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Chevrons d’érosion naturels et en laboratoire

Fig.: Chevrons d’érosion sur une plage (à gauche) et en laboratoire (à droite)
(IPGP)

O. DevauchelleGoleta beach, Santa Barbara USA
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Erosion patterns in a sediment layer

Adrian Daerr,∗ Peter Lee,† José Lanuza, and Éric Clément‡

Laboratoire des Milieux Désordonnés et
Hétérogènes, UMR7603 - Université Pierre et Marie Curie - Bôıte 86,

4 place Jussieu, 75252 Paris CEDEX 05, France
(Dated: February 1, 2008)

We report here on a laboratory-scale experiment which reproduces a rich variety of natural pat-
terns with few control parameters. In particular, we focus on intriguing rhomboid structures often
found on sandy shores and flats. We show that the standard views based on water surface waves
do not explain the phenomenon and we evidence a new mechanism based on a mud avalanche
instability.

Many patterns observed [1, 2] in natural environments
stem from erosion/deposition processes. These struc-
tures are related to transport of solid granular particles
via a fluid phase that can be either a gas, a liquid, or
even a flowing granular phase. They span a huge vari-
ety of spatial and temporal scales. Examples of these
are fractal river basins [2], meandering rivers [3], dune
fields [4], granular avalanches [5], ripple marks [6] on sand
banks or on coastal continental platforms. Due in part
to its economical and environmental impact, elementary
transport processes involved in erosion are still the focus
of intense scientific scrutiny.

It is notoriously difficult to provide a fully consistent
description of particle laden flows either from a one phase
or a two phase point of view [7]. Most of the practical
knowledge on erosion comes from empirical laws often
derived from field measurements [8]. Several tentatives
were made recently to tackle from the statistical physics
point of view the dynamics of formation of river basins
[2] but many question are raised when one attempts to
relate basic transport properties to large scale pattern
forming instabilities.

In this letter we report on an experimental setup which
is designed to produce a generic situation of a falling wa-
ter level on an erodible sediment layer. This occurs natu-
rally when the sea retreats from the shore or when a reser-
voir is drained [1]. We use a plexiglass container with
a flat bottom. A square 130 mm×130 mm plate of de-
polished plexiglass slides along the bottom, and is pulled
by a motor through a translation stage. The whole setup
can be tilted to an arbitrary angle θ. The first step of the
experiment is the deposition under water of a sedimented
powder layer covering the mobile plexiglass sheet. To this
end, the inclination of the whole setup is lowered so that
the bottom of the container and the sheet are horizontal
(θ = 0). A suspension of alumine oxide powder is then
quickly poured into the container. We use commercial
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abrasive powder made of rough grains with mean diame-
ter d " 30 µm and density ρ " 2.75 g/cm3. The liquid is
demineralized water, to which we add hydrochloric acid
so as to lower the pH of the suspension to about 4 in
order to prevent flocculation of the grains.
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FIG. 1: Phase diagram localizing the different patterns ob-
served in the erosion experiments in the tilt angle θ - velocity
V space. Lines delimiting the domain boundaries are mere
guides to the eyes. Letters and symbols correspond to Fig. 2.
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FIG. 2: Patterns observed in the erosion experiment: a crossed hatched pattern, b disordered branched pattern, c orange skin,
d chevron structure, e chevrons with oblique channels, f localized pulses at chevron onset. The layer appears darker where it
has been eroded because the bottom plate is black. A light source to the left creates additional shading.

height 1 mm, the container and the plate are tilted to
an angle θ. Part of the liquid is then slowly drained,
until the contact line of the liquid free surface with the
tilted bottom of the container reaches about 1cm below
the top of the mobile sheet. Then the sliding plate is
pulled out of the liquid at a speed V (see inset of Fig. 1).
The layer is filmed by a CCD camera. Its position is
fixed with respect to the plate and its optical axis is per-
pendicular to the surface. This simple set-up allows us
to observe a variety of phenomena and structures de-
pending on two control parameters, the angle θ and the
speed V . The “phase diagram” is sketched on Fig. 1.
When the sedimented granular layer is pulled out very
slowly (V ≤ 0.04 cm/s), no pattern is observed. The liq-
uid seeps out of the sediment, which dries progressively
without being altered. However, above a critical speed
and tilt corresponding on Fig. 1 to empty squares, we
observe the formation of erosive patterns on the granu-
lar sediment surface. For decreasing angle, the patterns
faint away progressively and for a tilt angle θ < 13◦, it is
often difficult to witness of their presence.

At velocities greater than approx. 0.1 cm/s, surface
structures appear clearly when the layer is tilted to more
than about 14◦. For angles close to this value, the drain-
ing liquid leaves a cross-hatched, dense pattern of very
small and shallow channels (see Fig. 2a).

Around 18◦, we obtain a branched, disordered river-
network, whose biggest branches have widths of about
1 mm ≈ 30d (Fig. 2b). After the passage of the water con-
tact line, the surface of the sediment is still smooth and

the pattern appears with a delay of few tens of seconds.
The dynamical evolution of the structure can last as long
as two minutes. First, small localized structures with a
characteristic angle similar to the previous cross-hatched
pattern appear almost everywhere and then, bigger and
bigger disordered structures are created as they merge
under the action of erosion and sediment transport. We
will call this regime the disordered regime, refering to the
random aspect of the final network. Transition between
cross-hatched and branched is progressive.

For velocities higher than 0.1 cm/s and slopes increased
above approximately 19◦, there is a sharp (1−2◦) transi-
tion to a regime of dimples with a structural aspect simi-
lar to an orange skin (see Fig. 2c). For steeper slopes, we
observe the progressive onset of a chevron pattern char-
acterized by a well defined angle (see Fig. 2d). The cross-
over region is indicated approximatively by a dashed line
on the phase diagram. The chevron pattern forms quickly
(typically five seconds) behind the receding liquid contact
line. The rhomboid elements characterizing this struc-
ture have a slightly rounded downhill tip and a height
profile like fish scales or roof tiles, i.e. the sediment is
thickest at the downhill tip, with a shallow decrease up-
hill, and a sharp lower edge.

Finally, this regime is limited by the maximal stability
angle θm = 35◦ above which the sediment layer would
spontaneously avalanche as a whole.

From the present experiment, we observe no system-
atic variation of the chevron wavelength λ with velocity
or tilt angle. Nevertheless, the spacing of the chevrons
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has a tendency to grow as the contact line recedes with
a mechanism akin to defect fusion; we obtain a mean
spacing λ = 5 mm ± 2 mm. On the other hand, system-
atic experiments at constant angle θ = 30◦, show clearly
a decrease of the chevron pattern opening angle ϕ from
90◦ to 30◦ for increasing velocity (see Fig. 3).
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FIG. 3: Chevron alignment angle as a function of velocity.
Error bars indicate measurement variations

Various rhomboid patterns have already been de-
scribed by geologists in natural environments [1] like on
sea-ward facing beach slopes [9], in reservoirs or river
beds after a full drainage of the water. Although there
seem to be several distinct types, only few attempts at
explaining a possible mechanism were made [9]. Previ-
ous observations and the few experiments available com-
monly attribute the formation of chevron patterns to in-
stabilities at the free surface of the flowing water layer
(such as hydraulic jumps) which couple to the bottom
profile [10]. Although this could be true for certain types
of rhomboid ripples in shallow, fast flowing rivers, it can-
not be the case for the chevron regime described here.
Indeed, the largest estimation for the Froude number we
can make at the chevron onset is Fr = V/

√
gd = 5 ·10−2,

which certainly rules out factors like hydraulic jumps of
the water layer.

Now we seek to clarify the physical conditions associ-
ated with the onset of pattern formation. An estima-
tion of the Darcy flow velocity VD inside the powder
yields VD = gK/ν " 10−5 m/s, which is much smaller
than the retrieval velocity V . This VD value is ob-
tained with a permeability K = 10−12 m2 obtained ex-
perimentally, and a kinematic viscosity ν = 10−6 m2/s.
Moreover, the capillary length corresponding to a 30 µm
porous medium under gravity forces is about 20 cm. It is
thus legitimate to consider that the sediment remains
fully soaked with water during retrieval of the plate.
To estimate the shear exerted by the liquid film at the
surface, we calculate its thickness h(x, t) in the plate
reference frame. The retrieval of the plate begins at
t = 0, and x = 0 is the initial position of the con-
tact line between liquid surface and sediment. Assum-
ing that the flow is viscous, so that the average local
flow velocity is given by V (x, t) = g sin θ h(x, t)2/3ν, the
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FIG. 4: Dynamics of the chevron formation. a snapshot of
the mud avalanche above the contact line. b spatio-temporal
diagram (split across two lines) showing how chevrons appear
in the wake of an avalanche.

mass conservation equation ∂th + ∂x

(

h(x, t)V (x, t)
)

= 0
yields, for small free flow slopes, a self consistent solu-
tion: h(x, t) =

√

2νx/tg sin θ. Note that we neglected
both capillary and hydrostatic pressure terms because of
the small thickness and curvature of the flowing layer.
This approximation ceases to be valid close to the origin
and in the vicinity of the junction with the flat water
level. Note also that the contact line cannot move within
this approximation, which corresponds to a situation of
total wetting on the sediment. The maximum height,
just above the reservoir water level, is thus evaluated to
be h =

√

(ν/g sin θ)V = 10 µm ≈ d. The first conclu-
sion is that the Reynolds number, Re = hV/ν = 0.03,
is small enough to justify the lubrication approximation.
Second, the ratio of the shear exerted by the fluid on
a grain at the bottom and its apparent weight yields a
common criterion for the onset of erosion called Shield’s
number,

S =
ρw tan θ

∆ρ

h(x, t)

d
"

(

V

V0

)1/2

with V0 =

(

∆ρ

ρw

)2 gd2

ν

ρw is the density of water and ∆ρ = ρ − ρw the den-
sity contrast between grains and liquid. On Fig. 2 we
plotted the V (θ) curve corresponding S = 0.12. The
scaling implications of this formula should be put to test
more systematically but so far, it seems to reproduce re-
markably the shape of the limit were erosion patterns are
evidenced. Note that a Shields number of value S = 0.12
is marginally large to represent a situation where a grain
would be spontaneously dislodged under the action of
viscous shear. On the other hand, when interpreted
in the frame work of a Coulomb criterion for the sedi-
ment layer stability, the shearing strength due to viscous
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Figure 1. Various bedforms observed on the granular bed of a a laminar flume (Devauchelle
et al. 2008). The angle and wavelength of the rhomboid pattern varies with the experimental
parameters (picture (a) and (b)). Under certain conditions, a rhomboid pattern may be asso-
ciated to ripples (picture (c)). The width of the flume is 10 cm, and water flows from left to
right. (a) Large rhomboid pattern (Fr = 1.76, S = 0.03, Bo = 1.31 and Sh = 0.616). (b) Small
rhomboid pattern (Fr = 0.95, S = 0.015, Bo = 3.25 and Sh = 0.485). (c) Rhomboid pattern
mixed with ripples (Fr = 1.01, S = 0.015, Bo = 3.50 and Sh = 0.504). The definitions of the
parameters are provided in section 3.2.

that a bar instability should develop. In turn, this instability could lead to diamond-
shaped structures after saturates due to non-linear effects. Consequently, the rhomboid
beach pattern can be related to alternate bars in rivers (Callander 1969). However, the
Saint-Venant equations fail to predict the pattern angle better than the Woodford’s law
does (although they underpredict it instead). The results are even worse regarding the
wavelength, but the theory at least qualitatively agrees with the observation of Karcz &
Kersey (1980) that a uniform wavelength spontaneously emerges.

The main flaw of the Saint-Venant equations as regards bedforms is that they cannot
represent the phase lag between a bed perturbation and the velocity profile above it. In
other words, they can only be derived if one neglects the influence of inertia on the vertical
velocity profile. Now, this effect is responsible for the formation of ripples (see Kennedy
1963; Charru & Mouilleron-Arnould 2002; Lagrée 2003), which appeared regularly dur-
ing the experiments of Devauchelle et al. (2008) (see also figure 1). This observation
suggests that the shallow-water approximation is inappropriate under these experiments
conditions, and therefore should be replaced by the full Navier-Stokes equations. It is the
subject of the present contribution.

Coupling the water flow to the bed evolution requires a sediment transport model. As
long as bedload is the main transport mode, the grains motion is driven by the water shear
stress on the sediment surface. Transport laws are generally written as functions of the
Shields parameter, which compares the tangential shear applied to the bed to its normal
counterparts (usually the weight of the upper grains layer, see Shields (1936)). However,
in order to avoid the instability of short-wavelength bedforms, one has to introduce a
saturation mechanism. This can be achieved by taking into account either the bed slope
effect or the time required for the particles flux to reach equilibrium (see Lagrée 2000;
Charru et al. 2004; Charru & Hinch 2006; Charru 2006). The present paper generalizes
the model proposed by Charru (2006) to three dimensions, thus retaining both saturation
mechanisms. As the full Navier-Stokes equations are employed, no strong approximation
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+ hydrostatic balance
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(Navier Stokes)

∫ z=η
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dz
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+ hydrostatic balance

Flow Model

6
5
(−→u ·−→∇)−→u = −g(

−→∇η + sin(θ)−→e x)− 3ν−→u
(η − h)2

−→∇ · (−→u (η − h)) = 0

Shallow water - Saint Venant

approche Saint-Venant
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Modèle d’érosion à deux dimensions — Écoulement 10/55

Équations de Saint-Venant

Écoulement visqueux
6
5
F 2ul∂lui = Sδi,1 − ∂i(d + h)− S

ui

d2

(
Écoulement turbulent F 2ul∂lui = Sδi,1 − ∂i(d + h)− S

‖u‖
d

ui

)

Continuité ∂l(dul) = 0

F =
U√
gh

: nombre de Froude S : pente moyenne

τi =
ui

d
: contrainte exercée par l’écoulement

1 Pas de diffusion horizontale au premier ordre en H/L

2 Principale différence : frottement

70 Motifs d’érosion dans le plan horizontal

base φ(θ0)(1 + γS)d0u0 est le débit sédimentaire caractéristique, ce qui impose
d0/(φ(θ0)(1 + γS)u0) comme temps caractéristique. Le nombre de Shields de l’écou-
lement de base s’écrit

θ0 = ρg sin(ϕ)d0/((ρs − ρ)ds), (3.3)

aussi bien dans le cas laminaire que dans le cas turbulent (voir § 2.2.1). Ainsi, l’état
de base sans dimension

ϕ0 = (1, 0,−1, 1, 1, 0) (3.4)

est solution des équations (2.35), (2.36), (1.24), (1.29) et (1.30). Deux nombres sans
dimension caractérisent cet écoulement de base dans le cadre de Saint-Venant : la
pente du support S et le nombre de Froude F = u0/

√
gd0. Dans le cas laminaire,

(2.30) relie le nombre de Reynolds à F et S :

Re =
3F 2

S
. (3.5)

3.1.1.2 Perturbations

Toute perturbation peut être décomposée en une somme d’ondes de pulsation
ω et de vecteur d’onde k = (kx, ky). Tant que cette perturbation est suffisamment
petite pour que la linéarisation des équations autour de l’état de base ϕ0 reste valable,
l’évolution du système peut être entièrement décrite dans l’espace de Fourier. Nous
étudierons donc l’évolution d’une perturbation de la forme

ϕ− ϕ0 = εϕ∗ exp(iklxl − iωt). (3.6)

Les équations régissant l’écoulement (2.35) et (2.36), développées à l’ordre un pour
ε tendant vers zéro conduisent aux relations

(S(1 + α2) + ikxF
2α1)u∗ + ikxh∗ + (ikx − Sα3)d∗ = 0, (3.7)

(S + ikxF
2α1)v∗ + iky(d∗ + h∗) = 0, (3.8)

kx(d∗ + u∗) + kyv∗ = 0, (3.9)

où les coefficients α1, α2 et α3 sont déterminés par le type d’écoulement étudié :
(α1,α2,α3) vaut (6/5, 0, 2) dans le cas laminaire, et (1, 1, 1) dans le cas turbulent
(voir § 2.1). De même, les équations de transport et de conservation des sédiments
(1.29) et (1.24) deviennent :

qx,∗(1 + Sγ) + ikxγh∗+

(d∗(α3 − 1)− u∗(1 + α2))(1 + Sγ)
θ0φ′(θ0)

φ(θ0)
= 0, (3.10)

qy,∗(1 + Sγ) + ikyγh∗ − v∗ = 0, (3.11)
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Erosion Model

link between the flow of water and the flow of grains

10
The erodable bed

Mass conservation for the sediments:

∂f

∂t
= −∂q

∂x
.

Problem :
What is the relationship between q and the flow?
hint: the larger u the larger the erosion, the larger q
q seems to be proportional to the skin friction

u

q

Rennes 20/06/06 / ... ...
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Mass: Threshold, The Shield criteria

Les lois d’entraı̂nement de M. Scipion Gras
sur les torrents des Alpes (Annales des ponts et Chaussées, 1857, 2e semestre) résumées par du Boys 1879:

“un caillou posé au fond d’un courant liquide, peut être déplacé par l’impulsion des filets qui le rencontrent : le mouvement aura lieu si la

vitesse est supérieure à une certaine limite qu’il (S. Gras) nomme vitesse d’entraı̂nement. Cette vitesse limite dépend de la densité, du

volume et de la forme du caillou; elle dépend aussi de la densité du liquide et de la profondeur du courant.”

Rennes 20/06/06 / ... ...

Stress larger than a threshold τ > τs

τ
(ρp−ρ)gD

Erosion Model

Shields  number
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Mass: Threshold, The Shield criteria

Les lois d’entraı̂nement de M. Scipion Gras
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“un caillou posé au fond d’un courant liquide, peut être déplacé par l’impulsion des filets qui le rencontrent : le mouvement aura lieu si la
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Erosion Model

Shields  number
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Mass : Seuil, Le critère de Shield

Les lois d’entraı̂nement de M. Scipion Gras
sur les torrents des Alpes (Annales des ponts et Chaussées, 1857, 2e semestre) résumées par du Boys 1879 :

“un caillou posé au fond d’un courant liquide, peut être déplacé par l’impulsion des filets qui le rencontrent : le mouvement aura lieu si la

vitesse est supérieure à une certaine limite qu’il (S. Gras) nomme vitesse d’entraı̂nement. Cette vitesse limite dépend de la densité, du

volume et de la forme du caillou ; elle dépend aussi de la densité du liquide et de la profondeur du courant.”

Grenoble 15/02/06 / < − − >

Erosion Model

25
Mass: Threshold, The Shield criteria

Slope effect

τs + Λ
∂f

∂x

Rennes 20/06/06 / ... ...
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Erosion Model
26

Mass: Flux
In the literature one founds Charru /Izumi & Parker / Yang / Blondeau Du Boys

qs = E!(τa(τ − τs)b)
if x > 0 then !(x) = x else !(x) = 0.

or with a slope correction for the threshold value:

τs + Λ
∂f

∂x
,

a,E coefficients, a = 0, b = 3 or a = b = 1 or a = 1/2, b = 1 or ...
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if x > 0 then !(x) = x else !(x) = 0.
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τs + Λ
∂f

∂x
,

a,E coefficients, a = 0, b = 3 or a = b = 1 or a = 1/2, b = 1 or ...

Charru

Q = 1.8Sh3

Q = 0.85Sh(Sh−0.12)

Brief Article

The Author

February 17, 2006

1 Correspondance

S =
ηγ

ρsgd
: θ =

ηγ

(ρs − ρf )gd

Donc le lien entre S et le Shields:

S = θ((1 − ρf/ρs))

Expérimentalement
0 < θ < 0.3

(θt = 0.12 on a (1 − ρf/ρs) = 0.19. On définit ensuite un s réduit

s = θ
((1 − ρf/ρs))

µ0F0

donc
s ∼ 0.078θ soit s < 0.02

1
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((1 − ρf/ρs))

µ0F0

donc
s ∼ 0.078θ soit s < 0.02
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Erosion Model
26

Mass: Flux
In the literature one founds Charru /Izumi & Parker / Yang / Blondeau Du Boys

qs = E!(τa(τ − τs)b)
if x > 0 then !(x) = x else !(x) = 0.

or with a slope correction for the threshold value:

τs + Λ
∂f

∂x
,

a,E coefficients, a = 0, b = 3 or a = b = 1 or a = 1/2, b = 1 or ...
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Fig.: Flux sédimentaire en fonction du nombre de
Shields (Charru, 2003)

Nombre de Shields :

θ =
τ

gds(ρs − ρ)

Flux sédimentaire d’érosion
d2

s

Vs
qe,i = φ(θ)

(
ui

‖u‖ − γ∂ih

)

avec φ(θ) = θβ ou (θ − θ0)H(θ − θ0)

θβ

β = 3.75
Charru
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(−→u ·−→∇)−→u = −g(

−→∇η + sin(θ)−→e x)− 3ν−→u
(η − h)2

−→∇ · (−→u (η − h)) = 0

Navier Stokes

Mass conservation of fluid
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coupled system
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Saint Venant
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Stabilité linéaire

État de base uniforme (plan infini) : u0 = 1, d0 = 1

Perturbation : ∝ exp(i(klxl − ωt))

Relation de dispersion :
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Linear Stability

Basic flow

−→g
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Domaine d’instabilité
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Fig.: Taux de croissance de l’instabilité de
bancs pour un écoulement visqueux,
F = 1, S = 0.0875, γ = 1, β = 5

1 Mode élémentaire : onde
plane progressive

2 Mode le plus instable
incliné par rapport à
l’écoulement

3 Pas d’instabilité dans la
direction x

4 Ces résultats restent
valables pour F = 0

Linear Stability



No 1D instability (ky=0):

2 D Instability :
inclindes bancs

Linear Stability
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FIG. 4: Linear growth rate σ of bed instability in a laminar
river, versus the corresponding non-dimensional wave num-
ber k. The fixed parameters values are β = 3.75, γ = 1,
S = 0.0875. The Froude number and aspect ratio are varied
according to a straight river widening (see section IVB and
points Σi on figure 5). Above : R1 = 20.3 and F1 = 3.94;
middle : R2 = 35.0 and F2 = 3.21; below : R3 = 55.0 and
F3 = 2.71. For each set Σi = (Ri, Fi), the solid curve cor-
responds to the mode n = 1, whereas the dashed one cor-
responds to the mode n = 2. The successive dominance of
modes provides an interpretation for the transition from al-
ternate bars to braids observed experimentally by [12].

B. Results interpretation

The linear stability of a channel depends on the sign of
the maximum growth rate over n and k, respectively the
transverse and longitudinal wave-numbers. We will thus
focus on the imaginary part σ of ω in what follows. Let
σm be the maximum growth rate, and km and nm the
corresponding wave-numbers (i.e. σm = σ(km, nm) =
maxk∈R,n∈N(σ)). The transverse wave-number n char-
acterizes the instability pattern: n = 0 for y-invariant
dunes (this mode can also initiate step-pool instability),
n = 1 for meanders and n > 1 for braided patterns. The
present theoretical framework fails to predict the step-
pool instability often observed in narrow channels [31],
as σ is always negative for n = 0. This is not surpris-
ing for the phase-shift between the bed deformation and
the water shear stress is neglected here (this phase shift
controls sand ripple formation, see for instance [22]). For

higher modes, on the other hand, a positive growth rate
is possible (see figure 4), despite the lubrication approx-
imation. This indicates that the instability mechanism
governing bars formation is different than the phase shift
induced by the advection term in the case of dunes and
ripples.

The fluid and sediment choices determine parameters
γ and β. Both parameters are crucial to the present
model. The diffusion term which is proportional to γ
stabilizes the high n modes. Without it, the higher n,
the higher σm. As in [10], we take γ = 1 in the following.
If β = 1, that is if the sediment flux is proportional to the
shear stress, then no instability ever appears (again σ is
always negative in that case). Instability may occur only
if β > 1. β = 3.75 is chosen hereinafter as an illustrative
case (see section II B).

Figure 4 illustrates the transition to bed instability as
the aspect ratio is increased, for constant tilt and Froude
number. A deep and narrow channel is stable, as for no
values of n and k can σ be negative. A shift to a larger as-
pect ratio value allows for the n = 1 mode to be unstable.
For a still wider channel, both n = 1 and n = 2 modes
are unstable, but the latter grows faster. These transi-
tions can be summarized in a three-dimensional phase
diagram, with coordinates R, F and S. A constant S
slice of this diagram is presented in figure 5. The bor-
ders between domains are characterized by the following
relations (σm,n is the maximum growth rate correspond-
ing to mode n):

• σm,1 = 0 between the stable domain and the mode
1 domain;

• σm,1 = σm,2 between the mode 1 domain and the
mode 2 domain;

• σm,2 = 0 between the stable domain and the mode
2 domain.

Each point of the curves represented on figure 5 was ob-
tained by numerical maximization of the dispersion equa-
tion.

The most surprising feature appearing on the diagram
of figure 5 is that bars can be unstable even for vanishing
Froude number (and thus for vanishing Reynolds num-
ber). In that case, inertia is completely neglected. In
other words, bars may develop in a purely viscous flow,
which is impossible for dunes and ripples. Since a purely
viscous flow can present no transverse recirculation, the
above statement proves that neither turbulence nor re-
circulation are inherently linked to bar formation.

The same diagram also provides a crude interpreta-
tion for the aging of laminar laboratory rivers. Let us
consider for example the case of section III, for which
the mean water level is fixed, while its bed and banks are
freely eroded. If we assume a quasi-static evolution of
the bed width so that the stability analysis for fixed wall
can be roughly used, we can draw a schematic scenario
for the river deformation. Thus, the tilt S remains con-
stant throughout the experiment whereas, in accordance
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with (22), the Froude number and aspect ratio evolve as
follows:

R ∝ t2/(β+2), F ∝ t3/(2(β+2)). (45)

This parameterized curve correspond to F =
F0(R/R0)3/4 in the stability diagram (the subscript 0
denotes initial conditions). In most cases this curve
comes successively through the three stability domains
of figure 5, allowing for the successive development of
different bars modes . If the water output is conserved
instead of the water level (this condition is more com-
mon in experiments), the straight channel evolution is
characterized by

F = F0(R/R0)
−3/8. (46)

Again, for realistic initial conditions (R0 = 20.3 and
F0 = 3.21 in the experiment of [12]), the river undergoes
different instability regimes as it ages. The three points
Σi drawn on figure 5 would then represent three different
states of the same experiment, extrapolated from the ini-
tial condition using (46). The corresponding growth rate
are plotted in Figure 4. When the highest growth rate of
the first mode crosses zero, alternate bars appear, even-
tually replaced by higher order modes, leading to braided
patterns.

If a threshold is introduced in the erosion law, the river
eventually reaches an equilibrium state. The position of
this equilibrium in the stability diagram is an indication
about the instability patterns the river will preferentially
develop. For instance, we may expect that a river will de-
velop meanders if its equilibrium state lies in the domain
where the n = 1 mode is the most unstable one.

V. CONCLUSION

The present paper demonstrates that the equations
governing the evolution of laminar micro-rivers are very
similar to their counterpart in the turbulent case. Ex-
perimental evidence of this similarity are collected in
[11]. This results suggests that micro-rivers could fa-
cilitate the examination of some remaining difficulties of
river morphodynamics, such as non-linearities or bank
evolution. In a first attempt to develop viscous chan-
nel widening and stability theory, we presented a two
dimensional shallow-water model. A very simplified an-
alytical approach based on this model was sufficient to
describe qualitatively the aging process observed in some
experiments. A diagram presenting the dominant un-
stable modes with respect to the channel tilt, Froude
number and aspect ratio was obtained (figure 5), which
shows a large domain of existence for the meandering

mode (n = 1) at small (or even null) Froude number.
This illustrates the sound difference between bars and
dunes or ripples, which need inertia to grow.

The use of a fluid more viscous than water in exper-
iments would allow to reach very low Froude numbers,
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FIG. 5: Stability diagram for a laminar channel. The domains
(separated by solid lines) are named after the most unstable
mode between n = 1 and n = 2. The parameters values
are β = 3.75, γ = 1 and S = 0.0875. The dashed lines
represent the evolution of a straight river when the water level
is imposed (F = F0(R/R0)

3/4) or when the outflow is imposed
(F = F0(R/R0)

−3/8). The three points Σi correspond to the
three cases presented in figure 4.

while reducing the perturbing effect of capillarity. The
consecutive reduction of the Reynolds number would pre-
vent recirculation, thus allowing the experimental sepa-
ration between the effects of recirculation and bars insta-
bility.

The relaxation of the rigid banks hypothesis requires
the development of bank erosion models, able to take
avalanches into account. Such an improvement, asso-
ciated with numerical simulation, would allow to test
the laminar Shallow-water theory against experiments in
conditions closer to natural rivers.
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Fig.: Perturbation de topographie h∗ et champ de vitesse pour les modes
instables p = 1 (au-dessus) et p = 2 (au-dessous), échelle arbitraire

Modes d’ordre élevé : précurseurs des tresses



Diagramme de stabilité

• Bancs instables à Froude nul !

• A pente fixée, l’élargissement d’une rivière 
modifie F et R



Evolution de micro-rivières

Rapport d’aspect petit : pas d’instabilité
Rapport d’aspect augmente : apparition du mode 1
Rapport d’aspect grand : instabilité

F. Métivier, P. Meunier -
Journal of Hydrology 271 (2003) 22–38



comparaisons mesures théorie

DEVAUCHELLE ET AL.: RHOMBOID BEACH PATTERN X - 5

Shields parameter mainly controls the formation of the in-
stability. During the whole experiment, the Shields param-
eter remains confined between 0.23 and 0.71.

The diagram of figure 6 indicates the existence domain
of the rhomboid pattern in the (F, S)-space. Our complete
data set is represented on figure 6, which may thus be consid-
ered as an experimental existence diagram for the rhomboid
pattern. For a given set of Froude number and slope values,
this diagram indicates if we are able to find a Shields pa-
rameter value allowing the growth of a rhomboid instability
(we did not represent ripples on this graph). By doing so,
we are able to compare our work to Karcz and Kersey’s one
[Karcz and Kersey , 1980, 285].

According to Woodford [1935], no rhomboid pattern
should exist for values of the Froude number smaller than
one, that is, for sub-critical flows. This idea was supported
by Karcz and Kersey, since they observed no rhomboid pat-
tern below the curve S = 3/Re, which correspond to F = 1
in our (F, S)-space (see relation (5)). On the contrary, dur-
ing our experiments, we observed rhomboid patterns in sub-
critical flows. Even if we do not consider the darkest circles
of figure 6, for they might correspond to ripples, we found
many rhomboid pattern occurances for values of the Froude
number smaller than one. The apparent contradiction with
Karcz and Kersey’s work is easily explained. These authors
used only pure water, whereas a overwhelming majority of
the rhomboid patterns we observed in sub-critical flows were
obtained with a sugar-water mix (more viscous than water).
Karcz and Kersey could not cover the (F, S)-space at con-
stant Shields parameter, since they worked at constant vis-
cosity. This limitation prevented them from producing sub-
critical rhomboid patterns. Their existence diagram being
limited to pure water, it is not enough to prove Woodford’s
theory.

Under the conditions exposed in section 2, the character-
istics of the rhomboid pattern should depend only on the
parameters F , S and θ. Figure 7a shows the dependency of
the angle α with respect to the Shields number θ, whereas
F and S are fixed (within a 10% allowance). The angle α
remains roughly constant, as long as F and S are. From
this result, we may conclude that this angle is, at first or-
der, a function of the fluid flow properties only. However,
even though the value of α is independent of the Shields
parameter, the existence of the rhomboid pattern is not in-
dependent of θ. The diagram of figure 6 shows this pattern
at values of F and S where Karcz and Kersey did not find

! = 0"20

! = 20"40

! = 40"60

! = 60"90

Figure 6. Existence diagram of the rhomboid instabil-
ity, versus the Froude number F and the channel slope
S. The gray-scale indicates the angle of the correspond-
ing pattern, which allows to discriminate between ripples
and rhomboid structures. The dashed disks represent
data obtained with pure water, whereas the fluid viscos-
ity was increased with sugar in the other cases.

any. The only difference between the two sets of experiments
is the Shields parameter value. With pure water, Karcz and
Kersey could not reach values of the Shields parameter able
to generate the rhomboid pattern.

Assuming that the pattern angle α does not depend on
the Shields parameter, it may be plotted against the slope,
for a given Froude number (figure 7b), or against the Froude
number, for a given slope (figure 7c). The influence of slope
on the angle α appears to be unclear: a slight tendency
is observed, but it is hardly distinguished from the exper-
imental uncertainty (around δα = 10◦ for the angle, and
δS = 0, 002 for the slope). On the contrary, α appears to
depend primarily on the Froude number. The correspond-
ing function seems to be only slightly affected by a slope
change (see figure 7c). This result provide support to the
idea that the Froude number is the main parameter influenc-
ing the rhomboid pattern angle, as first suggested by Wood-

!

"

!
!

Figure 7. Evolution of the pattern angle α versus var-
ious parameters. (a) Both the Froude number and the
channel slope are fixed. Squares: F = 0.75, S = 0.02;
Triangles: F = 2, S = 0.04; Circles: F = 1, S = 0.015.
(b) Only the Froude number is fixed: F = 1. (c) Only
the channel slope is fixed. Squares: S = 0.04; Triangles:
S = 0.03; Circles: S = 0.015.

2 O. Devauchelle et al.

Figure 1. Various bedforms observed on the granular bed of a a laminar flume (Devauchelle
et al. 2008). The flow is from right to left. The pattern, observed through the water surface, is
enhanced by skimming light. The angle and wavelength of the rhomboid pattern varies with the
experimental parameters (picture (a) and (b)). Under certain conditions, a rhomboid pattern
may be associated to ripples (picture (c)). The width of the flume is 10 cm. (a) Large rhom-
boid pattern (Fr = 1.76, S = 0.03, Bo = 1.31 and Sh = 0.616). (b) Small rhomboid pattern
(Fr = 0.95, S = 0.015, Bo = 3.25 and Sh = 0.485). (c) Rhomboid pattern mixed with ripples
(Fr = 1.01, S = 0.015, Bo = 3.50 and Sh = 0.504). The definitions of the parameters are
provided in section 3.2.

After their own experimental observations, Karcz & Kersey (1980) concluded that
a homogeneous rhomboid pattern forms spontaneously over an initially flat bed, thus
suggesting an absolute instability. In a first attempt to perform the stability analysis of
a granular bed submitted to erosion by a laminar film, Devauchelle et al. (2008) used
the Saint-Venant approximation to represent the water flow. These equations, written
for turbulent flows, are known to produce rhomboid patterns under certain conditions
(see Defina 2003; Hall 2006). Since the equations for laminar films are very similar to
their turbulent counterparts, the shallow-water theory also predicts that a bar instability
should develop. In turn, this instability could lead to diamond-shaped structures after
saturation, due to non-linear effects. Consequently, the rhomboid beach pattern can be
related to alternate bars in rivers (Callander 1969). However, the Saint-Venant equations
fail to predict the pattern angle better than the Woodford’s law does (although they
underpredict it instead). The results are even worse regarding the wavelength, but the
theory at least qualitatively agrees with the observation of Karcz & Kersey (1980) that
a uniform wavelength spontaneously emerges.

The main flaw of the Saint-Venant equations regarding bedforms is that they cannot
represent the phase lag between a bed perturbation and the velocity profile above it.
When establishing the Saint Venant equations, one supposes that the profile remains of
same shape (namely the Poiseuille parabolic shape). But due to the acceleration over the
crest of the ripple, the velocity profile is changed near the bed. This effect is responsible for
the formation of ripples (see Kennedy 1963; Charru & Mouilleron-Arnould 2002; Lagrée
2003), which appeared regularly during the experiments of Devauchelle et al. (2008)
(see also figure 1). This observation suggests that the shallow-water approximation is

 (a) Large rhomboid pattern (Fr = 1.76, S = 0.03, Bo = 1.31 and Sh = 0.616). 

(b) Small rhomboid pattern  (Fr = 0.95, S = 0.015, Bo = 3.25 and Sh = 0.485). 

(c) Rhomboid pattern mixed with ripples (Fr = 1.01, S = 0.015, Bo = 3.50 and Sh = 0.504)



non-linear evolution of mode 1
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Chevrons d’érosion naturels et en laboratoire

Fig.: Chevrons d’érosion sur une plage (à gauche) et en laboratoire (à droite)
(IPGP)



évolution en temps d’un fond initialement bruité

éléments finis périodicité en x
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The 6/5 factor in the left-hand term of this equation is called
the Boussinesq coefficient, and depends on the shape of the
velocity profile. The same procedure, applied to the water-
mass balance, leads to

∇ · (ud) = 0, (12)

since, by definition, ud is the water flux.
The above set of equation is very similar to the classical

Saint-Venant equations used in natural rivers. In that case,
however, the velocity profile is no longer parabolic, which in-
duce both a different Boussinesq coefficient (usually 1) and
another expression for the friction term (last on the right-
hand side of equation (11), see Ikeda et al. [1981] among
others). This mathematical analogy explains the similarity
between laminar flume experiment and natural rivers [Laje-
unesse et al., 2008; Devauchelle et al., 2007a].

Back to the Saint-Venant equation in the laminar case,
the bottom shear stress exerted by the fluid on the bed sur-
face, denoted by τ , reads

τ =
3ρνu

d
. (13)

As mentioned in section 2 the shear stress is a key quantity
for bedload transport. Through τ , the fluid motion con-
trols the sediment flux. This flux in turns deforms the bed
topography, which affects the flow equations through the
occurrence of h in equation (11).

4.2. Sediment transport

The intensity of the shear stress τ relative to the sed-
iment grains weight is expressed by means of the Shields
parameter θ, defined by equation (7), where τ = ‖τ ‖. The
intensity ‖q‖ of bedload transport is usually considered as
a function φ of θ:

‖q‖ =
Vs

d2
s
φ(θ), (14)

where Vs is the Stokes settling velocity of an isolated sed-
iment grain (Vs = Rgd2

s/(18ν), see Charru et al. [2004]).
Once the sediment and the fluid are fixed, the the scaling
factor Vs/d2

s is a constant. The vector q denotes a number
of grains per unit time and length.

The function φ is well-known experimentally for a lam-
inar case [Charru et al., 2004], and was even tested with
the same silica grains as the one used here [Malverti et al.,
2008]. It has a threshold θc, below which no grain moves.
The following expression has been proposed by Charru et al.
[2004]:

φ(θ) =


φ0θ(θ − θc) if θ ≥ θc

0 else
(15)

where φ0 and θc are two constants: φ0 ≈ 0.47 and θc ≈ 0.12.
This transport law is reminiscent of the well-known Meyer-
Peter and Müller relationship, widely used in rivers, that is,
for turbulent flows [Meyer-Peter and Müller , 1948]. As for
the fluid flow, there is a strong analogy between sediment
transport by laminar and turbulent flows, even though the
coefficients or exponents involved in the model may differ.

Now, after the sediment transport intensity, one has to
model the direction of the sediment flux. This question was
not addressed by Charru et al. [2004] nor [Malverti et al.,
2008], since these authors considered one-dimensional sys-
tems. To the contrary, it is an essential point in river ge-
omorphology. An overview of the subject can be found in
Seminara [2001]. As a first approximation, it is usually as-
sumed that the sediment is transported in the local flow
direction. Let us transpose this assumption to the present
case. We define s as the unit vector oriented in the shear
stress direction, which is also the water velocity direction by
virtue of equation (13):

s =
τ
‖τ ‖ =

u
‖u‖ . (16)

Then, the sediment flux vector reads

q =
Vs

d2
s
φ(θ)s. (17)

At this point, one should bear in mind that many con-
tributions have considered the influence of the bed topogra-
phy on the sediment transport direction (see again Seminara
[2001], but also the theoretical model of Parker et al. [2003]).
The simplest model takes the bottom topography into ac-
count by adding a small term proportional to the bed slope
to the direction of the sediment flux, that is, by replacing s
by

s− γ∇h (18)

in relation (17). The parameter γ may be a constant, or
a function of the slope and of the local shear stress. It can
also be a two-dimensional tensor, if the slope effect is a func-
tion of the slope direction with respect to s. In any case,
however, the effect of such a correction is to increase the
sediment flux if it goes downwards, and to decrease it if the
shear stress is opposed to the slope. This is true, in partic-
ular, in the model elaborated by Parker et al. [2003], which
is the most complete presently available. This point will be
addressed again in the discussion.

t/T = 0

t/T = 1

Figure 9. Numerical simulation of a rhomboid-pattern
formation in a laminar channel. The most unstable mode
emerges from the initially random topography. The grey
scale indicates the height h of the sediment surface. This
scale is enhanced by a factor of 50 between the two im-
ages (instabilities grow). The values of the parameters
were set to S = 0.05, F = 2, W/D = 25. Both the time
t/T (the time scale T is defined by relation (30)) and
the space coordinates are non-dimensionnal (x/D is hor-
izontal, y/D is vertical). Flow is from left to right. The
aspect ratio is preserved on the pictures.
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0.02

0.05

0.1
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Figure 10. Evolution of the amplitude hmax of the
sediment-surface perturbation, from the numerical simu-
lation of figure 9 (dots). The solid line indicates the linear
growth of the corresponding instability (see section 4.4).
The most instable mode grows exponentially (linearly in
the semi-log space), and its amplitude rapidly dominates
the feature.
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Figure 3. Evolution of an isolated erosion wave (numerical 
simulation). Non linear terms in the erosion equations lead to a 
steep front formation. n denotes the propagation direction.  
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enough, the flow equations may be linearized. The 
main non-linear effect is then due to the erosion law 
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controlling the non-linearity of the sediment trans-
port relation. This idea was successfully introduced 
by Hall (2006) for turbulent rivers. 
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determine the saturation amplitude of erosion shock 
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Here, it should be noted that even though we 

simplified the analysis through the use of a power 
erosion law, the same results could be obtained with 
a different law, provided the skin friction remains at 
a finite distance from any threshold. 
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4.1Numerical simulations 

 Under natural or experimental conditions, one 
cannot observe the development of a single sinusoi-
dal mode. Instead, the boundary conditions, as well 
as the initially perturbed bed topography leads to the 
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crossing of the two shock waves issued from these 
modes forms a typical diamond-shaped pattern. 

 
This result can be reproduced numerically, as shown 
on Figure 5. The opening angle of the fully devel-
oped rhombi (about 25°) is close to the angle be-
tween the two most instable linear modes. This simi-
larity is an indication that the bank instability is re-
sponsible for the formation of rhomboid erosion pat-
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Figure 5. Numerical simulation of crossed erosion fronts under 
laminar flows conditions. Hall (2006) presented similar results 
in turbulent rivers. 

 
 Hall (2006) first proposed a similar mechanism in 
rivers, for turbulent flows at a much larger scale. 
The existence of large banks inclined with respect to 
the main flow direction was also pointed out in ma-
rine conditions by Idier & Astruc (2003). 
 We were able to reproduce experimentally rhom-
boid patterns by eroding a bed of silica power by a 
laminar flow (the Reynolds number being of the or-
der of 100). An example from these experiments is 
presented on Figure 6. As the experimental parame-
ters are varied, the size of a rhombus (that is, the 
mode of the instability) varies. This variations re-
flects the transition between the most instable modes 
of the bank instability (see Devauchelle et al. 2007). 
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Fig.: Chevrons en régime permanent, calcul numérique dans l’espace de
Fourier

Fig.: Chevrons expérimentaux de mode élevé



IPGP

ESPCI

120 Motifs d’érosion dans le plan horizontal

Fig. 3.26 – Motifs d’érosion en chevrons obtenus expérimentalement à l’Institut de
Physique du Globe de Paris, dans un canal droit soumis à un écoulement d’eau per-
manent (au-dessus ; photographie : É. Lajeunesse, L. Malverti et l’auteur). Motifs
d’érosion en chevrons obtenus numériquement (au-dessous), la dérivée de la topo-
graphie h selon la direction y est représentée par les niveaux de gris. Le nombre de
Froude expérimental est de l’ordre de 1. Il est nul dans la simulation numérique.
Defina (2003) et Hall (2006) ont récemment obtenu des résultats similaires pour des
rivières turbulentes, par des méthodes respectivement numérique et analytique. Voir
également la figure 1.4, qui présente des chevrons d’érosion en milieu naturel.
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Saint Venant:
- ne permet pas de comprendre les rides
- accord qualitatif pour les chevrons

bien tenir compte des effets visqueux

> Orr Sommerfeld Stationnaire



Un problème fortement couplé

! Écoulement quasi-stationnaire (Mécanique des Fluides)

! Fond (lois d’érosion)

x

y

H0

eau

air

sable

!g

α
x

y

H(x)

h(x)
!g

α

Écoulement de base :
u0(y),
v0 = 0.

Perturbation :
h(x , t) = εH0e ikx−iωt .

Exemples de rides de sable

Rides aériennes Rides à marée basse



L’écoulement : équations

! Conservation de la matière :

!∇ · !u = 0

! Conservation de la quantité de mouvement (Navier-Stokes) :

(!u · !∇)!u = −1

ρ
!∇p + µ!∇2!u + !g

! Non-glissement au fond :

!u = !0 en y = h(x)

! Continuité de la contrainte tangentielle à la surface :

∑

k

τiknk = 0 en y = H(x)



L’écoulement : problème à résoudre

Trois paramètres

! k = 2π/λ (longueur d’onde de la perturbation)

! Re = UH/ν

! S = tanα ou Fr = U/
√

gH

Équations linéarisées

! Pour u = u0(y) + εψ′(y)e ikx et v = −εikψ(y)e ikx ,

ψ′′′′ − 2k2ψ′′ + k4ψ = ikRe
[
u0(ψ

′′ − k2ψ)− u′′
0ψ

]
;

! conditions aux limites en y = 0 et en y = 1.



L’écoulement : résolution des équations linéarisées

Résolution numérique (méthode du tir linéaire)

!m ψ′′(0)
en fonction de k :
(Re = 30)

-5

0

5

10

0.001 0.01 0.1 1 10

Fr = 0.5
Fr = 2.0

Résolution analytique

! k < 1 : développement en série de kn

! k " 1 : méthode de perturbation singulière (raccords
asymptotiques)

! k = O(1), Re→∞ : ?
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Fig. 4.1 – (Suite de la page 133.) Le nombre de Froude F vaut ici 2. Pour un nombre
de Reynolds relativement élevé, les prédictions du modèle de Saint-Venant laminaire
demeurent correctes pour des longueurs d’onde de l’ordre de, ou supérieures à, cent
fois la profondeur du fluide.

Saint Venant/ Orr Sommerfeld Stationnaire 2D

c’est bien toujours stable
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51
Théorie du Double Deck

!

H

Pour une bosse de longueur d’ordre λ et de hauteur d’ordre H << δ :

τ = µU ′
0(Ū

′
S(1 + (

U ′
0

νλ
)1/3Hc̃)), avec c̃ = FT−1[FT [f̃ ]3Ai(0)(−(i2πk̃)Ū ′

S)1/3]

la fonction du temps Ū ′
S est un nombre d’ordre 1.

(
U ′

0

νλ
)1/3H ≤ 1

Grenoble 15/02/06 / < − − >

approche asymptotique

k
1/3

2

• fluid / soil interaction

• complex problem
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Mass : Flux

dans la littérature :

qs = E!(τa(τ − τs)b)
si(τ − τs) > 0 alors !(τ − τs) = (τ − τs) sinon !((τ − τs)) = 0.

avec une correction de pente pour le seuil :

τs + Λ
∂f

∂x
,

a,E coefficients, a = 0, b = 3 ou a = b = 1 ou a = 1/2, b = 1 ou ...



écrire l’équation de conservation de la masse
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in the bedload layer reads

∂n

∂t
= ṅe − ṅd −

∂qx

∂x
− ∂qy

∂y
, (2.6)

where ṅe, ṅd, and q denote respectively the rate of grains erosion from the fixed layer,
the deposition rate to the fixed layer and the horizontal grains flux. At first order, and
for small bed slopes, this equation does not differ from the flat-bed case, even though
the direction of q is no longer in the tilted (x, y)-plane†.

2.2.2. Particles deposition rate
The grains deposition rate due to gravity-induced sedimentation does not change when

extending the model to three dimensions. Provided the suspended particles concentration
n remains small enough, each particle behaves as if it were isolated. Due to gravity, it
falls down at the Stokes settling velocity Us, defined by

Us =
(ρs − ρ)‖g‖d2

s

18ρν
. (2.7)

Every suspended particle experiences sedimentation. The associated flux is thus propor-
tional to the number of suspended particles n:

ṅd = cd
Us

ds
n, (2.8)

where cd is an empirical constant, set to 1/15 after Charru (2006).

2.2.3. Generalized Shields parameter
Originally, the Shields parameter was designed to compare the weight of a sediment

particle (corrected by its buoyancy) to the shear stress exerted by the fluid (Shields 1936),
that is:

Sh =
ρ‖τh‖

(ρs − ρ)‖g‖ds
, (2.9)

where ds is the typical diameter of a sediment grain, and ρs is the density of the sedi-
ment. The tensor τh represents the horizontal viscous stress. Now, if the local tilt of the
sediment bed is to be considered, one has to compare the normal stress component to
the tangential one instead. It is the purpose of the following.

If nb is the unit vector normal to the sediment surface, then the viscous force exerted
on a surface of small area ε of the sediment surface reads

fν
i = τiknb

kε. (2.10)

If the pressure field is uniform at the grain scale, gravity is the only other force acting
on the moving grains layer, the thickness of which is denoted by cgds:

fg
i = (ρs − ρ)giεcgds. (2.11)

The total force f = fν + fg may then be separated into its normal and tangential
components:

fn = fknb
k, f t = f − fnnb. (2.12)

Note that fn is a negative quantity. In this frame, the natural generalization of Shields

† For bedload on an arbitrary sediment surface, the flux q is tangent to the surface. In the
Exner equation, only its horizontal components qx and qy must be considered.

Journal of Fluid Mechanics 5

in the bedload layer reads

∂n

∂t
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parameter consists in writing

θ = −‖f
t‖

fn
. (2.13)

Through this definition of the Shields parameter, one recovers the two-dimensional theory
of Charru (2006) when considering a two-dimensional problem in the (x, z) plane. In that
sense, the present model is a generalization of the latter. The hypothesis that θ only
controls the intensity of the sediment flux relies on two basic assumptions:
• The effect of slope is isotropic with respect to x and y;
• The thickness cgds of the moving grains layer is constant.

The first assumption is reasonable in general, whereas we are not aware of any direct eval-
uation of the moving-grains layer thickness. Charru (2006) makes the second assumption
when stating that cg is a constant. As long as the bed is perfectly flat, the moving-grains
layer thickness itself can be a function of the Shields parameter as usually defined (that
is by equation (2.9)), and thus the intensity of the transport is a function of Sh only.
As soon as some slope is to be considered, it enters the picture as a new independent
parameter, and the above reasoning should not hold. However, Charru (2006) showed
that treating cg as a constant can lead to good results. We do the same here.

Finally, we only add the isotropic transport assumption to the model of Charru (2006).
It allows us to introduce no additional free parameter.

2.2.4. Particle erosion rate
As for the deposition rate, the erosion rate ṅe can be expressed exactly in the same

way as in Charru (2006). We usually consider that below a threshold value of the Shields
parameter denoted by θt, no particle can be suspended. Above this value, the simplest
model consists in assuming that the number of particles suspended by unit time and
surface is proportional to the excess Shields parameter, that is, proportional to Sh − θt.
In the present case, the same idea can be applied to the generalized Shields parameter θ.
We thus assume that ṅe is proportional to cgθ− θt. The constant cg appears only due to
our definition of θ. With these notations, the threshold value remains the one proposed
by Charru (2006), namely θt ≈ 0.091. The choice of the dimensional pre-factors then
fixes the empirical constant ce:

ṅe =
18ceUs

d3
s

(cgθ − θt), (2.14)

Charru (2006) fixes ce to 0.0017, but this value has no impact on the pattern shape. In
the above relation, the slope influence on the tangential shear stress is embedded into
the definition of θ.

2.2.5. Particle horizontal flux
While they are suspended, the grains are transported by the water flow, thus generating

a horizontal sediment flux q. Charru et al. (2004) showed experimentally that, in a good
approximation, the average particle velocity is proportional to the vertical gradient of
the horizontal velocity, times the average flight height. The flux is then obtained by
multiplying this average velocity with the suspended particles concentration n:

qx = ncuds
∂ux

∂z
, qy = ncuds

∂uy

∂z
, (2.15)

where cu ≈ 0.1 is the third and last empirical parameter of the sediment transport law.
This hypothesis can be understood as a simplified version of Bagnold’s model of sediment
transport by rivers (Bagnold 1977).
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2.2.6. Exner equation
The above system, from equation (2.6) to equation (2.15) could be solved without

further assumption. However, to remain consistent with the stationary flow model (see
section 2.1), we must drop the time derivative in the sediment balance equation (2.6).
Thus, the particle flow is considered stationary as well and we end up with the well-known
Exner equation (Exner 1925):

C∂th = −πd3
s

6
(∂xqx + ∂yqy) , (2.16)

where C is the bed compactness. One should bear in mind that the above equation, a
balance for the immobile grains, does not replace the balance (2.6) for mobile grains.
The latter is required to determine the moving particle density n, even under the quasi-
stationary approximation. In brief, one can determine the concentration of suspended
particles using (2.6) with the quasi-stationary approximation ∂n/∂t = 0. Then, the
equation (2.16) controls the topography evolution.

The Exner equation terminates the definition of our sediment transport model, and the
following section is devoted to the stability analysis of a flat bed within this framework.

3. Stability analysis
The present section aims to demonstrate that, under the experimental conditions where

rhomboid patterns where observed by Devauchelle et al. (2008), the model proposed
above is unstable. As stated in the introduction of this paper, it is our claim that the
rhomboid pattern can maintain its basic features (angle and wavelength) during its de-
velopment. In other words, we believe (but do not prove) that the non-linear effects al-
lowing for the bed perturbations to saturate do not modify significantly theses features.
If this is true, the results of the stability analysis can be compared to measurements
(see section 4), even though the latter concerns fully developed bedforms rather than
infinitesimal perturbations.

3.1. Base state and dimensions
The simplest base state for our system consists in a flat (but tilted) sediment bed, over
which flows a uniform Nußelt film of thickness D. This roughly corresponds both to the
experiments (a rake was drawn over the granular bed before each run), and to the natural
initial condition on beaches (each swash event erases the remaining patterns before the
backswash).

The Nußelt film above the bed reads

u0
x =

gx

ν

(
zD − z2

2

)
, p0 = −ρgz(D − z), (3.1)

where the 0 superscript refers to the base state. The water velocity vanishes in both the
y and the z directions. If U , D and P respectively refer to the typical scales of the water
velocity, depth and pressure, we define

U =
gx

3ν
D2, D = D, P = −ρgzD. (3.2)

The non-dimensional base state then reads

u0
x = UU

( z

D

)
, p0 = PP

( z

D

)
, (3.3)
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Every suspended particle experiences sedimentation. The associated flux is thus propor-
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where cd is an empirical constant, set to 1/15 after Charru (2006).

2.2.3. Generalized Shields parameter
Originally, the Shields parameter was designed to compare the weight of a sediment

particle (corrected by its buoyancy) to the shear stress exerted by the fluid (Shields 1936),
that is:

Sh =
ρ‖τh‖

(ρs − ρ)‖g‖ds
, (2.9)

where ds is the typical diameter of a sediment grain, and ρs is the density of the sedi-
ment. The tensor τh represents the horizontal viscous stress. Now, if the local tilt of the
sediment bed is to be considered, one has to compare the normal stress component to
the tangential one instead. It is the purpose of the following.

If nb is the unit vector normal to the sediment surface, then the viscous force exerted
on a surface of small area ε of the sediment surface reads

fν
i = τiknb

kε. (2.10)

If the pressure field is uniform at the grain scale, gravity is the only other force acting
on the moving grains layer, the thickness of which is denoted by cgds:

fg
i = (ρs − ρ)giεcgds. (2.11)

The total force f = fν + fg may then be separated into its normal and tangential
components:
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k, f t = f − fnnb. (2.12)

Note that fn is a negative quantity. In this frame, the natural generalization of Shields
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∂qx

∂x
− ∂qy

∂y
, (2.6)
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écoulement cisaillé pur
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f

!

fluid

erodible bed

Carry Le Rouet / 15 juin 2005 ... ...
le flux est positif après le sommet, on 

creuse dans les creux 

région où le frottement décroît
le fond augmente

le fond diminue
région où le frottement croît



63
Interprétation
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where k, ϕ and ω are respectively the wave-vector norm, its angle with respect to the
x axis, and the pulsation of the perturbation. The non-dimensional wave vector is nor-
malized by D. In the same fashion, the time-scale T for the pulsation ω is given by the
Exner equation (2.16):

T =
6CD2

πldcdUsd2
sN

, (3.6)

where ld and N are respectively the deposition length defined by Charru (2006), and the
suspended concentration of the base flow:

ld =
3cuUd2

cdUsD
, N =

18ce

cdd2
s

(cgΘ− θt). (3.7)

The deposition length, which corresponds to the order of magnitude of the average flight
length of a particle, introduces a space gap between the sediment flux and the shear
stress that generates it. This delay stabilizes the perturbations at short wavelengths (see
Charru & Mouilleron-Arnould 2002; Andreotti et al. 2002; Lagrée 2003).

3.2.1. Linearized flow equations
For small perturbations, the momentum- and mass-conservation equations for the fluid

(2.1) read

Fr2(iUk cos ϕ ux + U ′uz) = −ik cos ϕ p +
S

3
(u′′

x − k2ux), (3.8)

Fr2iUk cos ϕ uy = −ik sin ϕ p +
S

3
(u′′

y − k2uy), (3.9)

Fr2iUk cos ϕ uz = −p′ +
S

3
(u′′

z − k2uz), (3.10)

u′
z + ik(cos ϕ ux + sin ϕ uy) = 0 (3.11)

where Fr = U/
√
−gzD is the Froude number. The prime denotes derivation with respect

to the non-dimensional height z. The no-slip boundary condition (2.2) at the bed surface
in turn reads

ux + 3h = 0, uy = 0, uz = 0. (3.12)

At the free surface, the kinematic boundary condition imposes

uz =
3
2
ik cos ϕ η, (3.13)

whereas the dynamic boundary condition reads

−3η + u′
x + ik cos ϕ uz = 0, ik sinϕ uz + u′

y = 0, η − p +
2
3
Su′

z = − k2

Bo
η, (3.14)

where Bo = −gzρD2/γ is the Bond number.

3.2.2. Linearized sediment transport equations
Let us define N as the concentration scale for n. Then, combining this definition with

the linearized grains balance relation for stationary sediment transport (2.6) leads to

Θ
Θ− θt/cg

θ∗ − n∗ − ld
3D ik

(
3n∗ + k cos ϕ u∗

x
′ + sin ϕ u∗

y
′) = 0, (3.15)
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with

U(z̃) =
3z̃

2
(2− z̃), P (z̃) = (1− z̃). (3.4)

The tilde here denotes a non-dimensional height. In the following, all quantities are non-
dimensional, and the tilde will be dropped for clarity.

3.2. Perturbations
Let f refers to any quantity of interest for our problem. Decomposing it into a base-state
component F and a sine-wave perturbation of complex amplitude f∗(z) leads to

f(x, y, z, t) = F (z) + f∗(z)ei(k cos ϕ x+k sin ϕ y−ωt), (3.5)
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where Bo = −gzρD2/γ is the Bond number.

3.2.2. Linearized sediment transport equations
Let us define N as the concentration scale for n. Then, combining this definition with

the linearized grains balance relation for stationary sediment transport (2.6) leads to

Θ
Θ− θt/cg

θ∗ − n∗ − ld
3D ik

(
3n∗ + k cos ϕ u∗

x
′ + sin ϕ u∗

y
′) = 0, (3.15)

where the generalized Shields parameter for the base state Θ reads

Θ =
Sh
cg

+ S =
3Uνρ

cgd|gz|D(ρs − ρ)
+ S. (3.16)

The perturbation θ∗ for the Shields parameter is given by equation (2.13):

θ∗ =
1
3

(
2θ̃2

(
u∗

z
′ − 3ih∗k cos ϕ

)
− 3ih∗k cos ϕ

(
1 + S2

)
+

Sh
cg

(
u∗

x
′ + 2Su∗

z
′ − 3h∗(1 + 3ik cos ϕ S)

) )
. (3.17)

Finally, the Exner equation (2.16) allows to close the linear system, as did equation (2.16)
for the complete model:

ωh∗ = k
(
3n∗ + cos ϕ u∗

x
′ + sin ϕ u∗

y
′) . (3.18)

3.3. General features of the bed stability
The system of ordinary differential equations (3.8), (3.9), (3.10) and (3.11) is linear. For
any wave vector k, it can thus be solved numerically by means of the linear shooting
method to fit the boundary conditions (3.12), (3.13) and (3.14). Likewise, once the sedi-
ment transport law is defined by its empirical parameters θt, cu/cd and cg (respectively
0.091, 0.9 and 0.108 in the present case), one can derive the complex pulsation ω from
equations (3.15), (3.17) and (3.18). Finally, for a given set of experimental parameters
S, Fr , Bo and Sh, the dispersion relation of our system is obtained.

3.3.1. Striations, ripples and bars
The dispersion relation for the bed perturbation provides informations about both

the velocity of sand waves and their stability. In the present paper, we will focus on
stability issues, since the associated predictions (pattern angle and wavelength) are easily
measured experimentally.

The growth rate of a typical example is plotted on figure 3. The existence of three
distinct maxima is the most striking feature of this dispersion relation. This is not always
the case. For other values of the parameters, any association of these three types of
maxima is possible, which can makes the distinction uneasy. Hereafter, we will refer to
the following denominations:
• Longitudinal striations correspond to maximum nearest to ϕ = π/2 (the mode (a)

on figure 3);
• Ripples correspond to a growth rate maximum lying on the k axis, that is, for ϕ = 0

(the mode (c) on figure 3);
• Bars correspond to any other maximum (the mode (b) on figure 3).

The value of the angle ϕ usually allows to discriminate between bars and longitudinal
striations, the latter being always unstable (in a reasonable range of parameter values).

Longitudinal striations where observed by Karcz & Kersey (1980) in experimental
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Figure 4. Complex velocities field for the bar instability (thick lines). The solid line represents
the real part of the velocity perturbation, whereas the dashed line represents its imaginary part.
The shape of the perturbation differs significantly from a parabola, thus indicating that the
Saint-Venant equations fails (the corresponding Saint-Venant velocities are represented with
thin lines). These velocity profiles correspond to the maximum for the bar instability of figure
3, that is, k = 1.5 and ϕ = 0.85.

The three criteria listed above allow one to distinguish theoretically between ripples
and sand bars. Contrary to ripples, bars require the influence of a free surface, and can be
modeled by means of the Saint-Venant equations. Their wave vector is usually inclined
with respect to the main flow direction (see figure 3), and thus cannot be represented
in the (x, z)-plane only. To our knowledge, the first mathematical derivation of this
instability is due to Callander (1969), and was soon associated to river meandering,
although this point remains controversial (Ikeda et al. 1981; Blondeaux & Seminara 1985).
The most striking occurrence of the bar instability in Nature are the alternate bars in
rivers (Knaapen & Hulscher 2003), which results from the crossing of two bars instabilities
of angle ϕ and −ϕ. It has been demonstrated, both experimentally (Lajeunesse et al.
2008) and theoretically (Devauchelle et al. 2007), that laminar flumes are also prone
similar bars development. Langlois & Valance (2005) performed a linear stability analysis
comparable to the present one. However, their analysis was designed for a pipe flow, and
thus did not include a free-surface. As a consequence, their results are very similar to
ours as far as the ripple instability is concerned, but do not include any bar instability.

Bars and ripples may be distinguished as two limiting cases of sediment-flows instabil-
ity. However, in the range of parameters explored by Devauchelle et al. (2008) to study
rhomboid patterns, the two are mixed in a bar-type instability which presents some rip-
ples features. The figure 4 illustrates this point. The velocity field above a wavy bed
corresponding to the bar instability is obviously not parabolic, that is, is not propor-
tional to a Nußelt film. Instead, inertia controls the velocity profile as well as viscosity.
This explains why the Saint-Venant equations fail to predict quantitatively the angle of
the rhomboid pattern. The linear interaction between bars and ripples is discussed in the
following section.
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Figure 3. Growth rate Im(ω) of the tree-dimensional instabilities of a granular bed submitted
to erosion by a laminar flow, as a function of the wave-vector norm k, and angle ϕ with respect
to the x direction. The blank domain corresponds to negative values of the growth rate, that is,
stable modes. In this typical example, three types of instabilities can develop. (a) longitudinal
striation (see Ikeda 1983; Karcz & Kersey 1980), which maximum growth rate lies at angle close
to π/2; (b) bar instability, which can occur at any value of the angle ϕ; (c) ripple instability,
which crests are perpendicular to the main flow direction, that is, ϕ = 0. The bar instability is
probably responsible for the initiation of rhomboid patterns. In this example, the parameters
have values Fr = 0.90, S = 0.015, Bo = 2.77 and Sh = 0.448. Each contour line corresponds
to an increment of 4.8 for the growth rate. The approximate values of the three maxima of this
figure are (a) 7, (b) 22 and (c) 53.

where the generalized Shields parameter for the base state Θ reads

Θ =
Sh
cg

+ S =
3Uνρ

cgd|gz|D(ρs − ρ)
+ S. (3.16)

The perturbation θ∗ for the Shields parameter is given by equation (2.13):
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1
3

(
2θ̃2

(
u∗

z
′ − 3ih∗k cos ϕ

)
− 3ih∗k cos ϕ

(
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)
+

Sh
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(
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x
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z
′ − 3h∗(1 + 3ik cos ϕ S)

) )
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Finally, the Exner equation (2.16) allows to close the linear system, as did equation (2.16)
for the complete model:

ωh∗ = k
(
3n∗ + cos ϕ u∗

x
′ + sin ϕ u∗

y
′) . (3.18)

3.3. General features of the bed stability
The system of ordinary differential equations (3.8), (3.9), (3.10) and (3.11) is linear. For
any wave vector k, it can thus be solved numerically by means of the linear shooting
method to fit the boundary conditions (3.12), (3.13) and (3.14). Likewise, once the sedi-
ment transport law is defined by its empirical parameters θt, cu/cd and cg (respectively
0.091, 0.9 and 0.108 in the present case), one can derive the complex pulsation ω from
equations (3.15), (3.17) and (3.18). Finally, for a given set of experimental parameters
S, Fr , Bo and Sh, the dispersion relation of our system is obtained.
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The system of ordinary differential equations (3.8), (3.9), (3.10) and (3.11) is linear. For
any wave vector k, it can thus be solved numerically by means of the linear shooting
method to fit the boundary conditions (3.12), (3.13) and (3.14). Likewise, once the sedi-
ment transport law is defined by its empirical parameters θt, cu/cd and cg (respectively
0.091, 0.9 and 0.108 in the present case), one can derive the complex pulsation ω from
equations (3.15), (3.17) and (3.18). Finally, for a given set of experimental parameters
S, Fr , Bo and Sh, the dispersion relation of our system is obtained.
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Figure 5. Transition from bars to ripples as the Froude number decreases. The longitudinal
striations seem not to be significatively affected by this transition. The other parameters are fixed
to S = 0.015, Bo = 2.77 and Sh = 0.448, as for figure 3. The transition induces a decrease in the
angle of the most instable mode. This behavior was qualitatively predicted by Woodford (1935),
without referring to this interaction between bars and ripples. Each contour line corresponds to
a increment of 2 for the growth rate.

increases of less than 2%, and the surface tension of a 55% water-sucrose mixture in-
creases of about 5%, see Docoslis et al. (2000)). In the following, we will thus consider
that the surface tension of the mixture can be approached by the pure water value, that
is 74 10−3 Nm−1.

4.2. Experimental patterns and stability results
For each experimental run, the parameters Fr , Bo and Sh can be determined from the
measured quantities (slope S, water discharge and viscosity), under the assumption of
a Nußelt base sate. The associated dispersion relation is then determined as described
in section 3. In theory, one could just pick up the absolute maximum of the growth
rate, and compare its characteristics with measurements. However, in the present case,
the experimental procedure was designed to focus on rhomboid patterns. Devauchelle
et al. (2008) consequently measured only the angle and wavelength of rhomboid patterns,
even when ripples co-existed. Accordingly, the procedure here employed consisted in the
following steps:

(a) Computing numerically the dispersion relation for each experimental run (see fig-
ure 3);

(b) Determining manually the rough position of the maximum corresponding to the
bar instability;

(c) Refining numerically the position of this maximum.
Only seldom where longitudinal striations and bar instability difficult to distinguish on
the dispersion-relation plot. Taking into account the relative heights of the maxima when
comparing to measurements is not straightforward, since one should either measure the
growth rate, or be certain that all modes are equally excited during the preparation of
the sediment bed. Both would be challenging experimental problems.

The experimental results are compared to our stability analysis on figure 6. The open-
ing angle prediction is rather correct, given the measurement precision (about 10◦, the
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laminar flumes, sometimes coexisting with rhomboid patterns. Such bedforms are named
ridges by these authors. They are also referred to as current lineations and associated to
sublayer streaks (Colombini & Parker 1995; Jackson 2006) or Görtler vortex (Langlois
2005). In turbulent flows, Ikeda (1983) suggests that longitudinal striations could mix
with ripples to form a rhomboid pattern. In laminar flows, his views are not supported
by the analysis developed in the present paper (see section 3.3.2). Ridges where also
produced during the experiment of Devauchelle et al. (2008), but they always remained
faint, and usually disappeared a few seconds after the run was started. Although we
are not aware of any previous contribution on the stability analysis of such longitudinal
patterns in laminar flows, we postpone their systematic study to future work, since the
present contribution focuses on rhomboid patterns.

The formation of sand ripples has received much attention, as an ubiquitous geomor-
phological pattern, since the early works of Exner (1925), Kennedy (1963) or Reynolds
(1965). The mechanism leading to the ripple instability is now clearly established. It is
similar in laminar (see Charru & Mouilleron-Arnould 2002; Lagrée 2003) and turbulent
flows (see Colombini 2004; Elbelrhiti et al. 2005). Its basics can be reduced to the (x, z)-
plane, that is, in the main flow and vertical directions. On the windward side of a bump,
the water inertia draws the flow lines closer together, and the velocity increases. The re-
verse occurs on the leeward side. The shear stress being a combined effect of the velocity
variation by the streamlines thinning, the net effect is that skin friction is larger on the
windward side than on the leeward side. Now, viscosity induces a slight asymmetry of
the flow, which makes the skin friction extremal just before the crest cite[]lagree2003tdm.
The Exner equation (2.16) then indicates that deposition occurs just after the bump, thus
growing the perturbation and moving it forwards. This process being two-dimensional, it
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Figure 6. Comparison between the three-dimensionnal model of the present paper, and the
experimental results of Devauchelle et al. (2008). The comparison concerns the geometrical
characteristics of the rhomboid pattern: opening angle α = π/2 − ϕ (in degrees) and non-di-
mensional wave number k. The sediment transport law employed here is a generalization in
three dimensions of the model initially proposed by Charru & Hinch (2006). We used the flow
parameters measured during the experiments for the stability analysis. The parameters of the
erosion law are provided by Charru (2006). No additional free parameter was required for our
analysis. On both plots, the solid line corresponds to the one-to-one relationship.

pattern being usually fainter than it appears on figure 1). The wave number prediction is
less accurate, but gives the correct order of magnitude and tendency. Both results are far
more realistic than the ones obtained with the Saint-Venant approximation (Devauchelle
et al. 2008). The discrepancy between observed and theoretical angles at extreme values
indicates the high sensitivity of the stability analysis with respect to both the experimen-
tal parameters and the transport law parameters. When the bar maximum gets close to
another local maximum (the one corresponding to longitudinal striations at low α, the
ripples one at high α), a slight change in the parameter values can induce its absorption
into this other maximum.

5. Discussion and conclusion
The present paper propose a natural framework to model the stability of laminar films

with respect to sediment transport by bedload. It is shown that a generalization in three
dimensions of the transport law proposed by Charru & Hinch (2006) and Charru (2006)
can account for the beach rhomboid patterns initiation. It is thus fair to say that the
diamond-shaped structures commonly observed on beaches are the laminar counterparts
of alternate bars in rivers.

In return, since the rhomboid pattern is easily produced experimentally, it can be used
as a test case for sediment transport models. Their three-dimensionnal structures add
one more constraint on the bedload model (the opening angle) as compared to ripples.
Transport laws are a key issue in geomorphology, and the bed slope influence on bedload
remains a modeling challenge, especially in the transverse direction.

The sediment transport law successfully used here was derived from a grains balance
equation written for the bedload layer. This may indicates that laws for turbulent flows
similarly derived could improve our understanding of rivers bedforms generation. This is
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conclusion

modèle complet de l’écoulement
- lois avec longueur de saturation
- barres: Saint Venant
- rides: perturbation d’un écoulement cisaillé
- barres+rides+stries: OSS



À FAIRE

• Théorie non linéaire: chevrons

• quelques raccords asymptotiques

• autres écoulements
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