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Abstract. I present the dynamics of waves trapped in a one-dimensional cavity with a single wall that can
move as a result of radiation pressure (and possibly other external forces). Specifically, the classical wave
equation is considered and the phenomenology of this system is outlined when the moving boundary
achieves large displacements and velocities similar to the one of the waves. Governing equations are derived
in the context of electromagnetism, and a spatial discretization that conserves the total energy is proposed.
I address cases when the dynamics of the boundary are prescribed or critically damped. Finally, numerical
simulations are performed to obtain qualitative results for the conservative limit.

Résumé. Je présente la dynamique d’ondes dans une cavité unidimensionnelle dont une paroi peut se
mettre en mouvement sous l’effet, entre autres, de la pression de radiation. Plus précisément, l’équation
des ondes classiques est couplée à une paroi subissant de grands déplacements et pouvant se mouvoir
à une vitesse comparable à celle des ondes. Les équations du problème sont obtenues dans le cadre de
l’électromagnétisme puis discrétisées spatialement en conservant l’énergie totale. Quelques cas particuliers
sont ensuite traités, lorsque la position de la paroi est prescrite par un opérateur extérieur ou bien se réduit
à un oscillateur dans son régime critique. Des simulations numériques dans la limite conservatives sont
finalement discutées.
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1. Introduction

The Doppler effect constitutes a canonical example of an interaction between a wave and a
moving boundary: traveling solutions of the wave equation present changes in both their energy
and frequency as they reflect off a uniformly moving boundary [1]. This result has been widely
generalized to non-uniform motions. For instance, quasi-monochromatic waves of frequency f0

reflecting off a harmonically oscillating boundary at frequency fb acquire a spectrum of the form
{ f0 +n fb}n∈Z that can be explicitly computed [2]. This holds for electromagnetic waves and—
after much controversy over the comparative effects of the medium non-linearity [3]—has also
been experimentally confirmed for acoustic waves [4]. This approach can be adapted for surface
gravity waves, even though they are not governed by the standard wave equation [5].
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Figure 1. Two examples of one-dimensional wave fields coupled with moving boundaries.
(a) A model that allows energy conservation and investigation into the characteristics of the
stationary state. (b) A model of heat transfer mediated by radiation pressure (i.e., caused
neither by conduction or convection nor by emission or absorption of radiation).

A natural extension of these works is to consider the cumulative effects of such generalized
Doppler shifts for waves trapped in a cavity with oscillating walls. The one-dimensional wave
equation in the modulated domain [0,L0 + A cos(2π fb t )] with non-zero initial conditions leads,
in some range of parameters, to a localization and exponential growth in wave energy [6,7]. This
parametric instability is known as the dynamical Casimir effect in quantum electrodynamics and
can generate photons in a vacuum [8]. This instability is also considered in the construction
of ultra-short pulses [9] and contributes to the interpretations of experiments on wave turbu-
lence [5]. In practice, the motion of the oscillating wall becomes increasingly difficult to sustain
as the wave energy continues to grow.

In the problems discussed above, the position of the moving boundary is assumed to be
prescribed regardless of the radiation pressure generated by the waves. Taking this feedback into
account enables a large class of new phenomena related to thermalization and heat fluxes to be
investigated. Consider, for instance, the setup shown in Figure 1(a), in which a wave propagates
in a cavity whose right wall is connected to a spring. The energy of this entire system is conserved,
but does it eventually thermalize? And how long does it take? Similar questions arise if two
of these moving boundaries are now introduced (the left and right walls), and connected to
thermostats of different temperatures, see Figure 1(b). Is there a mean heat flux in this system? If
yes, how does it scale with the temperature difference? Does it depend on the initial wave energy?

As a result of the tremendous potential applications of optomechanics [10,11], the modeling of
such systems, initially based on the classical wave equation, nowadays involves quantized elec-
tromagnetic fields and boundary motions [12]. The framework developed by Law [13] is rou-
tinely used (see, e.g., [14–16] and references therein). It crucially relies on both nonrelativistic
and small-displacements assumptions; in addition, most studies restrict to a few electromag-
netic modes (generally a single one). In contrast, I focus in this manuscript on the opposite limit
of cavities driven by radiation pressure in which a large number of wave modes interact with a
boundary that undergoes large displacements and can move up to the speed of the waves. I try to
provide here a pedagogical introduction to the governing equations and emerging properties as
well as a simple numerical scheme able to capture this complex dynamics. Classical electromag-
netism is used for that purpose, but the general picture is expected to hold for mechanical waves
as well.
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The remainder of this manuscript is organized as follows. The radiation pressure is derived
from the wave equation in Section 2. I introduce in Section 3 the governing equations of the
problem displayed in Figure 1(a) ((b) being an immediate extension) and propose an energy-
conserving discretization in Section 4. I then discuss a few cases in which theoretical predictions
can be drawn in Section 5 and investigate the fully conservative limit using numerical simulations
in Section 6.

2. The radiation pressure and the wave equation

The investigation of the coupling between a wave field and a moving boundary requires an
expression for the radiation pressure. There is a simple way to derive its expression: it is reported
here as, in my opinion, one of the most straightforward introduction to radiation pressure that
can be done in classroom. Consider the wave equation for a field A(x, t ) in the domain x ∈ [0,ξ(t )]
with Dirichlet boundary conditions,

∂2 A

∂t 2 = c2 ∂
2 A

∂x2 , A[0, t ] = A[ξ(t ), t ] = 0, (1)

and the energy associated with this field (up to a dimensional constant),

Ewaves(t ) =
∫ ξ(t )

0

[
1

2

(
∂A

∂x

)2

+ 1

2c2

(
∂A

∂t

)2]
dx. (2)

The time derivative of this energy is computed as

dEwaves

dt
=

∫ ξ(t )

0

[
∂A

∂x

∂2 A

∂x∂t
+ 1

c2

∂A

∂t

∂2 A

∂t 2

]
dx + ξ̇

[
1

2

(
∂A

∂x

)2

[ξ(t ), t ]+ 1

2c2

(
∂A

∂t

)2

[ξ(t ), t ]

]
. (3)

The integral can be computed using integration by part, the wave equation and the boundary
condition at x = 0, A[0, t ] = 0 → ∂t A[0, t ] = 0.∫ ξ(t )

0

[
∂A

∂x

∂2 A

∂x∂t
+ 1

c2

∂A

∂t

∂2 A

∂t 2

]
dx =

∫ ξ(t )

0

[
∂A

∂t

(
1

c2

∂2 A

∂t 2 − ∂2 A

∂x2

)]
dx +

[
∂A

∂t

∂A

∂x

]ξ(t )

0
(4)

=
(
∂A

∂t

)
[ξ(t ), t ]

(
∂A

∂x

)
[ξ(t ), t ]. (5)

Finally, the second boundary condition results in A[ξ(t ), t ] = 0 → ∂t A[ξ(t ), t ] =−ξ̇∂x A[ξ(t ), t ] and
this energy budget reveals the expression of the power generated by the moving boundary,

dEwaves

dt
=

(
∂A

∂t

)
[ξ(t ), t ]

(
∂A

∂x

)
[ξ(t ), t ]+ ξ̇

[
1

2

(
∂A

∂x

)2

[ξ(t ), t ]+ 1

2c2

(
∂A

∂t

)2

[ξ(t ), t ]

]
(6)

= −ξ̇ (∂x A)2[ξ(t ), t ]

2

(
1− ξ̇2

c2

)
≡−ξ̇Prad, (7)

hence the expression for the radiation pressure Prad (up to the dimensional constant of (2)). If A
is the electromagnetic vector potential, this yields the relativistic radiation pressure on a moving
perfect mirror that will be considered Section 3.3, but it also applies to simpler mechanical
systems such that vibrating strings of variable lengths.

3. Governing equations

The considered model is presented in Figure 1(a). It consists of waves in a one-dimensional
cavity whose left wall is fixed and whose right wall is free to respond to the radiation pressure
and other external forces. Even though this setup is generic, it will be described for the specific
framework of electromagnetism in a vacuum, with the walls assumed to be massive perfect
mirrors. The main reasons guiding this choice are that (i) the wave dynamics in the cavity are



262 Guillaume Michel

fully linear, (ii) the motion of a mirror does not directly generate waves, and (iii) the velocity of
the massive mechanically moving wall cannot exceed the wave speed. These stipulations would
not hold for acoustic or surface waves. In this section, different equivalent sets of equations
will be introduced, some useful for concise analytic predictions and others for simple numerical
implementation.

3.1. In terms of the dimensional electromagnetic fields

Let x denote the spatial coordinate: the positions of the mirrors are 0 (left, fixed wall) and ξ(t )
(right, moving wall). A single linear polarization is considered, corresponding to an electric field
E(x, t ) = E(x, t )ey and magnetic field B(x, t ) = B(x, t )ez . The propagation and radiation force of
these fields depend on the magnetic permeability of free space µ0 and the speed of light c. The
moving boundary is subject to the electromagnetic radiation pressure, a linear restoring force,
and potentially other external forces and is therefore characterized, per unit surface, by its mass
Ms , its spring constant Ks (of rest position L0), and additional forces Fext = Fextex . The governing
equations are thus:

∂E

∂x
=−∂B

∂t
,

∂E

∂t
=−c2 ∂B

∂x
, E [0, t ] = 0, E [ξ(t ), t ] = ξ̇B [ξ(t ), t ] , (8)

Ms
d

dt

(
γξ̇

)=−Ks (ξ−L0)+Fext + B [ξ(t ), t ]2

2µ0

(
1− ξ̇2

c2

)
, γ=

(
1− ξ̇2

c2

)−1/2

. (9)

The boundary conditions (8) set the electric field to zero at the perfect mirrors in their frames
of reference. The relativistic dynamics (9) prevent the velocity of the boundary from reaching c.
These equations conserve the total energy in the absence of external forces,

d

dt

[
Msγc2 +Ks

(ξ−L0)2

2
+

∫ ξ

0

(
E 2

2µ0c2 + B 2

2µ0

)
dx

]
= ξ̇Fext. (10)

3.2. In terms of the dimensionless electromagnetic fields

The dimensionless fields and variables are defined as

x = L0x̄, t = (L0/c)t̄ , ξ(t ) = L0ξ̄(t̄ ), (11)

B(x, t ) =√
µ0Ks L0B̄(x̄, t̄ ), E(x, t ) = c

√
µ0Ks L0Ē(x̄, t̄ ), Fext = Ks L0F̄ext. (12)

They will be considered throughout the remainder of this manuscript; therefore, I have omitted
the over-bars in subsequent equations. The governing equations and energy budget become

∂E

∂x
=−∂B

∂t
,

∂E

∂t
=−∂B

∂x
, E [0, t ] = 0, E [ξ(t ), t ] = ξ̇B [ξ(t ), t ] (13)

α2 d

dt

(
γξ̇

)= 1−ξ+Fext + B [ξ(t ), t ]2

2

(
1− ξ̇2) , γ= (

1− ξ̇2)−1/2
, (14)

d

dt

[
α2γ+ (ξ−1)2

2
+

∫ ξ

0

(
E 2

2
+ B 2

2

)
dx

]
= ξ̇Fext, (15)

where α= c/(L0ω) and ω=p
Ks /Ms the natural angular frequency of the boundary.

3.3. In terms of the dimensionless vector potential

The theoretical analysis of this system, especially when the motion of the boundary is prescribed,
is facilitated by the introduction of the dimensionless vector potential A (specifically its y-
component) such that B = ∂x A and E =−∂t A. The governing equations are:

∂2 A

∂x2 = ∂2 A

∂t 2 , A[0, t ] = A[ξ(t ), t ] = 0, α2 d

dt

(
γξ̇

)= 1−ξ+Fext + (∂x A) [ξ(t ), t ]2

2

(
1− ξ̇2) . (16)
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3.4. In terms of the dimensionless energy density and flux

These equations can be expressed in terms of the energy density u = (E 2 + B 2)/2 and flux
P = EB :

∂u

∂t
=−∂P

∂x
,

∂P

∂t
=−∂u

∂x
, P [0, t ] = 0, P [ξ, t ] = 2ξ̇u [ξ(t ), t ]

1+ ξ̇2
, (17)

α2 d

dt

(
γξ̇

)= 1−ξ+Fext +u [ξ(t ), t ]

(
1− ξ̇2

1+ ξ̇2

)
. (18)

The electromagnetic energy no longer involves squared fields and is given by Eem = ∫ ξ
0 u(x, t )dx.

4. Numerical model

Numerical discretization of these equations can be achieved using finite-difference time-domain
(FDTD) on a fixed grid by choosing adequate boundary conditions and adding and removing
grid points as the boundary moves [17,18]. In this study, I used the more direct approach of
introducing stretched coordinates on which the governing equations are discretized; thus, the
cavity is always represented by a constant number of grid points. This method requires no
alteration to the boundary conditions and makes energy conservation straightforward. However,
contrary to FDTD, it cannot generalize to higher spatial dimensions.

4.1. Governing equations in the stretched domain

The introduction of the stretched coordinates (t̃ , x̃) = (t , x/ξ(t )) makes the domain size constant,
that is, x ∈ [0,ξ(t )] → x̃ ∈ [0,1]. Further, the partial derivatives of any field f (x, t ) = f̃ (x̃, t̃ ) are
easily related: (

∂ f

∂x

)
t
= 1

ξ

(
∂ f̃

∂x̃

)
t̃

,

(
∂ f

∂t

)
x
=

(
∂ f̃

∂t̃

)
x̃
− x̃ξ̇

ξ

(
∂ f̃

∂x̃

)
t̃

. (19)

The governing equations reported in Section 3.4 and the energy budget become

∂ũ

∂t̃
=−1

ξ

∂P̃

∂x̃
+ x̃ξ̇

ξ

∂ũ

∂x̃
,

∂P̃

∂t̃
=−1

ξ

∂ũ

∂x̃
+ x̃ξ̇

ξ

∂P̃

∂x̃
, P̃

[
0, t̃

]= 0, P̃
[
1, t̃

]= 2ξ̇ũ
[
1, t̃

]
1+ ξ̇2

, (20)

α2 d

dt̃

(
γξ̇

)= 1−ξ+Fext + ũ
[
1, t̃

](
1− ξ̇2

1+ ξ̇2

)
,

d

dt̃

[
α2γ+ (ξ−1)2

2
+ξ

∫ 1

0
ũ(x̃, t̃ )dx̃

]
= ξ̇Fext. (21)

4.2. Spatiotemporal discretization

These equations are then discretized in space with staggered finite-difference grids. The dis-
cretized energy fluxes {P̃n}n∈[0,N ] relate to the spatial positions {x̃n = n∆X }n∈[0,N ] with ∆X = 1/N ,
whereas the mesh for the energy densities {ũn+1/2}n∈[−1,N ] lies at {x̃n+1/2 = (n +1/2)∆X }n∈[−1,N ].
The derivatives are approximated as

∂ũn+1/2

∂t̃
=−1

ξ

(
P̃n+1 − P̃n

∆X

)
+

(
x̃n+1/2ξ̇

ξ

)(
ũn+3/2 − ũn−1/2

2∆X

)
, n ∈ [0, N −1] (22)

∂P̃n

∂t̃
=−1

ξ

(
ũn+1/2 − ũn−1/2

∆X

)
+

(
x̃n ξ̇

ξ

)(
P̃n+1 − P̃n−1

2∆X

)
, n ∈ [1, N −1] (23)

P̃0 = 0, P̃N = ξ̇(ũN−1/2 + ũN+1/2)

1+ ξ̇2
, α2 d

dt̃

(
γξ̇

)= 1−ξ+Fext + (ũN−1/2 + ũN+1/2)

2

(
1− ξ̇2

1+ ξ̇2

)
. (24)
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Prescribing the ghost nodes ũ−1/2 = ũ1/2 and ũN+1/2 = ũN−1/2 enforces the discrete energy
budget,

d

dt̃

[
α2γ+ (ξ−1)2

2
+ξ ∑

n∈[0,N−1]
ũn+1/2∆X

]
= ξ̇Fext. (25)

Notably, although this spatial discretization conserves the total energy, the propagation becomes
dispersive and the energy density is no longer guarantied to remain positive (these features
become more apparent with energy variations at small scales O(∆X )). Finally, Equations (22)–
(24) are numerically implemented and advanced in time using a fourth-order Runge–Kutta
scheme. All the simulations reported in this article were performed with N = 105 grid points,
unless stated otherwise, and a fixed timestep ∆t = 1/(2N ).

5. Limit cases

5.1. Waves in a harmonically modulated cavity

Here, a few simple cases will be illustrated using the numerical model. The first considers the
canonical problem of waves in a cavity of harmonically modulated length. It is mainly presented
as an introduction to the phenomenology of waves in a modulated domain but also serves
as a test case for our numerical method and as an introduction to the theoretical recurrence
relations.

5.1.1. Recurrence relations

Recurrence relations can be derived from the vector potential equations obtained in Sec-
tion 3.3. They characterize the back-and-forth propagation of waves in the cavity, along with
their change in amplitude as they reflect off the moving boundary. The general solution of the
wave equation (16) is

A(x, t ) = A+(x + t )+ A−(x − t ). (26)

The boundary conditions are enforced with these new functions, then differentiated with
time:

A [ξ(t ), t ] = 0 = A+ [ξ(t )+ t ]+ A− [ξ(t )− t ] =⇒ Ȧ+ [ξ(t )+ t ] =
(

1− ξ̇(t )

1+ ξ̇(t )

)
Ȧ− [ξ(t )− t ] , (27)

A(0, t ) = 0 = A+(t )+ A−(−t ) =⇒ Ȧ+(t ) = Ȧ−(−t ) =⇒ ∂x A(0, t ) = 2Ȧ+(t ) = 2Ȧ−(−t ). (28)

Since t is arbitrary in (28), this results in both

∂x A [0, t +ξ(t )] = 2Ȧ+ [t +ξ(t )] , ∂x A [0, t −ξ(t )] = 2Ȧ− [ξ(t )− t ] . (29)

Combining (27) and (29) gives

∂x A [0, t +ξ(t )] =
(

1− ξ̇(t )

1+ ξ̇(t )

)
∂x A [0, t −ξ(t )] . (30)

Equation (30) provides a relation between the fields at the left (stationnary) boundary before
(t −ξ(t )) and after (t +ξ(t )) they reflect off the moving mirror (at time t ). This equation is well-
known and can be found in several instances in the literature (Equations (7) and (8) in Ref. [7]).
To express this result in terms of the variables used in our numerical formulation, I introduce the
radiation pressure P acting on the moving boundary and the energy density uL measured on the
left boundary from (16):

P (t ) = ∂x A [ξ(t ), t ]2

2
(1−ξ(t )2), uL(t ±ξ(t )) = ∂x A [0, t ±ξ(t )]2

2
. (31)
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Differentiating (26) with respect to x and then (29) and (30), I obtain

∂x A [ξ(t ), t ] = Ȧ+ [ξ(t )+ t ]+ Ȧ− [ξ(t )− t ] = ∂x A [0, t +ξ(t )]+∂x A [0, t −ξ(t )]

2
= ∂x A [0, t −ξ(t )]

1+ ξ̇(t )
.

(32)

Finally, recurrence relations on both uL and P are

P (t ) =
(

1− ξ̇(t )

1+ ξ̇(t )

)
uL [t −ξ(t )] , uL [t +ξ(t )] =

(
1− ξ̇(t )

1+ ξ̇(t )

)2

uL [t −ξ(t )] . (33)

These hold irrespective of the specific motion of the boundary ξ(t ). They track the propagation of
the energy density at the left wall at time t −ξ(t ) such that they relate (i) to the radiation pressure
generated at time t when the wave meets the mirror with position ξ(t ), and (ii) to the new energy
density modified by Doppler effect that returns to the left wall at time t +ξ(t ).

5.1.2. Divergence of the energy at ω≃ cπ/L0

Assume that an external force drives the left boundary according to ξ(t ) = L0 [1+a sin(ωt )],
i.e., that with dimensionless variables ξ(t ) = 1+a sin(α−1t ) (0 < a < 1 and a <α). Thus, ifα−1 =π,
that is, if ω= cπ/L0 is the first non-zero eigenfrequency of the electromagnetic cavity at rest, the
recurrence relation (33) for uL at times tn = 2n (such that ξ(tn) = 1 and ξ′(tn) = aπ) becomes

uL(2n +1) =
(

1+aπ

1−aπ

)2

uL(2n −1) =
(

1+aπ

1−aπ

)4

uL(2n −3) = ·· · =
(

1+aπ

1−aπ

)2n

uL(1), (34)

representing energy divergence. The same procedure can be adapted for an α−1 that slightly
differs from π. This divergence persists in the range [6]

ωL0

c
∈

[ π

1+a
,

π

1−a

]
. (35)

Numerical simulations were performed with the same initial conditions and boundary motion
as in Ref. [6]: u(x,0) = P (x,0) = exp[−60(x − 0.5)2] and ξ(t ) = 1 + a sin(α−1t ) with a = 0.2. I
refer the reader to the additional movies Movie_inva2 (α−1 = 2) and Movie_inva3 (α−1 = 3)
(Supplementary information). The second movie clearly depicts cumulative Doppler effects that
dramatically increase the energy of a pulse propagating back and forth. The energy of the waves
as a function of α−1 and t is shown in Figure 2(left); it reproduces the instability range of (35) and
coincides with the theoretical Figure 3 of Ref. [6].

5.2. Waves in a cavity a with critically damped oscillating boundary

Here, the motion of the boundary is no longer externally prescribed but driven by radiation
pressure. A two-way coupling develops between the waves and the moving mirror, which renders
theoretical predictions based on recurrence relations (33) much more challenging because ξ now
depends on the entire history of P . Thereafter, I focus on a specific limit in which this memory
effect is restricted and can be explicitly accounted for: in addition to radiation pressure and linear
restoring forces, the boundary is considered subject to critical damping, i.e., Fext = −2αξ̇. This
dissipation makes the mirror relax on a timescale α that is assumed to be small compared with
unity, that is, much faster than the time required for a pulse to travel back and forth in the cavity.

5.2.1. Slow modulation of small-amplitude pulses

The dynamics of the boundary are

α2 d

dt

(
γξ̇

)= 1−ξ−2αξ̇+P (t ). (36)
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Figure 2. (Left) Energy Eem in a cavity of modulated length ξ(t ) = 1+a sin(α−1t ). The initial
conditions u(x,0) = P (x,0) = exp[−60(x −0.5)2] and specific value of a = 0.2 are consistent
with Ref. [6]. The dimensionless angular frequency α−1 = ωL0/c varies in increments of
0.01. The vertical dashed lines correspond to the theoretical instability range (35). (Right)
Energy density at the left wall ϵ2φ(n, t ) = uL(t +2n) in a cavity whose right wall responds to
the radiation pressure (n is the number of interactions between the pulse and the moving
boundary). The initial conditions are u(x, t ) =−P (x, t ) =α2 exp[−60(x −0.5)2], ξ(0) = 1 and
ξ̇(0) = 0, with α= 5×10−3. The dashed lines are the theoretical predictions of (42).

Assuming small-amplitude fields and a fast oscillator timescaleα, which results in small displace-
ments of the moving mirror, I expand

P (t ) = ϵ2p(t ), ξ(t ) = 1+ϵ2η(t ), uL(t ) = ϵ2ϕ(t ), (37)

with α= ϵ≪ 1. Equation (36), at leading orders, models a fast critically damped oscillator,

η̈+ 2η̇

ϵ
+ η

ϵ2 = p(t )+O(ϵ2), (38)

the displacement of which is computed with a Green’s function,

η(t ) =
∫ ∞

0
se−s/ϵP (t − s)ds =

∫ ∞

0
se−s/ϵ [P (t )− sṖ (t )+·· ·] ds = P (t )−2ϵṖ (t )+O(ϵ2). (39)

The recurrence relation (33) for P yields p(t ) = ϕ(t − 1)+O(ε2) and the position of the mirror
directly relates to the electromagnetic energy at the other end of the cavity some time before,

η(t ) =ϕ(t −1)−2ϵϕ̇(t −1)+O(ε2). (40)

Equation (33) for uL that connects two successive reflections of the pulse on the left wall becomes

ϕ
[
t +1+ϵ2η(t )

]= [
1−4ϵ2η̇(t )+O(ϵ4)

]
ϕ

[
t −1−ε2η(t )

]
. (41)

The successive bounces of a single pulse can be disentangled in this limit with φ(n, t ) =ϕ(t +2n)
with t ∈ [0,2] and any integer n. This leads, with (40) and (41), to

∂nφ+6ϵ2φ∂tφ= 4ϵ3 [
(∂tφ)2 +2φ∂t tφ

]+O(ϵ4), (42)

which is a regularized Burgers equation. At order ϵ2, the total electromagnetic energy is con-
served and it reduces to the strict Burgers equation, known to generate shock from any localized
pulse [19]. Regularization and damping arise at the next order.

Consistent with (37), the simulations were initialized with ξ(0) = 1, ξ̇(0) = 0 and u(x,0) =
−P (x,0) = α2 exp[−60(x − 0.5)2]. The movie Movie3_alpha0p2 (Supplementary information)



Guillaume Michel 267

Figure 3. (Left) Energy in a cavity in which a pulse u(x,0) = P (x,0) = 10exp[−106(x −0.5)2]
interacts with a wall of a comparatively slow characteristic time. Rapid variations in the
electromagnetic energy are observed, that can be modeled as shocks. (Right) Ratio of the
final to initial electromagnetic energy for the first 25 shocks compared to (44).

illustrates the general dynamics and definition of the quantity of interest ϵ2φ(n, t ) = uL(t+2n) for
α= 0.2. However, this value of α is too large for (42) to hold. The results shown in Figure 2(right)
for α = 5× 10−3 are in good agreement with the analysis derived in the limit of α → 0, except
close to the peak of the pulse where comparatively fast dynamics occur that require higher order
corrections.

5.3. Shocks of very short pulses

I now consider an initial condition with a pulse of very short duration compared to the response
time of the critically damped oscillator. A similar formal analysis can be performed, that reveals
that the radiation pressure is mainly balanced by inertia during these brief interactions. Conser-
vation laws directly capture the electromagnetic energy loss during this shock, which is trans-
ferred to the mirror and eventually dissipated before the next interaction takes place.

Consider an electromagnetic pulse of dimensionless energy Ei and momentum Pi = Ei

traveling towards x →∞, that reflects off a comparatively slow oscillator initially at rest. Its final
energy E f corresponds to a momentum P f = −E f because it then progresses towards x →−∞.
The velocity of the mirror just after the pulse leaves is denoted as ξ̇ f (the position of the mirror is
assumed to be unchanged). The conservation of energy and momentum are therefore

Ei = E f +α2(γ f −1), Pi = P f +α2γ f ξ̇ f =⇒ Ei =−E f +α2γ f ξ̇ f , (43)

where γ f = (1− ξ̇2
f )−1/2. This system can be solved for ξ̇ f and yields

E f

Ei
= 1

1+µ , γ f −1 = µ2

2+µ , µ= 2Ei

α2 . (44)

The initial condition u(x,0) = P (x,0) = 10exp[−(x −0.5)2/σ2
x ] and ξ(0) = ξ̇(0) = 0 with σx = 10−3

and α = 0.2 illustrates this regime. Here, I refer the reader to the movie Movie4_sx0p001
(Supplementary information) that shows the dynamics up to t = 5. The various components of
the energy are shown in Figure 3(left). The electromagnetic energy Eem = ∫ ξ

0 u(x, t )dx is almost
piece-wise constant (with values {Eem,n}n), some of it being transferred as kinetic Ek(t ) = α2γ(t )
then potential Ep(t ) = (ξ(t )− 1)2/2 energies at each shock. The squared restitution coefficient
E f /Ei of (44) quantitatively compares to the DNS (see Figure 3(right)).
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Figure 4. (Left) Energy Eem in a cavity whose left wall can oscillate with a natural angular
frequency ω. The initial conditions u(x,0) = P (x,0) = 0.02

p
60/πexp[−60(x − 0.5)2] are

similar to those of Figure 2(left). The dimensionless angular frequency α−1 =ωL0/c varies
in increments of 0.01 and the vertical dashed line corresponds toα−1 = 3.27. (Right) Energy
density in the cavity at times t = 0 and t = 99.5 (α−1 = 3.27).

6. Numerical simulations in the conservative limit

6.1. Evolution of a single pulse

The fully conservative regime, in which the moving boundary is only subject to the radiation
pressure and a linear restoring force (Fext = 0), represents a considerable theoretical challenge. In
this section, I report numerical simulations that evidence the general dynamics, first considering
the evolution of a single pulse of dimensionless energy 0.02 in a cavity initially at rest, i.e.,

u(x,0) = P (x,0) = 0.02

√
60

π
exp

[−60(x −0.5)2] , ξ(0) = 1, ξ̇(0) = 0. (45)

Energy conservation implies that the displacement of the boundary is bounded, |ξ(t )−1|⩽ 0.2.
The evolution of the electromagnetic energy forα−1 ∈ [2,4.5] experiences periodic oscillations, as
shown in Figure 4(left). For deeper insights, a longer run was computed forα−1 = 3.27 of up to 100
time units: see movie Movie5_inva3p27 (Supplementary information) and Figure 4(right) that
show the evolution of the initial and almost final electromagnetic energy u(x,0) and u(x,99.5).
Although the pulse shapes develop sharp variations, the periodic evolution of the electromag-
netic energy persists (it accounts for 99.99% of the total energy at t = 99.5). These slow recur-
rences are reminiscent of the Fermi–Pasta–Ulam–Tsingou (FPUT) problem in which the nonlin-
earity comes from the wave equation rather than coupling with a moving boundary, resulting in
an extremely long time for thermal equilibrium to be reached [20].

6.2. Equilibrium spectra

As a more direct route to steady-state convergence, the numerical simulation is initialized with
random electromagnetic noise in a cavity in which the moving boundary is at rest at time t = 0,

ũn+1/2(0) = Eem(0)
ãn+1/2∑N−1

m=0 ãm+1/2∆X
, P (x,0) = 0, ξ(0) = 1, ξ̇(0) = 0, (46)

where {ãn+1/2} are random values drawn from the uniform distribution on the open interval
(0,1) and Eem(0) is the total energy in the system. The evolution of the spectral electromagnetic
components in the cavity are difficult to compute using a spatial Fourier transform because the
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Figure 5. (Left) Energy density at the left (fixed) wall in a cavity initialized with random
noise of total energy Eem(0) = 0.05 with N = 100 grid points. (Right) PSDs of the energy
density fluctuations at the left wall at final time t ∈ [4 × 108,500 + 4 × 108] for Eem(0) =
{0.002,0.05}.

domain size evolves. A more convenient approach characterizes the temporal power spectrum
density (PSD) of the energy density variations at the left (fixed) wall, u(0, t )−〈u(0, t )〉t (〈·〉t denotes
a time average over the range in which the PSD is computed). Simulations were run with N = 100
grid points, α−1 = π, and three different values of Eem(0) = {0.002,0.01,0.05}, up to 4×108 time
units.

The supplemental movie Movie6_random_IC_N100_E0p05 depicts the dynamics at both the
initial and final times for Eem(0) = 0.05: the electromagnetic field clearly evolves toward a state
that no longer displays high temporal or spatial frequencies. This is also evident from time series
of u(0, t ) shown in Figure 5(left). This feature is observed in all three simulations. The PSDs
at the final time are, for small values of the total energy Eem(0), almost restricted to the first
eigenfrequencies of the linear system ({ fn = n/2}n⩾1, see Figure 5(right)). As the total energy
increases, the peak corresponding to f1 = 1/2 splits in f1 ± fc /2 because of nonlinear coupling
with the moving boundary: the very low frequency fc , also observed in the PSDs, is found to
slowly modulate the oscillation amplitude of ξ(t ) and to scale with the total energy as fc = 3.8Eem.
This relation has been confirmed for a larger number of grid points N (N = 200 and Eem = 0.05).
Even though the extinction of the high frequencies may be caused by numerical dispersion, these
results nevertheless support the possibility of nonlinear steady states with very simple spectral
structures in which the waves are strongly coupled with the motion of the moving boundary.

7. Conclusion

The two-way coupling between linear waves trapped in a cavity and a fast moving boundary un-
dergoing large displacements was introduced in the context of classical electromagnetism. No
practical experimental setup can follow this model because it involves perfect mirrors moving at
a fraction of the speed of light (the only plausible relevance is in astrophysics, at the surface of
highly conductive neutron stars [21]). However, it provides a convenient framework to evidence
emerging features such as the generation of sharp profiles Section 5.2.1, finite restitution coeffi-
cients for fast waves Section 5.3, slow recurrences Section 6.1, nonlinear steady-states in which
energy is concentrated in a few modes Section 6.2. These observations can guide the under-
standing of experiments with mechanical waves, such as water waves generated by a paddle in a
container or acoustic waves forced by a piezoelectric device in a cavity. It shows that qualitative
behavior usually ascribed to the bulk non-linearities can also result from a linear propagation
coupled with a moving boundary.
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