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7 Abstract

8 The thermal mixed convection boundary-layer ¯ow over a ¯at horizontal cooled plate is revisited. It is shown that

9 this ¯ow is very similar to the one taking place in a free convection hypersonic boundary layer (with a shock in x3=4): the

10 observed singular solutions which branch out may then be reinterpreted in the framework of ``triple deck'' theory. Two

11 salient structures emerge, one in double deck, if the buoyancy is very small, and the other one in single deck, if the

12 buoyancy is O(1). These two structures are a reinterpretation of Steinr�uck's [J. Fluid. Mech. 278 (1994) 251±265] results.

13 A numerical simulation of the unsteady boundary layer in the case of impulsively started and cooled plate is carried out.

14 It leads to the separation of the boundary layer as predicted by the triple deck theory. A region of reverse ¯ow is

15 obtained which depends on the out¯ow boundary condition. Ó 2000 Elsevier Science Ltd. All rights reserved.
16

17 1. Introduction

18 Here we consider the mixed convection problem of an

19 incompressible buoyant (following the Boussinesq ap-

20 proximation) ¯uid ¯owing over a semi-in®nite horizon-

21 tal ¯at plate at a constant temperature lower than the

22 incoming ¯ow temperature (see Fig. 1 for a de®nition

23 sketch). Obviously, for a given x location, the ¯uid

24 temperature, by di�usion, increases from the wall value

25 towards that of the free stream. But for a ®xed y loca-

26 tion, the convection induces a longitudinal decrease of

27 the temperature. The outcome is a buoyancy induced

28 streamwise adverse pressure gradient. This gradient

29 brakes the ¯ow, and this creates an interaction between

30 the thermics and the dynamics. This mechanism of

31 mixed convection breakdown has been stated by

32 Schneider and Wasel [32] (other examples of re-com-

33 putation with di�erent numerical methods are reviewed

34 by Steinr�uck [37]); they showed that this interaction

35 promotes a breakdown of the mixed boundary layer

36 equation: at a relatively small abscissa, the equations are

37 abruptly singular. Instead of a buoyant boundary layer,

38 a buoyant wall jet may be studied; the case of adiabatic

39wall was studied by Daniels [10] and Daniels and

40Gargaro [11], and they arrived at the same conclusions.

41The wall jet problem is solved numerically and asymp-

42totically by Higuera [17] who notes that the equations

43are not parabolic as he noted before in the case of the

44hydraulic jump, which is very similar in its behaviour.

45To a certain extent, this self-induced braking may be

46explained through a retroactive process involving inte-

47gral concepts as follows: as the variation of pressure is

48more or less proportional to the variation of the

49boundary layer thickness (because of buoyancy; J, de-

50®ned by Eq. (1), will be the parameter), then the increase

51of boundary layer thickness promotes a rise in pressure,

52which decreases the velocity, and the result is an increase

53of the boundary layer thickness; the process is self-pro-

54moting. The failure of the integral method is presented

55in Schneider and Wasel's work [32]. Similar phenomena

56were observed in interacting boundary layer ¯ows and

57described in [22,41] with a self-induced mechanism in-

58volving variations of boundary layer thickness and

59pressure (the di�erence being that in supersonic ¯ows,

60the variations of the slope of the boundary layer give rise

61to pressure changes). The key mechanism in supersonic

62and hypersonic ¯ows was introduced by Neiland [25]

63and Stewartson and Williams [43]: it is the ``triple deck''

64theory which clari®es the scales and the equations in-
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65 volved in the interaction. Brown, Stewartson and Wil-

66 liams [7], and Brown and Stewartson [6] successfully

67 explained the branching solutions calculated in strong

68 hypersonic ¯ows by Werle et al. [46] and the link with

69 Neiland [25] (this is a free convection hypersonic

70 boundary layer where the shock and the boundary layer

71 behave in x3=4). Since both the mechanism of ``thermal

72 mixed convection with low wall temperature'' and of the

73 ``strongly interacting hypersonic boundary layer'' seem

74 to follow qualitatively the same path, we propose to

75 revisit the mixed convection with the triple deck tool (see

76 [35] for other examples).

77 Thermal e�ects in boundary layer with triple deck

78 have been already studied in the case of strati®cation in

79 the upper deck by Sykes [44] and without buoyancy by

80 Mendez et al. [24] or on a vertical plate by El Ha® [12].

81 Some triple deck in mixed convection is in [19], and is

82 extended herein.

83 In this paper we see (Section 3.1) that the result of the

84 triple deck theory is that, in a mixed thermal linearized

85 boundary layer (cold wall with very small buoyancy J ),

86 there exist eigen solutions where pressure is proportional

87 to the displacement of the streamlines; this is like the

88 birth of a hydraulic jump [3,13,16] or a hypersonic

89 boundary layer [7, 13]. In the case of a hot wall, pressure

90 is proportional to the negative of the displacement of the

91 streamlines in the main part of the boundary layer which

92 leads to no upstream in¯uence but this approach cap-

93 tures the Tollmien Schlichting waves [34]. This triple

94 deck result of strong self-induced upstream in¯uence will

95 be shown to be exactly the eigen function found by

96 Steinr�uck [37] but in the limit of small J . He showed that

97 small perturbations from the solution at a given location

98 (before the previously computed singularity) are ampli-

99 ®ed exponentially; so the position of the singularity de-

100 pends strongly on the ampli®cation of the small

101 numerical errors. If, thanks to a very re®ned calculation,

102 the branching solutions are not selected, the buoyancy

103 becomes greater and greater. If it is of order O(1), a self-

104 induced interaction is again possible, but, as we will

105show, at di�erent scales (Section 3.2). In this case the

106overall process takes place in the thin wall layer itself

107and there is no retroaction from the main part of the

108boundary layer (this is similar to what happens in pipe

109¯ows: [29,33]). This structure is similar in a certain sense

110to Daniels [10] and to what Steinr�uck [37] refers to as the

111``other large eigenvalues''. We next examine the above

112breakdown using integral methods (Section 4). A solu-

113tion with a back ¯ow valid after the singular point is

114exhibited and discussed; links with triple deck analysis

115are presented.

116Finally (Section 5), we present a boundary layer cal-

117culation with a simple ®nite di�erence method of the

118complete problem. To avoid the preceding problems

119unsteadiness is introduced: the plate is impulsively

120heated and started. We will see that a good choice in

121discretizing the longitudinal derivative in the equations

122and a good choice of out¯ow conditions prevent the

123spatial singularity: this allows the boundary layer to

124separate with neither evidence of ®nite time breakdown

125[45] nor instabilities. The skin friction will be shown to

126be coherent with Steinr�uck's results [37], and each of his

127branched solutions may be interpreted as a solution of a

128domain of di�erent length.

1292. Governing equations of the mixed convection

1302.1. Equations

131We consider an incompressible two-dimensional ¯ow

132past a semi-in®nite (heated or cooled) horizontal ¯at

133plate (Fig. 1). The boundary layer equations are ob-

134tained from the Navier±Stokes counter parts subject to

135the Boussinesq approximation for a large Reynolds

136number. A re-scaling of the dimensional quantities is

137carried out with the dynamical boundary layer scales

138(with d � Reÿ1=2 with Re � q1U1L=l):

u� � U1u; v� � dU1v; x� � Lx; y� � dLy;

p� � p1 � q1U 2
1p; T � T1 � �T0 ÿ T1�h:

140The result is the classical system (2)±(5) of thermal

141mixed convection [32]; Prandtl number is assumed to be

142of order unity and hence set (without to much loss of

143generality) to one while the Eckert number is assumed

144su�ciently small to obtain the energy equation as (5).

145The remaining parameter is the Richardson number or

146buoyancy parameter:

J � ag�T0 ÿ T1�LReÿ1=2

U 2
1

; �1�

148which depends on a, the thermal coe�cient of expansion

149of the density in the Boussinesq approximation. The

150transverse pressure term (4) contains the gravity term, as

Fig. 1. Sketch of the mixed convection boundary layer ¯ow.

The temperature of the plate is di�erent from the temperature

of the ¯ow. If the plate is cooled, the buoyancy induces an

adverse pressure gradient.
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151 Eq. (4) holds for terms greater than O�1=Re�, we have

152 jJ j � Reÿ1:

o
ox

u� o
oy

v � 0; �2�

154

u
o
ox

u� v
o
oy

u � ÿ o
ox

p � o
oy

o
oy

u; �3�

156

0 � ÿ o
oy

p � Jh; �4�

158

u
o
ox

h� v
o
oy

h � o
oy

o
oy

h: �5�

160 Boundary conditions are:

u�x; y � 0� � 0; v�x; y � 0� � 0; �6�
162 h�x; y � 0� � hw with hw � 1, u�x; y !1� � 1;
163 h�x; y !1� � 0; p�x; y !1� � 0.

164 2.2. Marching breakdown

165 In this work the length scale L and the parameter J are

166 independent, in contrast to the situation in [32] or in

167 [11]. In the ``real mixed convection problem with stable

168 strati®cation ¯ow'', the ``natural'' longitudinal scale is

169 e�ectively built with Richardson number. It is the length

170 that gives unit Richardson number (jag�T0 ÿ T1�
171 LT Uÿ2

1 �U1LT mÿ1�ÿ1=2j � 1), so

LT � U1
m

U 2
1

ÿag�T0 ÿ T1�
� �2

:

173 Note that J 2LT � L. Schneider and Wasel [32] (scaled

174 with LT ) showed that this system leads to a singularity

175 when solved with a marching (in increasing x) resolu-

176 tion. They showed that the breakdown occurs for a

177 rather small abscissa. This is the reason why Steinr�uck

178 [37] (scaled with LT ) has investigated how the system (2)±

179 (5) behaves when x tends to 0. In Fig. 2 are displayed,

180 with symbols, the reduced skin friction from previous

181 works compiled by Steinr�uck. The curves with numbers

182 show solution of the marching problem with slightly

183 perturbed initial conditions and come from his analysis

184 near x � 0. Asymptotic analysis suggests, however, that

185 it is better to consider an intermediate scale L (with

186 L� LT ) leading to Blasius boundary layer (with this

187 scale x tends to 0 is the nose e�ect) with a small thermal

188 perturbation gauged by jJ j � 1, this means that the

189 Richardson number built with this abscissa is smaller

190 than one. So, we will introduce the triple deck analysis.

1913. Asymptotic analysis: the triple deck tool

1923.1. Small J , with displacement

1933.1.1. Main deck

194Here we look for eigen solutions in a boundary layer

195slightly perturbed by the thermal e�ect in order to show

196that system (2)±(5) is not parabolic in x when the plate is

197cooled. We use the word ``parabolic'' for a system of

198PDE in the sense of a system that can be integrated in

199marching in x direction from upstream to downstream

200(with no separation). The basic ¯ow, driven by the free

201stream uniform velocity, is a classical Blasius boundary

202layer (thermal and dynamical e�ects are not coupled).

203We study how a localized disturbance evolves at the

204distance L downstream from the leading edge. At this

205point, the boundary layer thickness is Reÿ1=2L. Pure

206thermal convection is relevant as long as the transverse

207gradient from (4) is small which implies 1� jJ j. So, in

208this framework, the forced thermal boundary layer is of

209the same thickness as the dynamic one, and the velocity

210at station x � 1 is the basic Blasius velocity pro®le (say

211U0�y�, the transverse variable is then the same as the self-

212similar one) and h is simply h0�y� � 1ÿ U0�y�. The

213choice of L smaller than LT suggests expanding in

214powers of a small parameter e linked to J .

215Having de®ned the ``basic state'', we follow the clas-

216sical triple deck analysis [25,35,43], and more precisely

217[20]: system (2)±(5) is re-investigated with a smaller

218longitudinal scale, say x3L (with x3 � 1 and x � 1� x3�x);

219this scale is su�ciently small so that the preceding pro-

220®les may be considered as frozen. The reason for this

221new scale is the fact that near the breakdown point the

222gradient of the skin friction is in®nite at scale 1, so we

223hope to render it O(1) at this smaller scale. This layer

224with height dL and length x3L is in fact the ``main deck''.

225Next we suppose that the perturbation of longitudinal

Fig. 2. The reduced skin friction compiled and computed by

Steinr�uck (JFM 94). The numbered curves show solution of the

marching problem with slightly perturbed initial conditions.
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226 speed in the main deck is of the order of e and the

227 pressure of the order of e2, where e is unknown (but

228 depends on d, J and x3), so we recover at these scales the

229 inviscid problem with no longitudinal pressure gradient.

230 The perturbations are then linked by an up to now un-

231 known displacement function of the boundary layer

232 called ÿA��x� by Stewartson. In the main deck, the adi-

233 mensionalized velocities and temperature up to the order

234 of e are:

u � U0�y� � eA��x�U 00�y�; v � ÿeA0��x�U0�y�
x3

;

h � h0�y� � eA��x�h00�y�: �7�
236 For the temperature, as for the speed, there is a

237 matching between the outer limit of the main deck and

238 the inner limit of the upper deck, and likewise for the

239 bottom of the main deck and the top of the lower deck

240 (those decks are de®ned later). We see that the temper-

241 ature behaves as the Stewartson S function (total enth-

242 alpy) in hypersonic ¯ows ([6, 7, 26]). This perturbation

243 of temperature gives rise to a transverse change of

244 pressure through the main deck; we develop (4) in

245 powers of e as follows:

o
oy

p0 � e
o
oy

p1 � e2 o
oy

p2 �O�e3�
� J�h0�y� � eA��x�h0�y�� �O�e3�: �8�

247 At this stage, for jJ j � 1 by minor degeneration (i.e. to

248 retain the maximum of terms), we put J � e ~J , because J
249 is small with ~J being a reduced Richardson number of

250 the order of O(1). Looking at each power of e, we see

251 that the ®rst term is zero (as we supposed in the Blasius

252 Boundary layer); the second one shows that there is a

253 pressure strati®cation coming from basic temperature

254 pro®le (
R1

0
h0�y�dy), it does not depend on �x at the short

255 scale x3, and it will appear that such a term can be ig-

256 nored in the following analysis; the third one integrates

257 (using h0�1� � 0; h0�0� � 1 by de®nition) as

p2��x; y !1� ÿ p2��x; y ! 0� � ~JA��x��h0�1� ÿ h0�0��
� ÿ ~JA��x�;

259 where p2��x; y !1� splices with upper deck and

260 p2��x; y ! 0� with lower deck hitherto both being not

261 de®ned. The case J of the order of one will be discussed

262 later (Section 3.2), surprisingly, it implies again that p1

263 does not drive the ¯ow in the main deck.

264 3.1.2. Lower deck

265 From solution (7), we see that the no-slip condition is

266 violated: u! U 00�0��y � eA�, and h! h00�0��y � eA� as

267 y ! 0. So we introduce a new layer of thickness e (in

268 boundary layer scales), and scale y by e�y, so the scale of

269 u is e�u and, by least degeneracy of Eq. (2), we have

270 p � e2 �p (which is consistent with the matching

271e2p2��x; y ! 0� � e2 �p��x; �y !1�) and v is of the order of

272e=x3. The convective di�usive equilibrium gives the re-

273lation between x3 and e: x3 � e3. The problem of mixed

274convection near the wall is then:

o
o�x

�u� o
o�y

�v � 0; �9�

276

�u
o
o�x

�u� �v
o
o�y

�u � ÿ d

d�x
�p � o

o�y
o
o�y

�u; �10�

278

�u
o
o�x

�h� �v
o
o�y

�h � o
o�y

o
o�y

�h: �11�

280Boundary conditions are no-slip at the wall

281�h��x; 0� � 1, A�ÿ1� � 0, and for �y !1, the matchings:

282�u! U 00�0���y � A�, �p! p2��x; y ! 0� and �h! 1ÿ U 00�0�
283��y � A�. This set of non-linear equations is relevant in

284the ``lower deck'' of length x3L � e3L and of height edL
285placed at station 1; here, the thermal and the dynamical

286problems are uncoupled. In this thin layer of small ex-

287tent, the pressure coming from the main deck is the most

288dangerous for the velocity and may lead to separation.

2893.1.3. The upper deck

2903.1.3.1. Possibility of retroaction with the external ¯ow.

291The perturbations of transverse velocity and pressure at

292the edge of the main deck introduce a perturbation in

293the inviscid ¯ow: the upper deck is of size e3 in both

294directions. This perturbation is solved by the standard

295technique of linearized subsonic perfect ¯uid, this gives

296the Hilbert integral (the new pressure displacement re-

297lation)

1

p

Z ÿA0

�xÿ n
dnÿ p2��x; y ! 0� � ÿ ~JA��x�

299and the usual gauge [35]: e � dÿ1=4 � Reÿ1=8 (so

300J � Reÿ1=8 ~J ) and this gives the lower limit for

301x3 � Reÿ3=8 in Section 3.1.2. The e�ect of the tempera-

302ture is to add a new term proportional to the displace-

303ment function A, it may be interpreted as a hydrostatic

304pressure variation.

3053.1.3.2. Retroaction only in the boundary layer. Consid-

306eration of (7) shows that another (but equivalent) choice

307of e could have been made: e � jJ j. With this choice,

308x3 � jJ j3, and the preceding relation reads:

jJ jÿ4Reÿ1=2

p

Z ÿA0

�xÿ n
dnÿ p2��x; y ! 0� � ÿ�jJ j=J�A��x�:

310This choice implies that we concentrate on thermal ef-

311fects rather than on perfect ¯uid e�ects, if jJ j � Reÿ1=8

312(note that Reÿ1=8 � Reÿ1=2), the three terms are of the

313same magnitude (as seen in the preceding paragraph).

314Now, if jJ j � Reÿ1=8 (or ~J bigger than one) there is no
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315 interaction of the boundary layer with the external

316 perfect ¯uid, the thermal e�ect is dominant and the

317 pressure displacement relation degenerates in the form

p2��x; y ! 0� � �p��x� � ÿA��x� �12�
319 for a cold wall (J < 0), and in the form

p2��x; y ! 0� � �p��x� � A��x� �13�
321 for a hot one (J > 0�, where in both cases

322 Reÿ1=8 � jJ j � 1. This shows that the upper deck is not

323 necessary for the interaction to take place (as noted by

324 Bowles [2]), the same phenomenon exists in free con-

325 vection hypersonic ¯ows [5, 7, 26] for cold wall.

326 3.1.4. The fundamental problem of mixed convection on

327 ``double deck'' scales with displacement

328 Finally, the mechanism relevant for the problem of

329 in®nitely small mixed convection is without external

330 perfect ¯uid retroaction, the whole process of interaction

331 takes place in the main deck. This is a double deck in-

332 teraction. We write here the ®nal re-scaled problem (in

333 order to avoid U 00�0�). With scales

x � L� Jj j3�L=U 00�0��~x; y

� Jj j��U 00�0��ÿ2L=Re1=2�~y; t � Jj j2�L=U1�~t; u

� Jj j��U 00�0��ÿ1U1�~u; v

� � Jj jÿ1��U 00�0��ÿ2U1Reÿ1=2��~v; p

� J 2��U 00�0��ÿ2qU 2
1�~p

335 (and Reÿ1=8 � jJ j � 1�, the ®nal ``canonical problem of

336 in®nitely small mixed convection'' is

o
o~x

~u� o
o~y

~v � 0; �14�

338
o
o~t

~u� ~u
o
o~x

~u� �v
o
o~y

~u � ÿ d

d~x
~p � o2

o~y2
~u: �15�

340 Boundary conditions are: no-slip at the wall (~u � ~v � 0

341 in ~y � 0), no displacement far upstream ( ~A � 0 in

342 ~x! ÿ1), the matching ~y !1; ~u! ~y � ~A and the

343 coupling relation (hot wall, sign�J� � 1, cold wall

344 sign�J� � ÿ1)

~p � sign�J� ~A: �16�
346 The introduction of time changes only the lower deck by

347 the adjunction of the o~u=o~t term [34]. Fig. 3 displays a

348 rough sketch of the double deck structure.

349 3.1.5. Resolution

350 3.1.5.1. The eigenvalue solution. System (14)±(16) admits

351 the Blasius solution ~u � ~y as the basic one. Invariance by

352 translation in space and time suggests linearized solu-

353 tions of the form:

~u � ~y � aei �k~xÿx~t�f 0�~y�; ~v � ÿikaei�k~xÿx~t�f �~y�;
~p � aei�k~xÿx~t�;

355where a� 1. After substitution, f veri®es an Airy dif-

356ferential equation with the variable g � �ik�1=3 ~y, so

357classically we ®nd:

ÿf 0�1� � �ik�1=3

A i0�ÿi1=3x=k2=3�

Z 1

ÿi1=3x=k2=3

A i�f�df: �17�

3593.1.5.2. Cold wall, eigenvalue and comparison with

360Steinr�uck. In the case of cold wall, the coupling (

361~p � ÿ ~A) gives 1 � ÿf 0�1�, and a stationary exponen-

362tially growing solution may be obtained: x � 0,

363ik � K � �ÿ3A i0�0��3 ' 0:47. We recover the same be-

364havior as in hypersonic ¯ows [7, 13], in the birth of

365hydraulic jumps [3] and in supersonic pipe ¯ows [27]. K
366is called the Lighthill eigenvalue, it shows that there is

367upstream in¯uence, for example the preceding solution

368is the linearization of what happens far upstream of the

369separating point. The occurrence of eigen functions

370states that system (2)±(5) is not parabolic.

371We have proved that the perturbation grows like

372exp��ÿ3Ai0�0��3~x�. It may be compared with Steinr�uck's

373result; he showed that the system (2)±(5) scaled longi-

374tudinally by LT admits near the origin eigen function

375growing like exp��k�0 =n4
0�n�, where k�0 � 2U 00�0�

376�ÿ3A i0�0��3, ([37,formula 2.29] or [38,A.15], with Pr � 1,

377U 00�0� � f 00�0� � 0:33321 and
R1

0
A i�f�df � 1=3) where

378n � �x=LT �1=2
and where n0 is the place where the ¯ow is

379perturbed. If we substitute k�0 , n and n0 in the expo-

380nential, bearing in mind L=LT � J 2, and jJ j � 1, and n0

381is (L=LT �1=2
(i.e. jJ j), we rewrite it with our variables, and

382develop with the ®rst power of jJ j:

e�k
�
0
=n4

0
�n � exp

k�0
jJ j3 �1

 
� jJ j3�1=U 00�0��~x�1=2

!
� exp jJ jÿ3k�0

�
� k�0 �1=U 00�0��~x=2

�
:

Fig. 3. The two ®nal layers involved: the boundary layer itself

and a thin wall layer.
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384 So, factorizing exp�jJ jÿ3k�0 � and substituting the value of

385 k�0 , we recover the exponential growth with ~x:

exp�ÿ3Ai0�0��3~x:
387 So the conclusion is that the triple deck theory (which is

388 a theory in the limit of small J at x � 1) is equivalent to

389 Steinr�uck's result (with only a di�erent choice of scales:

390 LT instead of L so J � 1 and x is small).

391 3.1.5.3. Non-linear resolution of the fundamental problem.

392 The stationary and non-linear self-induced solution with

393 ~p � ÿ ~A law is numerically computed and asymptotically

394 described in [13]. This solution is plotted in Fig. 4, we see

395 that the self-developing displacement ÿA is superposed

396 on to the pressure; the skin friction becomes negative.

397 The upstream pressure is in e0:4681x while the downstream

398 is in 0:94796x0:4305 (this last behavior is noticeable very

399 far downstream, at least x > 103; these results are taken

400 from [13]). To compute this, we use a standard Keller

401 Box (with ¯are approximation) scheme for the lower

402 deck (adapted for the triple deck from [4]). This is an

403 inverse method which allows to catch separation: ÿ ~A is

404 given and ~p is computed. A ``verse method'', which is

405 iterative (details may be found in [22], and which has

406 been used in another hypersonic triple deck case by

407 Lagr�ee [18]) is used to couple the lower deck and the

408 pressure±deviation relation. It means that, given a dis-

409 placement ÿ ~An at iteration level n, the next ÿ ~An�1 is

410 obtained as follows:

ÿ ~An�1 � ÿ ~An � k
dpn

dx

 
ÿ d~pn

dx

!
� l�pn ÿ ~pn�;

412where ~pn is the lower deck Keller Box result associated

413with ÿ ~An; pn is the pressure associated with the dis-

414placement ÿ ~An, (here simply: pn � ÿ ~An, (16), with k and

415l being relaxation coe�cients. These coe�cients are

416chosen in order to stabilize the iterations: the complex

417gain modulus is imposed to be smaller than one for all

418spatial frequencies smaller than kmax � p=Dx (Dx is the

419longitudinal discretization step) and greater than p=L (L
420is the size of the computational domain). This gain may

421be written exactly in the vicinity of the null solution

422(p � ÿA � 0 is a solution), in this case Eq. (17) gives for

423the Fourier transform (FT) of pressure and displace-

424ment small perturbations:

FT�~pn� � �ik1=3� FT �ÿAn�
ÿ3A i0�0� ;

426while Eq. (16) gives FT�pn� � FT�ÿ ~An�, then with

427G � FT�ÿ ~An�1�=FT�ÿ ~An�, we have:

G � 1� �k ik � l� 1

 
ÿ �ik1=3�
ÿ3A i0�0�

 !!
:

429The choice of the coe�cients k and l is such that, for

430obvious reasons of stability, jGj < 1 for all the spatial

431frequencies present (p=L < k < p=Dx). The non-linear

432calculation is carried out with lower values for the said

433coe�cients. Here both ends are imposed: in x � ÿL=2

434and in x � L=2, the perturbation of ÿA is 0 at the ®rst

435step of the domain (ÿL=2), and is imposed ÿAm at the

436output (L=2). L � 60 and ÿAm � 7 were largely su�cient

437for our purpose. The Keller Box is a marching scheme:

438d~pn=dx is a backward derivative, the upstream in¯uence

439is recovered by the derivative of the pressure dpn=dx
440which is a forward derivative.

4413.1.5.4. Hot wall instability. The pressure displacement

442relation ~p � ~A does not permit upstream in¯uence, so

443the ¯ow is now really parabolic but unstable: the dis-

444persion equation

�ik�1=3

A i0�ÿi1=3x=k2=3�

Z 1

ÿi1=3x=k2=3

A i�f�df � 1

446gives x � 2:3 and k � 1:0. The scaled values for a neu-

447tral Tollmien±Schlichting wave are then x� � 2:3jJ jÿ2

448�U �0 =L�, and k� � 18:9jJ j3L.

4493.2. Bigger J with no displacement

4503.2.1. New main deck

451The preceding structure is characterized by the inter-

452action between the lower deck and the main deck by a

453pressure±displacement function: the pressure in the

454lower deck produces a displacement which changes the

455pressure again in the main deck, and so on. Here in

456discussing relation (8), we con®ne the interaction in the

Fig. 4. Linearized eigen solution (``exp.'' is exp�ÿ3A i0�0��3~x),

and non-linear solution of the self induced (~p � ÿ ~A) problem

solved with Keller Box and ``semi-inverse'' coupling: pressure

(p), displacement (ÿA) and skin friction (tau).
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457 lower deck itself, without retroaction in the main deck.

458 This idea is in fact deduced from Steinr�uck and from

459 Daniels [10]. The latter author has found the self-similar

460 solution U0, p0 and h0 associated to a problem with a

461 superposition of a jet and a constant ¯ow with an adi-

462 abatic wall. Numerical explosions with a marching

463 scheme were observed which lead him to investigate the

464 corresponding eigenvalue problem for the said ¯ow.

465 Up to now, pressure was found to be of the order of

466 e2, while perturbations of u velocity component and

467 displacement ÿA in the main deck were found of order e.
468 Similar interaction appears in pipe ¯ows in the presence

469 of a bump, without thermal e�ect, (see [29,33]). The

470 bump gives rise to perturbation of pressure (of order e2)

471 with no displacement in the main deck (at order e):
472 ÿA � 0. This O�e2� pressure drives perturbations in the

473 main deck of O�e2� in velocity, and so a O�e2� dis-

474 placement.

475 If now we introduce thermal e�ects and if J is small,

476 the conclusion is the same: ÿA � 0 in the main deck at

477 order e. Now if J becomes of order unity (J � O�e0�),
478 relation (8) suggests that the perturbation of pressure is

479 of order e. But, because of the O�e� matching of veloc-

480 ities between lower and main deck, the pressure in the

481 lower deck is always of order e2. Thus the matching of

482 pressure implies again that there is no ep1 contribution:

483 there is again no displacement eA at ®rst order (it is the

484 same as in the ``double deck'' structure pointed out be-

485 fore). With no anticipation, we put here ea for the order

486 of the perturbations in this new deck, with a > 1 (the

487 complete analysis will show that the matching with the

488 lower deck will give surprisingly a � 3=2 and not 2 as in

489 pipe ¯ows); here U0, p0 and h0 denote the solution (as

490 computed by Daniels) with x scaled by LT , and y by dLT

491 (boundary layer thickness in LT scales, Re is computed

492 with LT ) that is perturbed. As the scale is LT , in this

493 section J stands for sign�J�.

u � U0�y� � eaua; v � dea

x3

va; p � p0 � eapa;

h � h0 � eaha; x � 1� x3x̂; y � y:

495 As long as 1� e� Reÿ1=6, the main deck problem is

496 di�erent because the longitudinal gradient of pressure is

497 still present:

o
ox̂

ua � o
oy

va � 0; �18�

499

U0�y� o
ox̂

ua � vaU 00�y� � ÿ
o
ox̂

pa; �19�

501

0 � ÿ o
oy

pa � Jha; �20�

503

U0�y� o
ox̂

ha � vah
0
0�y� � 0; �21�

505where U0�y� solves the mixed convection problem. If we

506de®ne wa the perturbation of the stream function, ha is

507straightforward: ha � wa�x̂; y�h00�y�=U0�y�. After elimi-

508nation of the velocities and pressure, we have to solve a

509modi®ed Rayleigh equation:

o2

oy2
wa ÿ

U 000 �y�
U0�y�

 
ÿ J

h00�y�
U 2

0 �y�

!
wa � 0: �22�

511This equation may be solved in y in assuming zero

512perturbation at the outer edge (for sake of simplicity we

513suppose that there is no upper deck of perturbed perfect

514¯uid involving the Hilbert integral) and the matching for

515pa in y � 0 is discussed later. The value of ua�x̂; 0� will

516not interfere with the lower deck.

517If de2=x2
3 � e2=d, then the transverse velocity va is

518present too in the transverse pressure gradient equation

519(20), so it is now

U0�y� o
ox̂

va � ÿ o
oy

pa � Jha;

521the equation for wa may be then obtained. If this term is

522in the equations, then we have x3 � d � Reÿ1=2 and

523e � Reÿ1=6, and the main deck has same scales in both

524directions.

5253.2.2. New lower deck: the fundamental problem of mixed

526convection on ``single deck'' scales with no displacement

527For the sake of simplicity we put U 00�0� � 1 and

528jh00�0�j � 1. The lower deck problem is then changed by

529the fact that the transverse pressure variation is within

530the lower deck, (in Section 3.2.1, the transverse variation

531of pressure took place in the main deck), it is a single

532deck interaction:

u � eû; v � e2v̂; p � p1 � Jeŷ � e2p̂2;

h � 1� eĥ; x � 1� e3x̂; y � eŷ;

534(because x3 � e3),

o
ox̂

û� o
oŷ

v̂ � 0; �23�

536

û
o
ox̂

û� v̂
o
oŷ

û � ÿ o
ox̂

p̂2 �
o2

oŷ2
û; �24�

538

0 � ÿ o
oŷ

p̂2 � J ĥ; �25�

540

û
o
ox̂

ĥ� v̂
o
oŷ

ĥ � o2

oŷ2
ĥ: �26�
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542 The matching is û! ŷ and ĥ! ÿŷ, for ŷ !1, because

543 there is no displacement. At the wall, the boundary

544 conditions are obvious: û � v̂ � ĥ � 0. The pressure

545 matches at order e2, that is the value of the lower deck

546 pressure for ŷ !1 which makes the main deck develop,

547 and there is no retroaction from the main deck to the

548 lower one. All the problem lies in the lower deck: there is

549 no need for an external pressure change (because here

550 op̂2=oŷ 6� 0). This is true for any e in the range

551 1� eP Reÿ1=6.

552 3.2.3. Linearized resolution

553 Branching solutions are obtained from the linearized

554 system deduced from (23)±(26), where (u; v; p2; h) de-

555 notes perturbations from the basic state (ŷ; 0; 0; 0; 0)

556 (here J is sign�J�):
o
ox̂

u� o
oŷ

v � 0; �27�

558

ŷ
o
ox̂

u� v � ÿ o
ox̂

p2 � o2

oŷ2
u; �28�

560

0 � ÿ o
oy

p2 � J�h�; �29�

562

ŷ
o
ox̂

h� v � o2

oŷ2
h: �30�

564 This suggests looking for solutions in the form:

u � ejx/0�ŷ�; v � ÿjejx/�ŷ�; p2 � J�g�ŷ��ejx;

h � ejxg0�ŷ�;
566 with the pressure value given at the wall (as the system is

567 linear we simply write g�0� � 1). j is the eigenvalue that

568 we are looking for. We note that the system may be

569 written as:

o
oŷ

o
oŷ

�
ÿ jŷ

�
g0�ŷ� � j/�ŷ�;

o
oŷ

o
oŷ

�
ÿ jŷ

�
/00�ŷ� � Jjg0�ŷ�: �31�

571 If we write g � j1=3ŷ, so that j disappears from the

572 problem, any j is convenient. The problem is solved

573 numerically for J � ÿ1 by a ®nite di�erence method

574 with time reintroduced to provide for a relaxation mean

575 of the numerical scheme. In Fig. 5, the computed ve-

576 locity pro®le /0�g� is compared with the corresponding

577 asymptotic solution while temperature results, g0�g�, are

578 shown in Fig. 6, (no solution was found with this

579 method for J � 1). The pro®les of velocity and tem-

580 perature slowly decrease in oscillating to 0 as g!1.

581 This is coherent with the leading term of / which is in gn,

582where n solves n2 ÿ n� 1 � 0. Hence / involves g�1�i
��
3
p �=2

583as g!1, thereby implying that v is proportional to

584
���
g
p

sin� ���3p log�g�=2�, and by consequence u becomes

585proportional to ÿ�d=dg�� ���gp sin� ���3p log�g�=2�� and h to

586�ÿ1=
���
g
p � sin� ���3p log�g�=2� (the exact coe�cient of pro-

587portionality has not been determined).

588Let us return now to the matching of the two layers in

589order to obtain a. In the lower deck the pressure is O�e2�,
590and behaves for large ŷ like

���̂
y
p

, so, written in outer

591variables the pressure becomes e2
���̂
y
p � e3=2 ���

y
p

. In the

592vicinity of y � 0, (22) behaves as

Fig. 5. Comparison of the computed value of /0�g� and as-

ymptotic value

/0a�g� �
ÿ� ���3p cos�

��
3
p

log�g�
2
�

2
���
g
p ÿ sin�

��
3
p

log�g�
2
�

2
���
g
p :

Fig. 6. Comparison of the computed value of h�g� and as-

ymptotic value

ha�g� �
ÿ�sin�

��
3
p

log�g�
2
����

g
p :
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o2

oy2
wa � J

1

y2
wa ' 0:

594 If J � ÿ1, wa involves the same powers of y as g:

595 y�1�i
��
3
p �=2, and hence ha is proportional to combinations

596 of y�ÿ1�i
��
3
p �=2 and the pressure (of order ea) contains the

597 square root of y. Matching of the pressure between the

598 two decks leads to a � 3=2. With perturbation of order

599 e3=2 the other matchings are straightforward. We con-

600 clude that any value of j is acceptable and creates a self-

601 induced solution in the lower deck with no ®rst-order

602 displacement: the dominant variations of velocities and

603 pressure are con®ned in the lower deck, the main deck is

604 passive.

605 3.2.4. Comparison with Daniels and Steinr�uck results

606 Daniels solves a set of equations closely related to the

607 preceding one, and without reference to triple deck. The

608 main di�erence is that he chooses non-linear pro®les:

609 U0�y� ' ybÿ1 and h0�y� ' h0�0� � yc, near y � 0. This

610 may be interpreted as a thicker lower deck (the matching

611 is not in the linear region but somewhere higher). So the

612 longitudinal scale is now x3 � eb�1. The adiabaticity

613 gives in his study (ÿ�o=oŷ�p2 � 0�. He ®nds which exact

614 power b of ŷ is coherent for the lack of what we would

615 call the displacement function and that he calls ``an or-

616 igin shift'' in the transversal variable and noted as k3�b�.
617 Thus he shows that k3�b� � 0 is necessary for the

618 matching of the two layers. As a result, near the singu-

619 larity, in x̂ < 0, the eigen function of the pressure is

620 found to be ' �ÿx̂�0:305
and there is a free interaction

621 with decreasing pressure.

622 Nevertheless, here we deal with b � 1; instead of 0:305

623 we ®nd 1=3. We note that if b � 1 in Daniels's results,

624 there is no perturbation at all (see Fig. 4 in [10,p. 431],

625 where, when the pressure noted as q equals zero, the

626 displacement, noted as k3�b�, equals zero as well); this is

627 the same here, if there is no transverse variation of

628 pressure, there is no possible linearized solution in the

629 lower deck with ÿA � 0 except the null solution.

630 This solution is in fact what Steinr�uck calls the other

631 large eigenvalues, the oscillating behavior [37, Eq. (3.12)]

632 involves 1=2� i
��������
3=4

p
(it is the same because we took

633 jh00�0�j=U 00�0�2 � 1). So, the two sets of eigenvalues are

634 explained by a triple deck analysis.

635 4. Integral methods and branching solutions

636 4.1. Singularity

637 The preceding results for small J suggest that there is

638 no singularity in the equations, but because of non-pa-

639 rabolicity, a dependence with downstream conditions.

640 The ¯ow may generate a self-induced interaction which

641 may lead to separation (at least in the ~p � ÿ ~A case). So,

642we may revisit the over-simpli®cation of the problem

643with integral methods as already mentioned by Schne-

644ider and Wasel [32], to see whether we may go after the

645singularity even in this very simple description. They

646integrate over the whole boundary layer the system (2)±

647(5) as follows:

d

dx

Z 1

0

u�1
�

ÿ u� � J
Z 1

y
hdY

�
dy � ou

oy

� �
y�0

:

649This balance may be rewritten with the help of the dis-

650placement function d1 (which is more physical in our

651opinion):

d

dx
d1

H

�
� JAd2

1

�
� f2H

d1

; �32�

653where H and f2 are standard notations [30]; H � d1=d2 is

654by de®nition the shape factor, and f2 is de®ned from the

655skin friction as f2 � d2�ou=oy�y�0. Now the problem

656must be solved with assumptions on the pro®le shape.

657Classically f2 is a function of H and H is the function of

658the pressure gradient and d1. Like Schneider and Wasel,

659we choose a simple sinusoidal pro®le with constant pa-

660rameters (H � H0, A � A0 and f2 � f20). The pro®le

661u � sin�p�y=d�� permits to evaluate H0 � 2�2ÿ p�=
662�pÿ 4� and f20 � 1ÿ p=4, the value of A0 is

663�ÿ8� p2�=�2�ÿ2� p�2�.
664Then the integral equation (32) integrates in:

1

2
�d2

1

�
ÿ d2

10� �
2

3

� �
JH0 A0�d3

1 ÿ d3
10�
�
� f20 H 2

0 �xÿ x0�:

666At the leading edge x0 � 0 and d10 � 0, so we may ob-

667tain an explicit d1 as a function x. It is much more simple

668to plot (x�d1�, d1) in a parametric mode. The case J � 0

669reduces of course to the approximation of the Blasius

670solution:

d1B �
�������������
2f2H 2

0

q
x1=2 � 1:742x1=2

672and for a non-zero negative J we ®nd, with Schneider

673and Wasel, that there is a singularity in the slope

674�dd1=dx� � 1 in xs � �24A2
0 H 4

0 f2J 2�ÿ1
, where d1 �

675ÿ1=�2A0 H0J� � ds say, which is ®nite).

6764.2. Non-singular solution

677Schneider and Wasel stopped with xs, but we may

678construct the sequel of the solution after xs if we note

679that for x > xs the solution may be integrated if f2 < 0

680(say f2 � f2s). For the sake of oversimpli®cation, we

681only change the value of f2 in (32), the solution reads:

1

2
�d2

1

�
ÿ d2

s � �
2

3

� �
JH0A0�d3

1 ÿ d3
s �
�
� f2sH 2

0 �xÿ xs�:
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683 This expression is singular in xs and valid for x > xs. In

684 Fig. 7, we plot the two expressions of d1 (upstream and

685 downstream of xs) and d1B on the same graph.

686 Thus we have a continuously varying d1 valid

687 throughout except in xs. The displacement shows a

688 gradual increase as long as the thermal e�ect is small,

689 then it thickens in the vicinity of the separation, and

690 ®nally it slowly increases. We note that it looks like a

691 ``jump'' in the displacement thickness.

692 4.3. Branching solutions

693 Of course, a better description should involve a con-

694 tinuously varying H and f2 (this will enable to cross xs).

695 As a ®rst step in this direction, we present an oversim-

696 pli®ed argument ± we may develop the shape factor

697 (only in the right-hand side, in the left-hand side it has

698 no real in¯uence) near the Blasius value as follows:

699 H � H0 ÿ Jh�dd1=dx�. We may justify this postulate in

700 noticing that for a small adverse pressure gradient a

701 small growth of H is promoted (this is true in a classical

702 boundary layer such as the Falkner Skan's one where

703 H0 ' 2:59 and h ' 2:88 . . .), but here the variation of

704 pressure through the boundary layer is more or less

705 proportional to Jd1; this introduces a parameter h > 0.

706 With these crude assumptions and at ®rst order in J , a

707 new term appears, proportional to the second derivative

708 of the displacement:

d

dx
d1

H

� �
' Jh

d1

H 2
0

� �
d2d1

dx2
� d

dx
d1

H0

� �
;

710 so (32) is now

Jh
d1

H 2
0

� �
d2d1

dx2
� 1

H0

�
� 2JAd1

�
d

dx
d1 ' f2H0

d1

:

712With this ad hoc term in the equation, ®rst, the singu-

713larity will be smoothed (for example, we may construct

714an asymptotic description of the equation in introducing

715a region in xs where �d2d1=dx2� is not negligible . . .), and

716second, closely linked eigen function may be exhibited if

717we write d1 � d10�1ÿ aeKx�; where d10 is the Blasius so-

718lution frozen (K must be big) and K solves

hJ
d10

H 2
0

� �
K2 � K

1

H0

�
� 2JAd10

�
� f2H0

d10

' 0:

720The roots, for small J are at ®rst order ÿ�f2H 2
0 �=d10 and

721�ÿJ�ÿ1�H0=hd10�. If J is positive, they are negative, so

722any perturbation is damped, and the parabolic nature of

723the ¯ow is recovered. If J is negative, the ®rst one re-

724mains negative, but the other is positive and big leading

725to a growing exponential on a short scale. This solution

726destroys the parabolicity of the ¯ow, and is clearly a

727consequence of the h term. This behavior, qualitatively

728similar to the complete resolution (as we will see in the

729next paragraph) and with the occurrence of branching

730exponential solutions (as in triple deck), shows again

731how powerful the integral methods are [22] if the vari-

732ation of H with the pressure gradient is not omitted. In

733the next section, we look at how the previous results may

734be observed on a complete numerical simulation of the

735equations, and whether it is possible to obtain a sepa-

736rated ¯ow.

7375. Numerical computations

7385.1. The problem

739As shown in the previous paragraph with di�erent

740scales and methods, solving the equations with a

741marching scheme in x (stationary in t) leads to the se-

742lection of the eigenvalues and to a self-induced interac-

743tion. In supersonic ¯ows, the way to prevent this fact is

744to construct an iterative coupled method as already

745mentioned. It permits to impose boundary conditions at

746both ends of the domain. Here the problem is that the

747pressure changes across the boundary layer, so these

748powerful methods are not applicable. We propose to

749change the problem and to make it unsteady.

750We have to solve (2)±(5) with the ot term and new

751boundary conditions at t � 0 and at x!1:

o
ox

u� o
oy

v � 0; �33�

753
o
ot

u� u
o
ox

u� v
o
oy

u � ÿ o
ox

p � o
oy

o
oy

u; �34�

755Fig. 7. The upper curve is the plot of d1 function of x as pre-

dicted by the very simple model, the lower one is the Blasius

solution.
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0 � ÿ o
oy

p � Jh; �35�

757
o
ot

h� u
o
ox

h� v
o
oy

h � o
oy

o
oy

h; �36�

759 with, at time t � 0:

u�x; y > 0; t � 0� � 1; u�x; y � 0; t � 0� � 0;

v�x; y P 0; t � 0� � 0; h�x; y > 0; t � 0� � 0;

p�x; y P 0; t � 0� � 0;

761 and after, for t > 0:

u�x; y � 0; t P 0� � 0 v�x; y � 0; t P 0� � 0;

u�x; y !1; t P 0� � 1; h�x; y � 0; t P 0� � 1;

h�x; y !1; t P 0� � 0; p�x; y !1; t P 0� � 0;

763

8y; for x > t; x!1 :
o
ox

u � 0;
o
ox

v � 0;
o
ox

p � 0;

o
ox

h � 0:

765 If, at a given x, we wait for a long time, and with a

766 big enough domain, we expect to ®nd a steady solution

767 which solves (2)±(5) too after a transient spreading.

768 5.2. Numerical discretization

769 The set of (33)±(36) is discretized in ®nite di�erences

770 in the most simple way, second order in space x; y and

771 in time t. It is implicit in y and explicit in x. We introduce

772 an internal loop to improve the description of the non-

773 linear terms put as explicit source terms.

774 The ®rst di�culty is now at the entry: we cannot begin

775 the calculation in x � 0 because the equations are sin-

776 gular at the origin, so we impose the Blasius boundary

777 layer pro®le at any time t > 0, in x � xin > 0. This cre-

778 ates a small non-dangerous perturbation.

779 The second one is at the exit, where x � xout. The

780 annulation of longitudinal derivatives (o=ox � 0) at the

781 outlet is a coherent boundary condition as long as no

782 information has propagated (at velocity 1) from the

783 nose. If t > xout, it is not true anymore.

784 The third di�culty is the numerical discretization in x.

785 If we put a centered derivative ��f N
i�1j ÿ f N

iÿ1j�=2Dx� we

786 observe oscillations; by inspection, if we choose a

787 downstream derivative (�3f N
ij ÿ 4f N

iÿ1j � f N
iÿ2j�=2Dx) in

788 the transport equations but we center vN�1
ij �

789 ÿ��wN�1
i�1j ÿ wN�1

iÿ1j �=2Dx� in the incompressibility, no os-

790 cillations are observed and the back ¯ow region is

791 computed.

7926. Results

7936.1. Test cases

794As a test case of our numerical discretization (for the

795unsteady part as well for the non-linear part), we have

796recomputed the classical problem of the starting ¯at

797plate (solved analytically by Stewartson [39,42] and

798numerically by Hall [15]).

799For the sake of validation of boundary layer separa-

800tion phenomena, we have computed the starting ¯ow

801around a cylinder. We recover the Van Dommeln and

802Shen [45] result of ®nite time singularity. For this severe

803test, the three di�erent discretizations in x were tested.

804We conclude that the e�ect of the choice of the longi-

805tudinal derivative (centered or not) on the position of

806the separating point is very small: a di�erence of 0:3%.

807In [21] we discuss more precisely those examples. Of

808course, this ®nite di�erence scheme in Eulerian descrip-

809tion does not go near the singularity as Cassel et al. [8]

810do with boundary layer equations written in Lagrangian

811description. Nevertheless, it predicts the singularity, so

812this is an element of validation of the back ¯ow calcu-

813lation.

814Next, we introduce the transverse buoyancy, but we

815impose the temperature to be xÿ1=2 rather than 1. For

816example if J � ÿ0:025 we obtain d1 ' 1:9x1=2 and

817ou=oy�x; 0� ' 0:29xÿ1=2; the value ou=oy�x; 0� ���xp as a

818function of jJ j ���xp for di�erent time steps is plotted in

819Fig. 8 (the choice of abscissa n � jJ j ���xp and ordinate

820f 00�n; 0� � ou=oy�x; 0� ���xp comes from Steinr�uck's work

821based on self-similar variables).

Fig. 8. Numerical computation of the reduced skin friction

function as a function of the reduced longitudinal variable at

di�erent times (from t � 15 to 3000) and in the case of wall

temperature Tw�x� � 1=
���
x
p

. The reduced Rayleigh skin friction

is plotted as well (lines at time t � 15; 30; 60; 125; 250; 500 and

1000. The ®nal value is the self-similar one: 0:29).
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822 The lines correspond to the Rayleigh solution of the

823 problem: an in®nite ¯at plate impulsively moved and

824 heated. In this case (
���
x
p �ou=oy��x; y � 0� � ÿ1

���������
px=t

p
,

825 which is linear in Jj j ���xp and whose slope decreases with

826 time t), they are plotted for comparison (so we see the

827 propagation of the in¯uence of the nose). We note that it

828 takes a long time to obtain the stationary (here self-

829 similar) solution computed by Schneider [31] and Afzal

830 and Hussain [1], this ¯ow is a particular case of the

831 generalized Falkner Skan mixed convection as pointed

832 out by Ridha [28]. The last points present a small dis-

833 crepancy because of the output e�ect: the upstream in-

834 ¯uence of �o=ox�p � 0.

835 This is an element for the validation of the thermal

836 coupling part of our dicretization. Note, that for

837 ÿ0:8 '< J < 0 there are two self-similar solutions, one

838 with a positive skin friction and an other with a negative

839 skin friction [28, 38]. Steinr�uck [38] showed that it is

840 possible, near the critical value, to branch from the self-

841 similar ¯ow (for x! 0) with positive skin friction to the

842 other, with negative skin friction (at large x).

843 6.2. Starting ¯ow, buoyant, non-self-similar results

844 In the sequel, we ®x J � ÿ0:025. The temperature of

845 the wall is equal to 1. This value of J is a compromise

846 between two e�ects: ®rst, if J is too large, the interaction

847 takes place near the nose where the gradients are big, Dx
848 must be not too small and xin must also be not too small;

849 second, if J is too small, the Blasius part is well solved,

850 but the size of the computational domain is now too big.

851 J � ÿ0:025 seems to be good enough to prevent those

852 two drawbacks.

853 In Fig. 9, we display the converged reduced skin

854 friction at the wall as function of the size of the domain

855(i.e. the value of xout). We note that, depending on this

856size, we obtain di�erent solutions. The ®rst points pre-

857sent an error coming from the discretization at the input,

858they are not far from f 00Blasius�0� � 0:33. Reducing the step

859size decreases this error (the error is ampli®ed on the

860graph because of the
���
x
p

term coming from n � jJ j ���xp ).

861The quantity f 00�n; 0� � �ou=oy��x; 0� ���xp decreases to a

862minimum and increases greatly after and reaches a

863maximum at the end of the computational zone. This

864minimum decreases as the size of the domain increases

865and ultimately this leads to separation. Finally, we may

866compare favorably results from Fig. 9 and Steinr�uck's

867results [37,p. 261, Fig. 1] reproduced in Fig. 2: most of

868the curves have common parts with Wickern results

869compiled by Steinr�uck. But here the originality of our

870work is that we catch the back ¯ow, so our curves do not

871stop at separation.

872In Fig. 10, we plot the displacement thickness as a

873function of x (®nal state) for the di�erent domain sizes

874compared with Blasius solution. Fig. 11 is a zoom of the

875same ®gure showing the sudden increase of displacement

876thickness associated to the boundary layer separation.

877We do not observe any singularity at a ®nite time as

878observed in all the boundary layer calculation for im-

879pulsive ¯ow [45]. In investigating smaller grid e�ects, we

880do not observe oscillations as predicted by Cowley et al.

881[9] or Smith and Elliot [36].

8827. Conclusion

883This problem is very interesting because it summarizes

884all the di�culties of boundary layer ¯ows: the existence

885of eigen function destroying the parabolicity, boundary

886conditions di�cult to settle, occurrence of a back ¯ow,

887and numerical and physical instabilities.

Fig. 9. The reduced skin friction function of the domain size.

Results are compared with the calculation of Wickern (1991)

(compiled by Steinr�uck) and referred as marching. The size of

the domain is xout � 5 10, 20, 50, 100 and 125.

Fig. 10. The displacement thickness d1�x� for several domain

sizes (xout � 5 10, 20, 50, 100 and 125).
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888 Numerical calculations with marching techniques

889 have clearly shown [37] that there is a singularity in the

890 self-interaction of the boundary layer for J � O�1�. This

891 singularity is similar to the ``branching solutions'' ob-

892 tained in supersonic inviscid±viscous interacting ¯ows

893 (and presented by Werle et al. [46]). These interacting

894 boundary layer ¯ows were often solved with integral

895 methods, and we have presented here such a simpli®ed

896 resolution too. The divergence of the numerical solution

897 was observed, and often explained with those integral

898 methods [22]. As we have exactly the same behavior as

899 clearly stated by Steinr�uck who compares a lot of nu-

900 merical results, we have presented here the same argu-

901 ments: we have showed that integral methods may be

902 extended to remove the singularity (as in aerodynamics),

903 we have showed that this behavior is natural from the

904 triple deck theory (in aerodynamics, the supersonic and

905 hypersonic boundary layer ¯ows were the problems

906 which have led Neiland and Stewartson to introduce the

907 triple deck analysis).

908 Two di�erent asymptotic structures were presented,

909 the ®rst with small J predicts that there is no singularity

910 but ampli®cation of any perturbation; the second at J of

911 the order of one predicts a self-similar singularity at any

912 location. These two structures were shown to be those

913 found by Steinr�uck but with a di�erent approach.

914 Moreover, we have presented a numerical computation

915 showing that the self-induced singularity may be re-

916 moved if downstream conditions are supplied (coherent

917 with the ®rst mechanism: ampli®cation of any pertur-

918 bation at small J ). No general physical boundary con-

919 ditions were imposed, nevertheless with a zero gradient

920 output condition, we showed that depending upon the

921 size of the domain a di�erent branching solution may be

922 selected. The boundary layer may then separate and

923 present a region of back ¯ow (even after step size re-

924 duction, no oscillations were observed). This is a gen-

925 eralization of Steinr�uck results.

926Some questions may arise, ®rst of physical interpre-

927tation: does this upstream in¯uence describe the phe-

928nomenon of ``blocking'' which is observed in strati®ed

929¯ows? Is it the result of the existence of a kind of hy-

930draulic internal jump? This is possible because the hy-

931draulic jump equation solved by Higuera [16] is nearly

932the same as it involves a change of pressure associated

933with the change of the thickness of the ®lm (analogous

934to d1), the inverse of the Froude number being the an-

935alog of the buoyancy parameter; furthermore, Higuera

936[17] solves the problem of a buoyant wall jet over a ®nite

937plate with a singularity imposed at the end. His work

938enters in greater details (in¯uence of adiabatic wall and

939of Pr number); there is a separation and a back ¯ow as

940well. The case of cold jet on adiabatic plate leads to

941separation too; he compares qualitatively this result with

942what happens in cavity-driven ¯ow where a sort of

943``hydraulic jump'' is observed. Is it nearly impossible to

944reach the location where J ' ÿ1 (incidentally, linear

945stability of the J ' 1 should be investigated) because

946branching solutions have appeared far upstream of this

947point where J � 1? What are the real downstream

948boundary conditions? Is it possible to ®nd a set of those

949boundary conditions which leads to a solution with a

950region of back ¯ow developing continuously down-

951stream (as proposed by Steinr�uck in self-similar ¯ows)?
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