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Introduction

Aim: find out simplier equations than Navier Stokes

Well adapted for "real time simulations” / image processing

Starting from Navier Stokes (Axi)

o we simplify NS to a Reduced set of equations

— which contains the physical scales,
— the most important phenomena

e much more simple set of equations: Integral equations (1D)

e cross comparisons in some cases of NS/ RNSP/ Integral



3 Applications

e Application 1/3: steady flow in a rigid axi symmetrical arterial stenosis
evaluation of the maximum value of Wall Shear Stress

e Application 2/3: steady flow in a rigid 2D symmetrical glottis
evaluation of the pressure drop

e Application 3/3: unsteady flow in an elastic axi symmetrical artery
comparing Reduced equations and Integral equations



RNSP Scales

u \ \
Using:
r* =xRogRe, v = rRy, u* = Uyu, v* = %’U,
_ pUs

p* = pi + poUsp and 7* = T

the following partial differential system is obtained from Navier Stokes as Re — oc:
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RNSP: Reduced Navier Stokes/ Prandtl System

or | ror -
0 0 ~ Op 0,60
(u%u i vgu) ~ o rafr(r(‘?ru)’
dp
0 = -2

+ The boundary conditions.



RNSP: Reduced Navier Stokes/ Prandtl System

3 _|_ i — 0
oz T ror L T
9, 9, B Op o 0
(u%u i vgu) ~ o rafr(r(‘?ru)’
_ _Op
0 .

- axial symmetry (0,u =0 and v =0 at r = 0),
- no slip condition at the wall (u =v=0atr=1— f(x)),
- the entry velocity profiles (u(0,7) and v(0,r)) are given

*

- no output condition in T,y = %

- streamwise marching, even when flow separation.



Application 1/3: Flow in an arterial stenosis
collaboration with S. Lorthois IMFT

(F. Cassot & M.-P. Vergnes, INSERM, 4 B. de Bruin RuG)
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Evolution of the veloaty proflle along the convergent part of a 70% stenosis
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Wall Shear Stress
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Evolution of the WSS distribution along the convergent part of a 70% stenosis
(Re = 500) ; solid line: Poiseuille entry profile ; broken line: flat entry profile.



Example of numerical resolution

Various values of the stenosis degree: lanimation




Boundary Layer/ Perfect Fluid
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Boundary Layer/ Perfect Fluid

The boundary layer is generated near the wall
01 Is the displacement thickness.



Boundary Layer/ Perfect Fluid

The displacement thickness acts as a "new" wall!
—Interacting Boundary Layer (IBL)



RNSP/ IBL

After rescalling:

r=R(Z) — (MRe) Y2y, u=1a, v=(ANRe)"Y?p and 2 — z, = (\/Re)Z , p = P,
where x; is the position of the bump, the RNSP(x) set gives the final IBL (interacting
Boundary Layer) problem as follows:

ou (917_0
0T 8n_

ou ou due 0 0u

(Uoz T 055) = % as T 3nam

with: @(z,0) =0, 9(z,0) = 0 4(Z, 00) = u., where §; = [ (1 =-)dn, and

1
YT (R2=2((M\/Re) " 2)5,)




IBL integral: 1D equation

d 6 _ 2 du. foH

22 = 54 (1 )

d5:<H> 1 +H) dx +51’L_Le’
1

(R? — 2(\/Re)~1/26y)

To solve this system, a closure relationship linking H and f5 to the velocity and the
displacement thickness is needed.

Defining A1 = S%CZE@,

the system is closed from the resolution of the Falkner Skan system as follows:
if A1 < 0.6 then H = 2.5905exp(—0.37098A1), else H = 2.074.
From H,f5 is computed as fo = 1.05(—H ! + 4H~2).
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IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation) Up — Uy/(1 — a— 71)?

- acceleration: boundary layer §; ~ —2— with Re, = —2Y0_ — _fie

\/ Re) (I—a)?v — (1-a)?



IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation) Up — Up/(1 — v — 671)?
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- acceleration: boundary layer 61 ~ TRy with Rey = e = (o)

- WSS = (variation of velocity)/(boundary layer thickness)



IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation) Up — Up/(1 — v — 671)?
- o A - __MUg _ _ _Rex
- acceleration: boundary layer 61 ~ TRy with Rey = e = (o)

L . - __(Re/N)!/
- WSS = (variation of velocity)/(boundary layer thickness) = (1=0)3




IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation) Up — Uy/(1 — a— 71)?
) . -~ \ . _ AUy — __ReA
acceleration: boundary layer 01 ~ TRy with Re) oa)% = (-a)?
- WSS = (variation of velocity)/(boundary layer thickness) :(I?fi/(\l))lgm
A simple formula as been settled:
ou* 4U, ((Re/N)Y/? +3)

WSS = (g )/ () ~ 225

Reynolds number is no longer Re but ReX and (Re/\)'/? is the inverse of the relative
boundary layer thickness.



IBL integral: Comparison with Navier Stokes (Siegel et al. 1994)

WSS = aRel/? + b

Coefficient a and b for the maximum WSS.
solid lines with A and "square” : coefficient a and b
obtained using the IBL integral method ;

& @ coefficient a derived from Siegel for A = 3 ;
X : coefficient a derived from Siegel for A = 6 ;
(O : coefficient b derived from Siegel for A = 3 ;
+ : coefficient b derived from Siegel for A = 6.




Testing asymmetry in the entry profile

16

14

12

10

- L RNSP -

COMFLO flat +
COMFLO Pois ---------
COMFLOI scheef

0 0.02 0.04 0.06 0.08 0.1 0.12

The velocities in the middle for Comflo and RNS.

Comflo uses here 50X50X100 points. Dimensionless scales!



Application 2/3: Flow in the glottis

collaboration E. Berger (LMM), M. Deverge (TUE), C. Vilain (ICP)
& A. Hirschberg (TUE) + B. de Bruin (RuG)

idem in 2D 111

0 0
—U+ —V

ox oy

0 0 0 0? 0
U—u+v—u = ——p+—=u 0=

|
[=

Ox Oy or-  0y? "’ _5’_yp'

(1)
(2)



Application 2/3: Flow in the glottis
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Application 2/3: Flow in the glottis

e nearly constant "shape”:
K. = P,/ P,, is nearly constant K, ~ (.82
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Application 2/3: Flow in the glottis

e nearly constant "shape”:
K. = P,/ P,, is nearly constant K, ~ (.82
K, = P,/P,, is nearly constant K, ~ 0.97.

e writing a Bernoulli law gives the pressure drop:

1 1
P, ~—
2((1 — X — 510)2

).

o with 61, ~ (1 — a)(Re) /2



Experiments
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Testing upstream influence (Re=200)
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Testing upstream influence (Re=200)
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Application 3/3: Flow in an elastic artery
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0 0

8—33’& -+ @TU = O,
- introducing time:
ou 9, 9, B Op 2w O 9, B Op
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Application 3/3: Flow in an elastic artery

2u + irv =0
or  ror
- introducing time:
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Application 3/3: Flow in an elastic artery

2u + irv =0
or  ror
- introducing time:
ou 0 g .  Op 20 b 0 _ Op
ot i 82(u€9_xu i UEU) T Ox i a2 ror T@ru)’ 0= - or
OR 21w /T
€2 = —5, Q@ = RO
Ro 1%

- introducing wall elasticity: p(x,t) = k(R(x,t) — Rp)

+ The boundary conditions: here hyperbolical (R(x;,,t) and R(xyut,t)) given.



Flow in an elastic artery: integral relations

- new integral equations: adapting Von Karman integral methods

The key is to integrate the equations with respect to the variable = r/R from the
centre of the pipe to the wall (0 <7 <1).

- Uy, the velocity along the axis of symmetry,
- ¢ a kind of loss of flux (d7),

- I' a kind of loss of momentum flux (42):

1 1
Uo(z,t) = u(x,n =0,t), q=R*Uy— 2/ undn) & T = R*(UZ — 2/ w?ndn).
0 0



Flow in an elastic artery: integral relations
OR? o
ot + €9 a£C<R UO q) 0, R + €2

Integrating RNSP, with the help of the boundary conditions, we obtain the equation for
q(z,t):

ot + ea c%r Uo aan) 2 T (an)\n—l (anz)\n_o

From the same equation evaluated on the axis of symmetry (in n = 0), we obtain an
equation for the velocity along the axis Uy(z,t):

oU, oUy dp 2w T 0%u
L el _ L2 — (=—2)]. _q.
at "2y or  «a?R? 0 (37]2)‘77_0

Boundary conditions (h(x,,t) and hA(xout,t)) given



Closure

The two previous relations introduced the values of the friction in n = 0, the axis of
2
symmetry: ((g—n%ﬂn:o) and the skin friction in n = 1, at the wall: ((g—g)hzl).

- Information has been lost here, so we need a closure relation between (I', 7, 7g)
and (Q7R7 UO)

- we have to imagine a velocity profile and deduce from it relations linking I', 7 and
70 and q, Uy et R.



Closure: Womersley

e the most simple idea is to use the profiles from the analytical linearized solution given
by Womersley (1955) for

1 — ﬂ?iﬁ“?)
: .. 0(i°/“«a
(]T =+ Z]z) — - 1
Jo(iB/QOé)

e assume that the velocity distribution in the following has the same dependence on 7.
It means that we suppose that the fundamental mode imposes the radial structure of
the flow.



The coefficients of closure
- by integration/ derivation, we obtain:

2
q q q
I' = ”}/qqﬁ+’quQUo+’YuuR2Ug, T = Tqﬁ—l—Tqu TO = TOqﬁ“"TOuUO-

The coefficients ((Vyq, Yous Yuw)s (Tgs Tw), (Togs Tow)) are only functions of «.



The coefficients of closure
- by integration/ derivation, we obtain:

2
q q q
I' = ”}/qqﬁ—F’Yun_ZU()—F’YuuRQUg, T = Tqﬁ—l—Tqu TO = Toqﬁ—l—TouU().

The coefficients ((Vyq, Yous Yuw)s (Tgs Tw), (Togs Tow)) are only functions of «.

v = 1= [ 2/ ar =@ [aa i [+
of o[t [ o fo-
([ 3],
Tow = Opjrn=0+ O jin=o/ / Ji = (O5din=0 / Jr)/ / Ji-



Remarks

- The main difference from other integral methods in our approach is the introduction
of an auxillary partial differential relation obtained from an aeronautical analogy. Instead
of g, I' and Uy authors mainly use (), Q2 and Uy:

R
Q = / o2rurdr  Q/m = UyR* — q
0

R
Q2 = / 2mruidr Qo/m =UGR? — T
0



Remarks

Substracting our third from our second equation we obtain the classical system:

OR 0

QWRE + 828—56(@) — O,
0Q) 0 B 5 Op 21 Ou
ot * 628:1:(@2) = —rh Ox * 7T042(877>|77:1
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Substracting our third from our second equation we obtain the classical system:

OR 0
QWRE + 828—56(@) — O,

0 B 5 Op 2w Ou
LA 52%(622) = —7R 9 -+ 7T042(377>|77:1
_8m_Q_

The effect of th_e skin friction (77 = i—g(g—g)\nzl) is often estimated .by 1= — 53—,
true for a Poiseuille flow only. It may be replaced by an unsteady relation such as:
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Remarks

Substracting our third from our second equation we obtain the classical system:

OR 0
2r R— —(0) =
0Q 0 B 5 Op 21 Ou
ot i 628:13(@2) = Tk ox i 7T042((977>‘77:1
The effect of the skin friction (7 = i—g(g—g)\nzl) is often estimated by 7= —%7%3,

true for a Poiseuille flow only. It may be replaced by an unsteady relation such as:

(97'1 8 0@

TTE -+ T — —?(Q + TQE + )

- We do not claim that our description is better, but for a sinusoidal input we find again
(at any frequency) the Womersley linear solution. Our profiles are realistic in the sense
that they present overshoots in the core and back flow near the wall.



Comparison RNSP/ Integral 1D/ pure Womersley

e RNSP
g’UJ + irv =0
ox ror
ou 0 g . I 2md 0 ~ op
o T 62(u%u + vﬁu) =—5. 1 ozzr@r(ré?ru)’o =
e Integral 1D
OR? s,
W + 82%(R2U0 - Q) =0, R=1+4e2nh.
aq 0 0 Q7T ou 82u
9o Uy Op 2T T 0w
—— + &Up—— = 2

o %y = o Piere T Gplheo
p(z,t) = k(h(x,t))

o \Womersley
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Figure 1: The displacement of the wall (h(x,t = 2.5)) as a function of x is plotted here
at time t = 2.5. The dashed line (wom3(x,2.5)) is the Womersley solution (reference),
the solid line (B.L.) is the result of the Boundary Layer code and the dots (intg) are the

results of the integral method (o =3, k1 =1, k2 = 0 and g5 = 0.2).



inverse method

using RNSP equ. as synthetic datas, inverse method (retropropagation...)

Settle a non invasive method to estimate wall elasticity

Reality Model
physical pal:amet,gm N numerical parameters
AX
" e
— X
X m c

Minimisation between "mesure” and 1D computation at one point.
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Conclusion

Starting from Navier Stokes

e a simple set of equations: RNSP
e much more simple set of equations: Integral equations

® Cross comparisons in some cases

evaluation of skin friction
evaluation of pressure drop
Boundary conditions...
Well adapted for "real time computations/ simulations/ visualisations”...



