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Observation of nonlinear sloshing induced by wetting dynamics
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Back-and-forth oscillations of a container filled with fluid often result in spilling as the
gravest mode gets excited, a well-known phenomenon experienced in everyday life and
of particular importance in industry. Our understanding of sloshing is largely restricted to
linear response, and existing extensions mostly focus on nonlinear coupling between modes.
Linear theory is expected to correctly model the dynamics of the system as long as the
amplitude of the mode remains small compared to another length scale, so far unknown.
Using a fluid in the vicinity of its critical point, we demonstrate that in perfect wetting
this length scale is neither the wavelength nor the capillary length but a much shorter
one, the thickness of the boundary layer. Above this crossover length scale, the resonance
frequency remains roughly constant while dissipation significantly increases. We also show
that dynamical wetting is involved in both linear and nonlinear dissipative processes.
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Introduction. Although the study of sloshing in the simplest configuration of a cylindrical
container can be traced back to Poisson at the beginning of the 19th century [1], a significant gap
still exists between theory and experiments even for the linear response of the gravest mode. While
effective devices have long been investigated to prevent excessive surface deformations, the most
famous ones being antislosh baffles (see Ref. [2] for a review), sloshing control could be improved
by understanding the precise dissipative processes resulting from back-and-forth displacements of
a container. Moreover, the limit of linear theory is unknown: If we were asked if a linear damping
correctly describes the oscillations taking place in a cup of coffee, many of us would hesitate before
giving an opinion. The associated damping time scale computed from linear theory is more than
10 s [3], thus providing a strong hint that nonlinearities occur. In this Rapid Communication, we
evidence that dynamical wetting processes contribute to linear damping and that such linear theory
is restricted in perfect wetting to oscillations smaller than the thickness of the boundary layer (a
fraction of a millimeter in the case of a cup of coffee).

The characteristics of the gravest mode for an inviscid, irrotational, and incompressible flow with
a free surface can be found in many textbooks (e.g., Refs. [2,4]). Natural frequency computed in this
framework differs from the experimental values from less than 1% [5,6] up to around 10% [7–9].
In contrast, measurements of damping are associated with larger discrepancies: a theory based on
dissipation localized in bottom and wall boundary layers underestimates experimental dissipation
from a few percent [7] to as much as a few hundred percent [5,8,9]. These disparities have been
ascribed to both surface contamination and capillary effects close to the contact line.

It is common knowledge that a free surface quickly gets polluted unless care is taken to avoid it:
Full contamination occurs within an hour for water and significantly increases the damping of surface
waves [10]. This correction to the natural frequency and to the damping has been first computed in
circular geometry by Miles [11], with Marangoni elasticity having been later added in some limit by
Nicolás and Vega [12]. Even though it is clearly an efficient damping mechanism, the exact values
of these corrections strongly depend on chemical properties (e.g., solubility of the contaminant or
Marangoni elasticity of the film) whose measurements are difficult.
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FIG. 1. Experimental setup.

Dissipation caused by the motion of the meniscus has also been studied theoretically, by
considering the work of capillary forces (those involved in the equilibrium Young contact angle).
This has been first achieved by Miles for various wetting configurations [11,13]. Experiments show
that a meniscus strongly increases dissipation [14], the damping being maximal for zero contact
angle [15]. However, dissipation considered in these theoretical studies vanishes for perfect wetting.
In addition, we note that the computation of viscous energy loss in a meniscus undergoing an
oscillating motion is still an open problem.

In the present experiment, we measure the natural frequency and damping of the first sloshing
mode in a cylindrical container. Using a fluid in the vicinity of the liquid-vapor critical point allows
a continuous modification of physical parameters involved in the sloshing dynamics and provides
a better control of surface contamination and wetting properties. Standard linear theory is found to
accurately describe the natural frequency, whereas it clearly underestimates the damping. Since the
surface is clean and the wetting is perfect, this provides a measurement of viscous energy dissipation
in the contact line. The nonlinear dynamics of this oscillator is also addressed by tuning the forcing
amplitude: We report that the first nonlinearity to arise is a damping enhancement that we attribute
to the wetting dynamics. We demonstrate that the crossover between linear and nonlinear dynamics
occurs when the amplitude becomes of the order of the thickness of the boundary layer, a surprisingly
small characteristic length.

Experimental setup. The experimental setup is sketched in Fig. 1 and consists of a cylindrical
container of radius R = 50 mm and height 2h = 25 mm filled with SF6 of purity >99.97%. The
total density ρ has been set close to the critical density ρc so that in the vicinity of the critical
point the liquid and gas phases have the same volume, the height of the liquid being therefore
h = 12.5 mm. The pressure P and the temperature T inside the cell are measured with a Kistler
4500B pressure sensor and a Pt100 resistance thermometer: The relation P (T ) in the supercritical
domain with the data from Ref. [16] leads to ρ = 720 kg m−3. This container is surrounded by a
Lauda Master thermostated bath, making temperature fluctuations less than 0.01K. Four windows
allow the observation of the surface motion: two lateral ones of radius 5 mm, and two on the upper
and lower surfaces of radius 20 mm.
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The entire device is subjected to a harmonic horizontal translation �X cos(ωt + φ) imposed by
a BK 4809 vibration exciter. The actual displacement is measured by a noncontact Electro Corp
sensor and processed by a SR 830 lock-in amplifier that gives access to �X and φ. A laser aligned
with and close to the cylinder axis is deflected at the liquid-vapor interface and the motion of the
beam along the translational direction, Rlas cos(ωt + θlas), is tracked by a UDT 301-DIV position
sensing detector. This signal is handled by a similar lock-in amplifier: Rlas, �X, θlas, and φ are
finally recorded with a National Instruments acquisition card. For a given forcing amplitude �X,
the sloshing dynamics is therefore characterized by the amplitude and phase responses, respectively
Rlas and θlas − φ.

The liquid and vapor densities (resp., ρ(�) and ρ(v)), the refractive indices (resp., n(�) and n(v)),
and the surface tension σ evolve close to the critical temperature Tc according to

ρ(�) = ρc(1 + B0ε
β), ρ(v) = ρc(1 − B0ε

β)

n(�) = nc(1 + A0ε
β), n(v) = nc(1 − A0ε

β) (1)

σ = σ0ε
μ,

where ε = (Tc − T )/Tc is the dimensionless distance to the critical point, nc is the refractive index
of the supercritical phase, and (β � 0.325,μ � 1.26) are critical exponents. In our experiment
Tc = (318.782 ± 0.004) K and ε has been tuned from 10−1 to 10−3. Close to the critical point, the
kinematic viscosities ν(�) and ν(v) verify ν(�) � ν(v) � ν � 5.7 × 10−8 m2 s−1 [17].

Dynamics of the first sloshing mode. Gently increasing ω for a fixed displacement �X reveals
a large number of resonances, and we thereafter focus on the first one. The amplitude of this mode
η̄1,1(t) is expected to be modeled for small forcing amplitudes by a damped harmonic oscillator
equation, that is

d2η̄1,1

dt2
+

(
ω1,1

Q

)
dη̄1,1

dt
+ ω2

1,1η̄1,1 = F(t), (2)

where ω1,1 is the angular resonance frequency, ω1,1/(2πQ) is the linear bandwidth, and F(t) is
the external driving force. For a lateral excitation �X cos(ωt + φ), F comes from the difference of
inertial accelerations between the two phases and scales as

F ∝ ρ(�) − ρ(v)

ρ(�) + ρ(v)
�Xω2 cos(ωt + φ). (3)

The two characteristics of this oscillator that are (ω1,1/Q) and ω1,1 are experimentally measured for
a given displacement �X from a linear fit of the phase response close to the resonance, where [18]

θlas − φ � −π

2
− 2

Q

ω1,1
(ω − ω1,1). (4)

Typical plots of (θlas − φ) for a fixed temperature (ε = 0.017) as a function of the forcing frequency
f = ω/(2π ) are reported in Fig. 2. They exhibit a nonlinear behavior since data for different forcing
amplitudes do not coincide.

The addition of a quadratic nonlinearity in the dissipation correctly models all experimental data
and we consider instead of (2) an oscillator equation of the form

d2η̄1,1

dt2
+ ω1,1

Q

(
1 + CNLη̄2

1,1

)dη̄1,1

dt
+ ω2

1,1η̄1,1 = F(t). (5)

A straightforward analysis reveals that for such an oscillator, the lowest order correction to (4)
reduces to a modification of the slope as the forcing increases, such that

2
Q

ω1,1
⇒ 2

Q

ω1,1

(
1 − CNLF2Q2

4ω2
1,1

)
. (6)
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MICHEL, PÉTRÉLIS, AND FAUVE

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1.318 1.320 1.322 1.324 1.326

P
ha

se
re

sp
on

se
sh

ift
ed

by
π
/2

(r
ad

)

f (Hz)

ΔX = 28μm
ΔX = 109μm
ΔX = 168μm
ΔX = 216μm

FIG. 2. Typical phase evolution close to resonance (ε = 0.017).

For the temperature considered in Fig. 2, we extract from linear fits of the phase response the
resonance frequency (when θlas − φ = −π/2) and the slope of these lines; see Fig. 3. Whereas the
resonance frequency can be reasonably considered as constant, the slope has a clear dependence on
the square of the forcing amplitude: For all considered temperatures, the relative variation of the
slope reaches 100% before the variation of the frequency gets to 1%.

For each temperature, we therefore have a direct measurement of the resonance frequency
ω1,1/(2π ), the linear bandwidth ω1,1/(2πQ), and the linear amplitude response at resonance G

defined by Rlas = G�X for small amplitudes (obtained by a direct fit of Rlas, similar to the one in
Fig. 3, not reported here for brevity). From the slope of the fit in Fig. 3, we also have access to the
nonlinear coefficient C�X

NL , such that at the lowest order

1 + CNLη̄2
1,1 = 1 + C�X

NL (�X)2. (7)
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FIG. 3. Evolution of the phase close to resonance as a function of the displacement �X (ε = 0.017).
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FIG. 4. Critical behavior of G and ω1,1/(2π ). One straight line is the theoretical prediction for ω1,1/(2π )
and the other one is a power-law fit of G of critical exponent 0.756.

Discussion. In the linear potential theory of surface waves, the surface elevation η(r,θ,t) can be
decomposed into a sum of modes of the form [2,4]

η̄n,m(t)
Jm(kn,mr)

Jm(kn,mR)
cos(mθ + θn,m), (8)

where Jm is the Bessel function of order m, θn,m is a constant that can be removed by considering
independent sine and cosine functions of mθ , kn,m is the wave number (such that kn,mR is the nth
root of J ′

m), and η̄n,m(t) is a harmonic function of frequency

fn,m = 1

2π

√(
ρ(�) − ρ(v)

ρ(�) + ρ(v)

)
gkn,mtanh(kn,mh). (9)

The derivation of (9) assumes that both phases have the same height h and that surface tension can be
ignored. Since we restrict this study to the mode of lowest frequency, corresponding to m = n = 1,
this last assumption is valid. Close to the critical point, using (1), (9) reduces to f1,1 = Cεβ/2, where
C is a constant that depends on g, h, k1,1 = 1.8412/R, and B0 (B0 = 1.62 for SF6 [19]). This
accurately describes our experimental data, cf. Fig. 4. Minor corrections to (9) resulting from the
damping or the wetting conditions exist (see, e.g., Ref. [13]) but they are less than the uncertainty
on B0 and can therefore not be determined here.

We also checked that G has the correct scaling versus ε: Stating that the displacement of the
laser is related to the refraction indices and that at resonance the forcing term is fully balanced by
dissipation, we get

Rlas ∝ �nη̄1,1 ∝ �n
Q

ω1,1
ω1,1�ρ�X. (10)

Assuming that ω1,1/Q ∝ εβ/4 (see below), G is directly related to ε via

G ∝ εβ−β/4+β/2+β ∝ ε9β/4. (11)

Fitting our data with G ∝ εexp (see Fig. 4) leads to a critical exponent 0.756 ± 0.009, compatible
with 9β/4 � 0.731.

We now consider the dissipative term, whose computation relies on an expansion on the small
parameter δk1,1, where δ = √

ν/ω1,1 is the thickness of the viscous boundary layers. The very small
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FIG. 5. Critical behavior of the linear and nonlinear damping. Straight lines are power-law fits with critical
exponents 0.074 and 0.972.

kinematic viscosity of fluids close to the critical point (a few times 10−8 m2 s−1) compared to the
ones of more usual fluids (1 × 10−6 for water) makes this parameter small enough not to consider
second-order contributions (as bulk dissipation) that can be of importance otherwise [20]. If neither
surface contamination nor capillary effects close to the meniscus are considered, damping thus
reduces to the contributions of top, bottom, and lateral boundary layers and [7]

ω1,1

Q
= 1

R

√
νω1,1

2

(
1.84 + 3.68

1 − h/R

sinh(3.68h/R)

)
. (12)

Note that although this expression has been derived in Ref. [7] in the absence of gas, it also describes
the present experiment given that phases have almost the same height and kinematic viscosity.
Equation (12) predicts ω1,1/(2πQ) = 9.5ε0.081mHz, while a fit of our data leads to ω1,1/(2πQ) =
(24.3 ± 0.2)ε0.074±0.002 mHz; cf. Fig. 5. This indicates that other first-order dissipative terms (all in
ε0.081) have to be considered.

Such terms could result from surface contamination, but we regard this possibility as unlikely.
Indeed, the gathering of contaminants close to the interface results from a sizable surface tension σ ,
and σ vanishes at the critical point (for the range of temperature considered, σ < 0.2 mN m−1 [17]).
Dissipation caused by capillary forces at the meniscus could also be a guess, but we disregard this
possibility as it vanishes for zero contact angle [13]. Indeed, there is strong evidence indicating that
the wetting is perfect: First, perfect wetting always occurs in the vicinity of the critical point [21]. In
addition, we have measured the equilibrium meniscus height between SF6 and the glass for a large
range of temperature and it coincides with the expected value with zero contact angle. We therefore
consider that the additional dissipation measured in this experiment results from viscous loss in (or
close to) the meniscus and also scales as

√
νω.

A power law also describes the behavior of the nonlinear term: C�X
NL = (647 ±

17)ε0.972±0.007 mm−2 (see Fig. 5). The critical law of CNL follows from

CNL ∝ C�X
NL

(
�X

η̄

)2

∝ C�X
NL

(
ω1,1

Q

1

ω1,1�ρ

)2

(13)
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that gives CNL ∝ ε0.160±0.007. This exponent turns out to be very close to δ−2 ∝ εβ/2 (β/2 � 0.1625),
and the equation of this oscillator (5) can finally be cast in the form

d2η̄1,1

dt2
+ ω1,1

Q

[
1 + C

(
η̄1,1

δ

)2]
dη̄1,1

dt
+ ω2

1,1η̄1,1 = F(t), (14)

where C is a dimensionless constant that does not depend on ε. This proves that linear damping cor-
rectly describes sloshing as long as the oscillation amplitudes remain small compared to the thickness
of the boundary layer. This result is quite surprising: One could have guessed this crossover length
scale to be the size of the meniscus (the so-called capillary length) or the wavelength of the wave, the
steepness (k1,1η̄1,1) characterizing nonlinear coupling between modes [22,23]. For a perfect wetting
and using octane and air instead of SF6, Cocciaro et al. reported a decrease of the dissipation as the
forcing increases [5]. This shows that the nonlinearity observed here does not result from the dynam-
ics of the bottom, top, and lateral boundary layers, which are identical in both experiments. In contrast,
a specificity of the present experiment is that energy dissipation occurs both in the liquid and in the
gas: Since the fluid motions are similar in these two phases except in the vicinity of the contact line,
we propose this nonlinear damping to also result from viscous dissipation in or close to the meniscus.

Conclusion. Our experiment sheds light on two aspects of sloshing theory in perfect wetting.
First, it shows that linear damping can reasonably be assumed as long as the oscillation amplitude
remains small compared to the thickness of the boundary layer δ = √

ν/ω. This characteristic length
is very small and is quickly exceeded in practice. For this reason, we emphasize the importance
of measurements of decay up to very small displacements in experiments dealing with sloshing.
Second, we found that damping is underestimated if only viscous boundary layers are considered:
A substantial dissipation arises as a consequence of the contact line motion. The study of wetting
in nonsteady states represents a substantial experimental and theoretical challenge and our results
point out its relevance for sloshing.
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mathématiques pures et appliquées 19, 225 (1828).

[2] R. A. Ibrahim, Liquid Sloshing Dynamics (Cambridge University Press, New York, 2005).
[3] H. C. Mayer and R. Krechetnikov, Walking with coffee: Why does it spill? Phys. Rev. E 85, 046117

(2012).
[4] H. Lamb, Hydrodynamics (Dover, New York, 1945).
[5] B. Cocciaro, S. Faetti, and M. Nobili, Capillarity effects on surface gravity waves in a cylindrical container:

Wetting boundary conditions, J. Fluid Mech. 231, 325 (1991).
[6] B. Cocciaro, S. Faetti, and C. Festa, Experimental investigation of capillarity effects on surface gravity

waves: Non-wetting boundary conditions, J. Fluid Mech. 246, 43 (1993).
[7] K. M. Case and W. C. Parkinson, Damping of surface waves in an incompressible liquid, J. Fluid Mech.

2, 172 (1956).
[8] D. M. Henderson and J. W. Miles, Surface-wave damping in a circular cylinder with a fixed contact line,

J. Fluid Mech. 275, 285 (1994).
[9] D. R. Howell, B. Buhrow, T. Heath, C. McKenna, W. Hwang, and M. F. Schatz, Measurements of

surface-wave damping in a container, Phys. Fluids 12, 322 (2000).
[10] W. G. Van Dorn, Boundary dissipation of oscillatory waves, J. Fluid Mech. 24, 769 (1966).
[11] J. W. Miles, Surface-wave damping in closed basins, Proc. R. Soc. London, Ser. A 297, 459 (1967).
[12] J. A. Nicolás and J. M. Vega, A note on the effect of surface contamination in water wave damping,

J. Fluid Mech. 410, 367 (2000).
[13] J. W. Miles, On surface waves with zero contact angle, J. Fluid Mech. 245, 485 (1992).

022801-7

https://doi.org/10.1103/PhysRevE.85.046117
https://doi.org/10.1103/PhysRevE.85.046117
https://doi.org/10.1103/PhysRevE.85.046117
https://doi.org/10.1103/PhysRevE.85.046117
https://doi.org/10.1017/S0022112091003415
https://doi.org/10.1017/S0022112091003415
https://doi.org/10.1017/S0022112091003415
https://doi.org/10.1017/S0022112091003415
https://doi.org/10.1017/S0022112093000035
https://doi.org/10.1017/S0022112093000035
https://doi.org/10.1017/S0022112093000035
https://doi.org/10.1017/S0022112093000035
https://doi.org/10.1017/S0022112057000051
https://doi.org/10.1017/S0022112057000051
https://doi.org/10.1017/S0022112057000051
https://doi.org/10.1017/S0022112057000051
https://doi.org/10.1017/S0022112094002363
https://doi.org/10.1017/S0022112094002363
https://doi.org/10.1017/S0022112094002363
https://doi.org/10.1017/S0022112094002363
https://doi.org/10.1063/1.870310
https://doi.org/10.1063/1.870310
https://doi.org/10.1063/1.870310
https://doi.org/10.1063/1.870310
https://doi.org/10.1017/S0022112066000995
https://doi.org/10.1017/S0022112066000995
https://doi.org/10.1017/S0022112066000995
https://doi.org/10.1017/S0022112066000995
https://doi.org/10.1098/rspa.1967.0081
https://doi.org/10.1098/rspa.1967.0081
https://doi.org/10.1098/rspa.1967.0081
https://doi.org/10.1098/rspa.1967.0081
https://doi.org/10.1017/S002211209900823X
https://doi.org/10.1017/S002211209900823X
https://doi.org/10.1017/S002211209900823X
https://doi.org/10.1017/S002211209900823X
https://doi.org/10.1017/S0022112092000557
https://doi.org/10.1017/S0022112092000557
https://doi.org/10.1017/S0022112092000557
https://doi.org/10.1017/S0022112092000557


RAPID COMMUNICATIONS
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