ( ikV

V−ik )exp(−iφ), which

gives Re(σ) > 0, temporal amplification, for 0 < k <
V tan(φ). The slope effect has the same interpretation:
−λ∂xf may be interpreted as a term of a Taylor’s series.
Those two effects work in the same reverse direction: they
are ”late” compared to the topography.

The conclusion for our proposed models is first, that
the skin friction must be in advance with the topography
to have instabilities and second that if there is no intro-
duction of a lag 1/V or λ one cannot introduce a wave
length selection, the topography is temporally unstable
for any spatial frequency.

4. Focusing on slope effect in Hilbert case .

The Hilbert, A = 0 and Fr < 1 cases are unstable
for small wave number (in the (∂xq)/V + q = τ case).
We nevertheless focus here on the Hilbert case in which
we introduce the slope effect (−λ∂xf). As already men-
tioned, the first effect of the slope stabilises large wave
numbers in any case. But, the other limit of small wave
numbers is changed for the infinite depth case: as ob-
served previously with no slope effect, large wave length
(k → 0+) are always amplified. Those wave lengths may
be damped if the slope effect is introduced. Near k = 0,
σ of (31) expands as

σ = −

(

β λ k2

V

)

−
(−1)

1

6 β Ai(0) k
8

3

V Ai′(0)
−

i β λ k3

V 2
+O(k)

10

3 .

(32)
The k3 term disappears if q = τ−λ∂xf . The effect of the
slope (λ) in the Hilbert case allows always the damping of
the long wave lengths. There is then a band of amplified
k which excludes the value k = 0 (see figure (6) right).

The A = 0 and Fr < 1 cases turn out to be differ-
ent. In those configuration, the small wave numbers are
always amplified.

We guess that if σ > 0+ for k > 0+, the large wave
length will be amplified, and as occurs a bound due to
the numerical solution (the size of the box), a single
bump may be present in the domain. This result will
be seen numerically in the paragraph dealing with long
time behaviour.

Here we have in fact observed that the small k be-
haviour is dependent on the exact solution of the flow
through the exact development at the origin. Only the
infinite depth case allows a wave selection. For exam-
ple, if, as in the preceding subsection, we put a simple
change of phase between the topography and the skin
friction (exp(−iφ)) we do not re-obtain this slope effect.
This same phenomena of wave selection is observed in
Blondeau analysis (1990) ([46]) in an oscillating flow and
in Richard’s one (1980) ([47]) in a turbulent case. This is
named ”ripple mode”. Our analysis is in fact too far from
Richardson’s one to use his definitions (roughly speeking
roughness controls the ripples, and depth controls the
dunes). As the turbulence plays as a complicating factor
(introducing the roughness scale), the occurrence of the
Hilbert solution is hidden.

B. Time Evolution of the system

1. Moderate time: examples of qualitative influence of the
different parameters

Before looking at long time behaviour, in this section
we allow some parameters to vary in order to observe
qualitatively some various phenomena.
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First we observe on one example (Hilbert case) the
influence of the bump length on the movement of the
bump. Starting from a bump of Gaussian shape,
exp(−π(x/Lb)

2) we change Lb and observe on figure (7)
that (here with V = β = 1 γ = 1, τs = 0) there is a crit-
ical size leading to the possibility of an initial growth of
the bump. We notice that unfortunately, the bump does
not move, the windside part is longer and longer and the
lee-side has nearly a constant slope. Qualitatively same
results are obtained for the subcritical and A = 0 cases.
Nearly same results are obtained by Lagrée (2000) [22]
with developing boundary layer so that the final position
of the dune was fixed.

Second, for sake of illustration of the ”stability” of the
supercritical case (with V = β = 1, λ = 0), an example
of the wash out of a bump is presented on figure (8).
Erosion takes place at the point where τ = 0, and the
sediments are then convected. The bump is destroyed by
the shear which is extreme just after the crest.

Third, we look at the lee side of the bump. Starting
from a random noise distribution, first the wave length
(2π/kM ) of maximal σ is selected (as already mentioned),
after quite a long time a coarsening is observed (see next
section). During a long time a configuration with three
or four bumps may be observed. Here we observe the
obtained bump shape after the crest in the lee-side. Even
if λ = 0 a change of slope happens (see figure (7) and (9)).
This kink develops after the crest, it corresponds to the
point where the RHS of equation (28) is zero.

2. Long time evolution

Waiting much more longer (than on figure 5), we ob-
serve a kind of long wave slow instability: there are less
and less bumps in the box (the small wave number gain
an increasing importance). The mechanism is as follows:
in the lee side of a bump, the skin friction is lesser than
in the wind side (figure 2 ), so second bump in the lee
side of the first one experiences a smaller erosion than
the first one.

The cases (p = A) and (A = 0) evolve toward a
one mode bump filling the domain (see figure (10)
the A = 0 case), the maximal height of the bump
depends on the length of the computational domain.
On figure (11) we plot the maximum of the bump as
function of the size of the domain (in the case A = 0,
β = γ = V = 1). Unsurprisingly, the larger |τs|, the
higher the bump; and the larger λ, the smaller the bump.

The Hilbert case results essentially in the same wave
length coarsening but it needs a far longer time to be
observed. Several bumps stay during long intervals of
time in the domain. On figure (12) we plot an example
of such coarsening of the bump in the no slope effect case
(λ = 0). Notice that for 1500 < t < 50000 three bumps
are present in the box. The growth of the wave length is
more or less logarithmic. If now we introduce the slope

effect in the equations in the Hilbert case, the result is,
as predicted by equation (31) a damping of the unstable
long waves (see figure (6) right), so that in the conditions
chosen on figure (12) two bumps are ultimately present
(cases λ = 0.2 and λ = 0.316). Enlarging gradually the
domain up to twice allows another bump to be present.
As predicted again by (31) (and (32)), when V = 1,
β = 1, there is a limiting value λ = 0.316, if λ is greater,
then the flat bottom is stable (figure 12).

V. CONCLUSION

We have presented here a simplified model of flow over
an erodible bed which is asymptotically coherent (in a 2D
laminar linearized description at large Reynolds number).
The advantage of this model is that a lot of hydrody-
namical mechanisms have been put without usual inte-
gral simplifications, or without a complete Navier Stokes
numerical simulation. Though we do not claim that we
have a ”real” model, we have caught some features with a
realistic asymptotic solution of the Navier Stokes Equa-
tions. Furthermore, the selected method allows to obtain
some analytical results such as the growth rate (31).

To sum up, the equation of transport of sediments con-
tains the following terms: a convective effect between q
the flux of sediments and τ the perturbation of skin fric-
tion, a threshold effect for τ and a limiting slope effect
(through the parameter λ). This effect of the convection
of sediments has been justified on view of the equation of
transported sediments, but may be seen as a simple bal-
ance law at the wall. The linear stability analysis gives
good predictions for the numerical solution because the
non linearity lies only in the threshold pick up relation.
Various hydraulic régimes have been introduced in the
selected framework. The supercritical case, in this de-
scription with convection, leads always to the destruction
of the bump. Three other régimes (infinite depth, sub-
critical case, shear flow) result in temporal instability for
any wave length k if no convective and slope effects are
present. Introducing convective effect damps the large
wave numbers (it helps for the numerical simulations.);
introducing slope effect damps the large wave numbers
as well (Charru et al. results are recovered in their ”deep
viscous régime”).

Furthermore in the sole infinite depth case, this slope
effect damps small wave numbers as well: this promotes
a ”ripple mode”. Only a narrow band of frequencies is
amplified, so that, instead of a continuous coarsing lead-
ing to one single bump in the domain, a final train of
bump is obtained.

Of course, the first hypothese to be introduced in the
model to be more realistic would consit in a turbulent
stress viscosity and diffusivity. Before this, other hypoth-
esis may be removed one after the other. For example a
slope limitation model could easily be introduced instead
of the diffusive effect of λ..., a full non linear resolution
for the fluid would illuminate the real effect of flow sep-
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aration. This will result in an increasing complexity of
the final numerical solution.
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APPENDIX A: NON LINEAR FLOW

SEPARATION

In this Appendix we compare, for a given bump, the
linearized solution of (12-15) in the zero displacement
case (11):

FT [τ ] =
(−ik)2/3

Ai′(0)
Ai(0)

FT [f ]

β∗ − βpf
,

with β∗ = (3Ai′(0))−1(−ik)1/3 and (11): βpf = 0) and
a complete non linear solution of (12-15) with (11). We

compute the skin friction for various values of the high α
of a bump yw = αexp(−πx2). We observe that the sepa-
ration for this kind of bump occurs for α ' 2.1. The com-
putations are possible when the skin friction is smaller
than zero (the triple deck is the asymptotic framework
for separated flows, there is no Goldstein singularity),
but if the size of the separation bubble is too big, numer-
ical oscillations take place (α ' 2.5). On figure 13 we
plot the reduced skin friction α−1(∂u

∂y |0− 1), because the

linear prediction of (17) is

∂u

∂y
|0 = 1 + αFT−1[(3Ai(0))(−ik)1/3FT [f ]] + O(α2).

(A1)
We see that for α = 0.1 the agreement between the linear
and non linear solution is excellent. Larger values of α
induce the discrepancy observed on the figure (13) which
is an increase of the maximum of the skin friction value
and a decrease of its relative width.
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FIG. 6: Infinite depth case (Hilbert case). The real part of σ
for β = V = γ = 1 as function of the wave length k. On the
left figure λ = 0: there is no slope effect. On the right figure,
we focus on the small k which are amplified when λ = 0, but
are damped for λ > 0 (following the arrow, from up to down
λ = 0, λ = 0.1, λ = 0.2, λ = 0.3, λ = 0.316 and λ = 0.4.
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FIG. 7: Influence of the initial width Lb of a bump
exp(−π(x/Lb)

2), the maximum of the bump is plotted for
Lb = 1, 2, 3, 4 and 5 for t < 100; f(x, t) is plotted as well
(for t = 0, 2, 4, 6, . . . , 100 with Lb = 3). The larger the bump,
the smaller its velocity; β = 1, γ = 1, V = 1, λ = 0 and
τs = 0.
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FIG. 8: Destruction of a bump exp(−π(x/6)2) in the super-
critical régime, with β = 1, γ = 1, V = 1, λ = 0 and τs = 0;
the maximum of the bump is plotted for t < 100, it is moving
upstream; f(x, t) is plotted as well (for t = 0, 2, 4, 6, . . . , 100).
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FIG. 9: Bump shape at time t = 500, at an intermediate
time at which 4 bumps coexist with β = 1, γ = 1, V = 1,
τs = −0.05, Hilbert case. The slope effect is observed on the
curves λ = 0, λ = 0.1 and λ = 0.2 (the curves are shifted
to place the maximum at the origin), notice the kink effect
which arises even at λ = 0 (it correspond to the point where
the RHS of (28), Ar, is zero).
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FIG. 10: The wave length 2π/k of the maximum of the bump
spectrum versus time, corresponding mostly to the number of
bumps present in the domain, is plotted as function of time
(log scale), here in the case A = 0. As time increases, there
is less and less bumps present in the domain, finally a single
bump fills it: 2π/kfinal = 2Lx. Here, Lx = 12.5, 25 and 50.
The long wave are unstable in such a way that the final length
of the bump is the size of the computational domain.
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FIG. 11: The maximum of the final bump height hmax plotted
as a function of half the domain size Lx in the case A = 0.
The case τs = −0.1, V = 1, λ = 0 is the upper curve. The
lower curves correspond to τs = −0.05, V = 1, the arrow is
directed to the increasing values of λ (λ = 0, 0.1 and 0.2).
The subcritical case gives qualitatively the same results.
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FIG. 12: Examples of long time evolution of 2π/k the wave
length value maximizing the bump spectrum (corresponding
mostly to the number of bumps present in the domain). This
is an infinite depth case for a domain of length 2Lx. If λ = 0,
there is finally only one bump of size 2Lx (the largest possible).
If λ < 0.316, two bumps (of size Lx) are present, the larger
are damped. If λ is increased, there is no dune anymore as
predicted by the linearized theory of (31). Here V = β = 1,
Lx = 32, τs = −0.25. Notice that several bumps may live
during a very long time: here in the case λ = 0.31, during a
very long time (10 < t < 25000) three bumps are present.
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FIG. 13: The reduced wall shear ( ∂u
∂y 0

− 1)/α function of x,

in the A = 0 case, for the bump αe−πx2

with α = 0.10, α =
0.5, α = 1.0, α = 2, α = 2.25, α = 2.50. The plain curve
(”lin.”) is the linear prediction (17), other curves come from
the non linear numerical solution. The non linearity increases
the relative maximum value of the shear stress, but weakly
shifts it downstream. There is also a decrease of the relative
width of the curve. Notice the numerical oscillations in the
case of separated flow (separation is for α > 2.1)


